

3 WNH: Web Navigation Helper

This chapter presents a detailed description about Web Navigation Helper

(WNH), the web application developed in this research. As mentioned in section

 1, WNH is based on a tool called CoScripter. In order to better understand WNH,

section 3.1 introduces the CoScripter tool and its purposes. In section 3.2, a

detailed description of WNH is presented, followed by its architecture in section

 3.3. Section 3.4 presents an illustration of WNH and section 3.5 alerts to the

other side of the coin: where and how it could go wrong, and what can be done to

overcome or recover from these potential failures.

3.1. CoScripter

CoScripter is a macro-recorder for the web, developed at IBM Research in

Almaden (CoScripter, 2008). “CoScripter is a tool that brings together known

ideas in a novel combination: 1) it allows end-user automation of procedures

through recording and scripting, and 2) it stores scripts on a shared central wiki”

(CoScripter, 2008).

CoScripter enables users to record interactive tasks carried out with a

browser and to play them back later. This is a nice-to-have functionality,

especially when dealing with processes that are frequently performed or are too

long to be manually repeated. The set of these recorded actions is called script.

Once recorded, scripts can be easily reproduced. Filling in forms, clicking on

buttons, navigating to specific URLs are some of the actions that can be easily

automated through CoScripter, currently implemented as an extension for the

Mozilla Firefox web browser and written in JavaScript and XUL. Access to

CoScripter is provided upon registration, and every member has access to

CoScripter’s forum and wiki, and is able to share with and see shared scripts

from other members.

The CoScripter interface is a bar located on the left side of the browser, as

shown in Figure 2.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 30

Figure 2: CoScripter

Every script is associated to the URLs in it. So, for example, if a script

automates the login process of a user to Gmail, this script is immediately

associated to www.gmail.com.

CoScripter has an important collaborative aspect that turns it into a

powerful tool, and is of major significance to this work. Every new script created

is designated by its owner as private or public. Public scripts can be seen and

used by all members of the CoScripter community, while private ones are

accessed and viewed only by their creators. When visiting a site, CoScripter

exhibits to users a list containing all public scripts related to that site. Should they

wish to run a script, they click on it to load the script in CoScripter’s sidebar, and

click on “Run” to execute it. Users can benefit from shared scripts since they

don’t need to create their own script to perform these actions. They may use

somebody else’s scripts.

Suppose a user visits a web page that contains shared CoScripter scripts

and, by browsing this list, she identifies, amongst all shared scripts related to that

page, one script that performs the exact set of actions she originally intended to

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 31

perform in that web page. Instead of running the actions one by one, the user has

the option to click and run the script. By doing so, the actions will be automatically

ran. The benefits of selecting, loading and running a script, instead of manually

executing the set of actions contained in the script, are manifold:

1) It should be less time-consuming;

2) Users that were not sure about how to manually perform the tasks find

support on this automatic way;

3) Users with difficulties in navigating the web, as for instance the visually-

impaired and the functionally-illiterate, don’t need to browse the site

content in search for the requested information;

Every promising attempt of guiding the user to the resource she is looking

for, preventing her from getting lost in the midst of the site contents, should be

pursued further. With that said, however, the tool still presents few challenges to

make it happen. Two of the challenges can be said to impact all users:

1) How can users tell which script, from the list associated to the page they

are visiting, does the task they wish to do?

2) How do users know which information she should provide (insert into the

personal database) in order to execute the steps?

Another challenge concerns users with special needs. How would users

less acquainted with computers and programming manage to perform these

tasks? What about visually impaired and functionally illiterate users, could they

take any profit of it? Or would they face way too many difficulties that it would not

be worth it?

As shown here, using CoScripter might represent to some users an effort

not easy to overcome. This is where WNH comes to play, as described in next

section.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 32

3.2. Detailed Description

The challenges raised in last section suggest the fact that interacting with

CoScripter might require basic familiarity with computers and Internet and even

some programming skills. Nevertheless, the intention was to bring CoScripter and

some of its functionalities to novice users, as it might become an efficient way of

accessing resources in the web. It was found however essential to review the

way CoScripter is presented to end-users: certainly not all of its features would

be of use to the targeted public. Moreover, these end-users would probably

require a more assistive way of executing the scripts than more expert users.

These considerations (among others that will be explained later in this chapter)

were the driving force to build for the targeted web-novice users a whole

supportive solution of sharing and executing automated processes. The Web

Navigation Helper (WNH) was then conceived.

The main purposes of WNH are threefold:

1) Allow end-users to easily locate processes (scripts) that will bring them to

the desired resource;

2) Allow end-users to automatically execute those processes (which is

already contemplated by CoScripter);

3) Assist end-user during the processes executions;

WNH, nevertheless, includes more than the topics just mentioned. As will

be seen later on this chapter, it also comprises few features to assist those

interested in creating and maintaining shared scripts to be used by the end-users.

In other words, it is also designed to help those wanting to help. Since WNH is a

solution to be used by three distinct groups (blind, functionally illiterate and

support users), it was important to separate it into three different tools, so users

would not be erroneously distracted with features designed to the other group.

From now on in the text, the terms WNH-see, WNH-read and WNH-support will

be used when referring to the solution for blind, functionally illiterate and support

users, respectively. It is important to mention that these three tools are generated

by the same original code, with different compilation flags turned on/off during the

code process build, depending on which public the application is targeted to.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 33

Since the universe of sites and scripts is enormous, with diverse

characteristics and demanding different approaches of solutions, it was chosen in

this study to restrict the sites’ domain to Brazilian government only. It was

expected with this to collect enough information and learn from this universe so,

in future works, the solution can be easily extended to more sites. Also, to be

able to work with relevant scripts, a group of three volunteers created a database

of useful scripts related to Brazilian govern sites. Few Brazilian government sites

that gathered different, useful and common tasks were chosen, and for each one

of them, tasks that attended to at least one of the requirements listed below were

selected:

1) Useful to users (such as checking the income tax refund);

2) Common to users (tasks often executed by users);

3) Have a dialog with the user, or in other words, tasks that require some

data input from the user in order to be executed (for instance, tasks that

ask for the ID card number);

By doing so, a number of useful scripts from distinct sites were created.

These scripts served not only as the starting point for the experiments, but also

as the repository with which the WNH was and is being tested and developed.

3.2.1. WNH-see and WNH-read

All three versions WNH-see, WNH-read and WNH-support are built on top of

CoScripter, as all should be able to reproduce automated tasks, find out shared

tasks, execute them, and so on. On the backend of the three tools runs the same

CoScripter machine7. WNH-see and WNH-read, however, are different from

WNH-support since they omit a number of elements from the original CoScripter

that are no longer useful for end-users, and brings to end-users only some of the

CoScripter original features (basically, only those needed to run the scripts).

Both WNH-see and WNH-read can be seen as a layer wrapping

CoScripter, including features and filtering others that are unnecessary, so as not

to disturb the targeted end-users with interface elements they won’t anyway use

7
 CoScripter machine can be understood as the capabilities of creating, sharing, exhibiting

and running automated processes

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 34

(and mistakenly distract them from their real activity). Actually, only the essential

functionalities were left. Most of the original interface elements (e.g. the ‘Record’

and ‘Save’ buttons, as shown in Figure 2) were suppressed, and the end-user is

left on the initial page with two buttons only. One button, called “Available Tasks”,

once clicked displays a list of shared scripts (i.e., public scripts) referent to the

web site currently displayed on the main browser window (as explained in

previous section). The button acts also much like the “Home” button in a browser:

it is always visible and accessible and, when clicked, resets the process by

displaying the same initial list (as can be seen in Figure 3). The second button,

called “Restart”, allows for restarting any on-going process execution.

Figure 3: Web Navigation Helper

More than the changes in the interface level, the way WNH-see and WNH-

read interact with end-users was also reviewed. As mentioned before, blind and

functionally illiterate users might present difficulties in interacting with the tool.

Therefore WNH-see and WNH-read were conceived to serve as an interceptor

during CoScripter execution so as to help users in each and every step that can

be considered to be a point of possible errors, allowing them, then, to accomplish

the task. For instance, opposed to the way CoScripter requests personal

information in order to run the scripts (it does that by presupposing the user has

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 35

already filled in a variable in his main Personal Database, so it can be retrieved

when running the script), both WNH-see and WNH-read do not store variables

values in any database. All information is requested on-the-fly, through a pop-up

window8 (and discarded after the script completion). The original Personal

Database can be seen as a place where users could store values of variables

frequently used. But in the case of WNH this is not really appropriate. On the

contrary: the whole idea of variables and values are a notion reserved to

programmers and/or computers expert users, and would be an obstacle for the

targeted users. Asking for the needed information during the task execution

presented itself as a more natural and familiar way than doing that through the

Personal Database.

Another functional innovation implemented in WNH, which plays a major

role in the solution, is the communication channel created from support-user to

end-user. Through this one-way channel, support-users are able to orient and

instruct end-users during their script execution. Every problem and difficulty faced

by end-users during the process could be guided by support-users. The

encountered way to implement this is through the comments. Therefore, in WNH-

see/WNH-read, every comment in the script is presented to the end-user in a

pop-up message window. Whenever a comment is recognized during the script

execution, a pop-up confirmation window is displayed to users with the comment

contents. This creates an important and valuable channel of communication

between support and end-users.

Acting as an interceptor to assist users during script execution turns WNH

into a powerful tool, since it creates hooks during the process in which several

new functionalities could be attached. In other words, the fact that CoScripter

process execution can be intercepted during its steps flow permits incorporating

several actions intended to assist users. One could think, as an illustration of

possibilities for the future, of an online live support chatting environment to guide

end-users during the script execution: whenever the user is uncertain of what to

do next, she could ask for assistance from the support team.

The way WNH-see/WNH-read accomplishes these interceptions is by

running over the script steps, interpreting every individual command of the steps,

8
 Unless contrarily indicated, in order to save space in the text, every mention of a window

pop-up to provide or request information to/from end-user should be understood that WNH-see for

blind users performs the same parallel interaction through the use of screen readers, by reading

out-loud the information.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 36

collecting information about the required input data, and according to its internal

rules, deciding when the interception is needed. WNH-see/WNH-read is also able

to retrieve the contents and extract relevant information from the web page itself.

That increases even more the range of assistive actions that can be performed.

Clearly, WNH infrastructure presents itself as quite valuable to users: it provides

the basics for creating a dedicated and encompassing system for blind and

functionally illiterate internet, (but not only them), end-users.

3.2.2. Differences between WNH-see and WNH-read

Visually, WNH-see almost does not differ from WNH-read. Every change and

modification to WNH-read was carried out to WNH-see too, mostly because

WNH-see users would not notice these differences anyway (because of their

blindness). This scenario probably won’t be the same when WNH is extended to

other visually impaired users. One interface particularity, though, is present on

WNH-see but not on WNH-read, and it will be described immediately after the

main difference between these two tools is presented in the next paragraph.

The differences between WNH-see and WNH-read rely mostly on how they

interact with the end-user. As will be further explored in sections 4 and 5, during

the WNH-see first experiment it was noticed that the user had an issue in locating

himself during the automated process execution. He was not informed of what

was taking place in every moment, what was already done, and what was left to

be done. With that in mind, it was understood that the blind users need to be

notified at every step about his current position in the whole process. The

encountered solution was the creation of a pop-up message that informs, at

every concluded step, the accomplishment of x steps out of a total of y steps.

This information is not displayed to WNH-read users, since they are visually

notified of the process progress during CoScripter machine execution.

Getting back to the interface particularity mentioned above, whenever this

pop-up message is displayed during the steps execution in WNH-see, a Help and

a Restart buttons are displayed to the blind users as well, but not to the

functionally illiterate users. The Help button was an attempt to reduce the sense

of loss of orientation manifested by the first blind experiment participant, which

could also be shared by the others during the experiments; the Restart button

was a way of providing errors recovery mechanisms to the user. Since the

Restart functionality is already available in WNH main interface and can be easily

accessed by sighted users, there is no need of displaying the Restart button at

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 37

every step to WNH-read users in a separate message. As for the Help button, it

was not considered to be of major importance in current version of WNH-read,

and therefore it was omitted from it. This explains why these two buttons are

present in WNH-see but not in WNH-read. Future versions of WNH-read should

consider, though, making use of the Help as it is an important channel of

conversation between designers and end-users.

3.2.3. WNH-support

As mentioned above, WNH-see/WNH-read and WNH-support are two faces of

the same tool, intended to be used by end-users and support-users, respectively.

In this work the notion of a support group is used, meaning a group composed of

volunteers in charge of the following tasks:

1) Create useful scripts, primarily in Brazilian government sites, to be used

by WNH-see/WNH-read users;

2) Maintain these scripts, which means adapting them to eventual changes

undergone by sites;

When creating new scripts, and in order to make the most out of WNH,

volunteers should fully comprehend important points. The first of them is how

WNH works and its features. Also, they should have a good understanding of the

web site in which the script is being created, and the possible ways of

accomplishing the task. Finally, they should have a very good understanding of

the end-users’ characteristics, their most common difficulties, and plan the script

steps accordingly to that. For instance, many of the government sites (and not

only them) make use of Completely Automated Public Turing test to tell

Computers and Humans Apart (CAPTCHA) mechanism used to prevent

automated navigation, and which is a well-known issue in the accessibility field.

Volunteer users, when creating scripts and facing a captcha step, should try to

prevent possible users falls by providing the necessary information. A suggested

way of providing this information could be as follows:

“enter your 'os números e letras que aparecem abaixo' into the first

textbox”

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 38

That command, when intercepted by WNH (and then by the CoScripter

machine), will pause the execution of the process for user data input. WNH then

pops-up a window requiring such data from user, as shown in Figure 4.

Figure 4: captcha when running WNH

Whatever is enclosed in single-quotes in this command (e.g. 'os números e

letras que aparecem abaixo') is displayed to end-users, and constitutes the door

to guide users. This text will be used by volunteer users to better explain to ebd

users what needs to be filled in the box.Therefore, support users should carefully

prepare this text, as in the example above, in which users are told to “fill in the

box with the numbers and characters displayed below”.

Besides the task of creating scripts, it is up to the volunteers to keep these

scripts up and running as well. But how are volunteers supposed to maintain the

scripts functional and active? This is especially important when talking about web

sites, a vehicle liable to sudden changes. Not only there are no guarantees the

site seen today will be the same tomorrow, but also the changes are fairly

common. A script might be no longer functional if any change was made to the

site. In order to find out if scripts are still suitable to their sites, volunteers would

need to either check if there was any change to this site, or manually run the

scripts periodically, adapting the script if needed.

WNH-support assists volunteers by providing a tool that automatically

performs this “finding-out changes” task. The tool should be run periodically, and

for a list of sites and scripts, it executes each script, simulating any required user

data input, and checking if the script reached or not the end. If for any reason it

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 39

stopped before the end, it raises a suspect flag, and should be closely analyzed

by a volunteer. If the script successfully reached the end, then the script does

match its site.

The mission undertaken by the volunteers is not an easy one. It is up to

them to create scripts that not only are runnable and do execute the desired task,

but that are user friendly and facilitate the end-users’ understanding. Volunteers

must take into account all possible and eventual difficulties the users might have

in each and every step of the process, such as the audio captcha, for instance. In

this case, it is a good practice to add, before the correspondent command, a

comment with some sayings such as “next you will hear numbers that need to be

typed in”, which will be shown to the user as a notification. Or, in the functionally-

illiterate case, the best practices indicate that a comment also needs to be added

before the point in which the user is supposed to interact directly with the web

page. This comment should inform the user how to trigger the execution back.

The examples presented above are just some of what was learnt from the

first two experiments. As the number of scripts and tasks start to grow, there will

probably emerge other essential particularities, not yet foreseen, which must not

be put aside. As shown here, the role of the volunteers is of greatest importance

for the success of this project.

Future versions of WNH-support should consider the creation of a markup

language to be used by the volunteers in order to construct more efficient

dialogues with the end-users.

Sections 3.2.1 and 3.2.3 present how WNH looks like today, after few

months of natural evolution. The next section will present a brief explanation of

this evolution, how it all started, since it is important to understand the

considerations taken throughout the process and which ways seemed more

appropriate to pursue. This will serve as a basis for further work as well.

3.2.4. History of the project

In its early stage, still aiming at improving the web navigation through the use of

scripts, the means by which this project tried to accomplish this was different from

the current one. Then, the focus was to help users in choosing the CoScripter

script associated to a web site of interest that performed the task they needed.

Although short scripts (e. g. with less than 5 instructions) are likely to be easy to

understand, longer scripts may not be so easy to interpret. As such, the original

idea of this project was to create a tool that would help users identify their scripts

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 40

of interest. Moreover, the tool would help users during the script execution, by

giving them hints and tips concerning what information they should provide.

Aiming at these two goals, the concrete purpose of the first versions of WNH was

twofold: (a) it would provide useful descriptions of what scripts do (especially

longer scripts); and (b) it would inform users about the kinds of input that are

required for the script to execute. Two possibilities for accomplishing the ‘(a)’

purpose were raised, named plan A and B. In plan A the descriptions were to be

generated automatically by what was called the Pragmatic Script Interpreter

(PSI). The idea of PSI was to parse the contents of every individual shared script

related to the site, extract relevant information from it and generate descriptions

of their purposes in natural language, so as to be fully comprehended by users.

Whilst plan A represented the automatic way, plan B was the opposite extreme.

In the plan B scenario, the descriptions, as well as the scripts themselves, would

be generated by a group of volunteers engaged in the project.

However, during the development of the project, and due to time

considerations, plan A was put aside for future work and the research headed

mainly toward plan B. Because the descriptions were now manually provided by

volunteers, there was no more point in automatically interpreting scripts. In other

words, the Pragmatic Script Interpreter’s functionality would be temporarily

suspended. The ‘PSI’ name was hence discarded and a more proper name, ‘Web

Navigation Helper’ (WNH), came about.

When WNH emerged, it was initially idealized and prototyped mainly as

one single solution to both blind and functionally illiterate users, with minor

differences between them. For instance, WNH for the blind would make use of

screen readers during their navigation, while the others could use screen readers

or not. However, as it was learnt from the first experiments carried out during the

project, functionally illiterate users proved to be a population with significantly

different needs from those of blind users. In order to best attend to the

requirements of both populations, a decision to divide into two the original single

solution was made, and the differences between the two are described in

previous section 3.2.2. The result of this decision was that, in its general

conception, WNH, as its names suggests, is a helper for web navigation for both

blind and functionally illiterate users, but when closely analyzed, the differences

that address each of the types of users are vast, demanding the maintenance of

two parallel versions.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 41

3.3. Architecture

CoScripter (CS) is essentially a web system. It was developed as a Mozilla

Firefox extension, and therefore obeys its add-ons development guidelines

(Mozilla Firefox Co., 2009). Every Firefox extension is built using four

technologies, namely: XUL, JavaScript, CSS and XPCOM (Mozilla Firefox Co.,

2009). It is not in the scope of this work to enter the details of Firefox add-ons

implementation. Rather, it should be enough to give a brief overview of each

technology in order to better understand how CS is built and where the changes

were applied.

1) XUL (XML User Interface Language) – an XML language for describing

user interfaces. The elements in the XUL documents define the layout of

the application user interface.

2) JavaScript – a scripting language primarily used for writing functions to be

embedded in or included from HTML pages. It enables programmatic

access to objects within other applications.

3) CSS (Cascade Style Sheet) - a language used to describe the

appearance (that is, the look and formatting) of a document which was

written in markup language (HTML, XML, etc).

4) XPCOM (Cross Platform Component Object Model) – this is what enables

the integration of external libraries with XUL applications.

The logic and appearance of the developed Firefox extension based on the

technologies listed above should attend a pre-defined directory structure. This

organization should then be compressed in a ZIP file and renamed to ‘.xpi’

extension in order to be distributed and installed in the browser.

It is important to alert that CoScripter is a Client-Server web system, and as

such it has a counterpart on the server-side. The client-side of CoScripter is the

Firefox add-on, and was therefore developed mainly in JavaScript and XUL

languages, with some components in CSS and XPCOM. Because the server-side

part is not open for public access and the changes applied in CoScripter were

only on the client-side, this study doesn’t cover the server-side part

implementation and characteristics.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 42

Web Navigation Helper (WNH), as previously introduced, is an extension

built on top of CS. It was developed basically using CS code and adapting it to

attend the new requirements. As such, most of WNH code was developed in the

same Firefox add-on technologies mentioned above (XUL, JavaScript, CSS and

XPCOM), and in comply with the same software architecture. WNH, however,

works not only with those technologies, but with Java as well. The integration of

Java to its source code allows new functionalities to be easily implemented. The

considerations of using this programming language instead of others were

basically because the WNH developer feels more comfortable in developing new

code in Java than in JavaScript or any other software development language.

Two Java components are currently in use in WNH, one in charge of retrieving a

list of all shared scripts of the web site open in the browser window and the other

useful for WNH-support, for helping detecting which scripts might be out-of-date.

An earlier version of WNH, when plan ‘A’ was still the primarily focus of this

research, had a Java component to generate the script descriptions in natural

language. This component is now commented in the code.

In order to better understand the code changes applied in WNH, here is

provided a functional description of CS architecture, its main units and modules,

as can be seen in Figure 5 (a unit can be understood as a functional perspective

resulting from the combination and interaction of two or more modules):

1) Script Commands Builder Module – this module is called by the recorder

unit once the demonstration is parsed (the action taken in the web site is

identified and interpreted);

2) Script Commands Parser Module – this is where each of the script steps

is parsed and interpreted. CS works with a limited number of commands,

which can have two arguments at most. Each command is in the form of a

sloppy language, which “…interprets pseudo-natural language

instructions (as opposed to formal syntactic statements) in the context of

a given web page’s elements and actions.” (Little, et al., 2007).

Commands in sloppy language are in the form of human readable text;

3) Decision Making Module – this module receives a parsed script command

and the html code and has the not so easy task to eliminate any ambiguity

that might come out when trying to identify the elements of the command

in the page. The way this module works is by relying upon a heuristic

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 43

algorithm. The arguments of the commands are extracted using various

heuristics (e.g. has quotes around it, or is followed/preceded by a

preposition). (Little, et al., 2007);

4) Html Parser Module – this module is the basis of both Recorder and

Execution modules. Since CS records and plays users’ interactions, it

needs to identify the html page elements;

5) Personal Database Data Retrieval/Storage Module – this is the module in

charge of connecting the personal database with the other modules that

interact with it. It both stores and retrieves data input from there. Note that

the Edit Module makes use of this module in order to create or edit

variables in the Personal Database;

6) Script Edition Module – users are able to manually edit the script

commands in an edit panel. In this way, either the user might alter an

existing script or create a new one. In this module users can also edit data

in the personal database;

7) Shared Scripts Finding Module – this attends for the collaboration part of

CoScripter. It allows users to see all public scripts related to the current

web site;

8) Script Recorder Unit – this unit monitors user’s actions such as button

clicks, combo box selects, data inputs, etc. in the web site and records

each action as a step to be later played back. In order to record a script,

CS relies on the Html Parser Module to parse and interpret html code

from the current web site and on a builder module, to create a command

which reflects the action taken by the user;

9) Script Execution Unit – this unit is in charge of reproducing a sequence of

steps. It relies on modules 2-5 to parse the current command, parse the

html code, decide what action to take and retrieve any needed data from

the personal database;

10) Personal Database – data that is frequently needed during the scripts

executions, such as the user social ID number, or birth date, can be

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 44

saved in a database. Then, whenever needed, the execution module

should retrieve this information from there if available;

The list below presents the types of modules that can be found in WNH in

relation to CS code. While few modules were not modified, some of them were

modified during WNH development. The items below describe each type and

point to the modules that fit each one of them:

1) Disabled Modules – as stated in chapter 3.2.1, in WNH-see/WNH-read

there was a need to disable whatever could mislead the user from

achieving the final goal. Therefore, few of these modules were taken

away from the interface and turned to be unreachable. Functionally

speaking, although the source code is present, it is like these

functionalities were stripped of CS when conceiving WNH-see/WNH-read.

Figure 6 shows these modules in purple. Since WNH-see/WNH-read end-

Personal

Database

Script Execution Unit

Shared Scripts

Finding Module

Script Recorder Unit

Script Edition

Module

Personal Database Data Retrieval/Storage Module

Script Commands

Parser Module

Html Parser

Module

Script Commands

Builder Module

Decision

Making Module

Html

page

Figure 5: CoScripter Architecture

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 45

users don’t need to edit scripts, access or view the personal database nor

create any script, the Script Edition Module, Script Recorder Unit,

Personal Database and its retrieval/storage module were disabled in

WNH-see/WNH-read;

2) Preserved Modules – these are the modules that are still used in WNH

and preserve the same behavior as in CS. In other words, they were not

changed. They can be seen in Figure 6 in orange. The Decision Making,

Html Parser and Shared Scripts Finding modules belong to CoScripter

machine, and were needed during script finding and process execution of

WNH. Therefore, they were kept unchanged in WNH;

3) Changed Modules – few of the modules were changed by WNH to attend

its new requirements. They are pointed out in Figure 6 in green. The

Script Execution Unit, which contains the Script Commands Parser

Module, was changed in order to accommodate the interception logic of

WNH. When each command is parsed, WNH decides how to proceed: if

data should be input by users, WNH presents a dialog box asking for it; if

a comment is identified, WNH presents a pop-up message box with its

contents; and so forth;

4) New Modules – these include the functionalities that were added, colored

in beige. The two new modules created in WNH are the Sites Tracker Bot,

described in details in section 3.4.3, and the Shared Scripts Description

Generation modules. The first one is in charge of aiding support users in

maintaining the scripts compatible to the websites in which they take

place. The second one was created when plan A was still the main focus

of this research. This module would interpret every individual shared

script, combine this information with relevant information from the website

contents in which it takes place, and extract a summary of the purpose of

the script, in natural language, to be presented to end-users. This module

is now commented on the code, and should be enabled back when WNH

heads back to plan A again;

Figure 6 details these modules in WNH’s architecture.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 46

Figure 6: WNH Architecture

Next section provides illustrations for users interactions with the WNH tool.

3.4. Illustration

This section presents illustrations of the various types of interactions one

can have when using the WNH tool. Three different interactions, for three

different target users, are considered: 1) Blind users; 2) Functionally illiterate

users; 3) Support users.

3.4.1. Blind User Interaction

The figures below present a few excerpts of a blind user interaction in WNH-see.

Each action performed in the process execution is called a step. Figure 7 shows

WNH-see informing the user that step 3 was concluded. This pop-up message is

how WNH-see informs at each step the status of the user in the whole process.

The need for this message emerged during the first experiments, as will be

explained in more detail later on.

Html
page

Personal

Database

Shared Scripts

Finding Module

Script Edition

Module

Personal Database Data

Retrieval/Storage Module

Html Parser

Module

Script Recorder Unit

Script Commands

Builder Module

Script Execution Unit

Script Commands

Parser Module

Decision

Making Module

Sites Tracker Bot

(WNH- support)

Shared Scripts

Description

Generate Module

Disabled

Unchanged

Changed

New

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 47

Figure 7: Step 3 out of 15 (blind users WNH navigation)

In Figure 8, WNH-see informs the user that step 6, out of 15, was

concluded.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 48

Figure 8: Step 6 out of 15 (blind users WNH navigation)

Figure 9 shows how WNH-see requests the CPF Id card input from the

user.

Figure 9: Step in which the CPF Id is requested (blind users WNH navigation)

In Figure 10, WNH-see informs the user that the audio captcha numbers will

be read out-loud. This comment was introduced in the script execution to allow

the end-user to get ready for listening to the captcha and filling it in the input field.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 49

Figure 10: Step that notifies of the audio captcha (blind users WNH navigation)

Figure 11 shows the moment in which the audio captcha is being read and

the input field in which the user should type in the numbers heard.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 50

Figure 11: Step in which the audio captcha is being read (blind users WNH

navigation)

3.4.2. Functionally Illiterate User Interaction

Figure 13 and Figure 14 present two steps of a functionally illiterate user

interaction with WNH-read. Figure 12 shows WNH-read requesting for the

captcha numbers and characters.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 51

Figure 12: Step that requests the captcha (functionally illiterate users WNH

navigation)

Figure 13 shows the request of the complete name data input.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 52

Figure 13: Step that requests the complete name (functionally illiterate users WNH

navigation)

Figure 14 shows WNH-read instructing the user to choose the birthday dates in

web page, and trigger back the execution of the process by clicking in the

“Execute” button.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 53

Figure 14: Step that informs the user to fill the birthday directly in the web page

(functionally illiterate users WNH navigation)

The main differences between the current version of WNH-see and WNH-

read interactions are:

1) WNH-see informs at each step the status of the user in the whole

process;

2) WNH-see displays the help and restart buttons at every step during the

process;

3.4.3. Support User Interaction

Figure 15 and Figure 16 present two steps of a support user interaction with

WNH-support, when executing the script created for the functionally illiterate

users’ experiment. It is important to notice that the execution is the same. The

differences rely on the user interface. Using this version, support users have the

full control over the scripts, and can change it if needed.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 54

Figure 15: Volunteers’ visualization of step 1 from functionally illiterate’s script

Figure 16: Volunteers’ visualization of captcha step from functionally illiterate’s

script

Volunteers not only create scripts. As mentioned before, changes to web

sites are not uncommon, and the scripts might stop working for that reason. It is

up to them to keep the scripts active and running. WNH-support has a batch

program that should be run daily, from which volunteer users can get the

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 55

information regarding which scripts ran smoothly and which did not. Those that

did not successfully complete are presented in the output list with the status of

suspicious. These suspicious scripts deserve a closer look, since they might point

to possible incompatibilities between the script and the website in which it runs.

WNH-support contains a module called Sites Tracker Bot, written in Java,

which is run as a command line from any DOS window in a machine with a Java

Virtual Machine installed on, as shown in Figure 17.

Figure 17: WNH-support Sites Tracker Bot command line execution

This bot takes as input a text file containing a list of script names, and

outputs two lists, one containing the scripts that ran smoothly, another containing

the suspicious scripts. Every script in the input list should be available as

separate text files in the local directory. Each one of them will be opened and

executed by the bot. The bot then triggers the WNH execution in the Mozilla

Firefox browser passing on the information about the location and the name of

the script as an argument. In WNH-support mode, either the process completion

or its failure is written in the output list, in the local directory. At the end, the

volunteers can query the output lists in search of possibly unmatched

“script/website” pairs. Each output file contains the date it was ran, so a history of

changes can be traced back.

The current bot version handles only scripts that take place in

governmental websites, since this is the scope of this dissertation. Further

versions should extend this in accordance with WNH.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

WNH: Web Navigation Helper 56

3.5. Error Prevention, Error Detection and Error Recovery during
Interaction

In order to prevent errors, WNH-see makes use of a Help button, which is

available at every individual step of the blind users’ process execution and guides

them through it. After clicking on the help button, users are able to restart the

same whole process or start a new one. WNH-read does not provide the help

button to its users. Besides the help button, other elements should be

incorporated to WNH-read, such as data input validation, and they are left for

future work.

WNH has not adopted any particular technique in order to detect the

occurrence of errors, which has serious consequences to the user interaction.

Evidence of this is when users fill the captcha input field with the wrong value. In

this case, the process will get stuck, and it is up to the user to restart it or try a

workaround. An elegant solution to that would be, for instance, as soon as the

process gets stuck, to offer the user the options of restarting the whole process,

or repeating the last step(s), or even starting a new process.

As for error recovery, WNH-see presents the blind users with the option of

restarting the whole process or starting a new one. Again, the solution above

would be perfectly adequate here: WNH could offer users the same option of

repeating the last step(s).

Future versions of WNH should make use as much as possible of different

techniques of error prevention, detection and recovery, part of which will be

worked out in Future Work.

DBD
PUC-Rio - Certificação Digital Nº 0711270/CA

