
7 
The proposed domain specific language: operational level

In our methodology, a scenario corresponds to the specification of concrete 

activities  in  the  pervasive  mobile  game,  including interactions  among  players, 

devices,  sensors,  actuators  and  their  properties,  using  the  elements  defined  in 

Chapter 6 and in this chapter. It is the main concept in the DSL operational level.

This chapter details the operational level for the proposed DSL – how the 

ontological level concepts (defined in Chapter 6) take part in the scenario defini-

tions, as well as defining a visual language for specifying activities.

We had the following goals for proposing scenarios:

• Specify and document activities;

• Specify and document interactions;

• Specify and document acknowledgments;

• Specify and document events.

Scenarios  can be  described textually  or  visually.  The desired abstraction 

level for specifying activity flows in scenarios is equivalent to the level of  use 

cases (Cockburn 2000). That means that we are concerned about intent, using an 

abstraction level that is high enough to specify the activities in terms of the con-

cepts defined in Chapter 6, but not including implementation details. However, a 

use case is very general in regard to its structure and elements. As our proposal is 

a DSL, it defines specific rules (Section 6.3), vocabulary (Sections 6.2 and 6.2.10) 

and language (this chapter) for specifying activities in this domain of pervasive 

mobile games.

This chapter provides the elements for scenarios in both text (Section  7.1) 

and visual format (Section 7.2), next chapter provides concrete and more detailed 

examples on how to use these elements. These examples correspond to the spe-

cification of activities for the Pervasive Word Search prototype – the final part of 

our case study.

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 116

7.1 
Specifying scenarios in text format

The proposed DSL defines an activity template to specify scenarios in text 

format. The elements in this template correspond to the activity properties defined 

in Section 6.2.10. Figure 7.1 illustrates the template.

Scope The activity scope
Primary Actors Actors that start the activity
Secondary Actors              Other actors affected in the activity
Sensors List of required sensors
Actuators List of required actuators and/or displays
Interaction granularity “Discrete”, “Continuous”, “Mixed”
Control “Explicit”, “Implicit”, “Mixed”

Overview
Brief overview if desired.

Default flow
The default flow, with numbered steps.

Alternative flows
The specification of alternative (success) flows, errors, and exceptions.

Mobile device event flows
Alternative flows related to mobile phone events.

Operation parameters
Specification of these requirements if necessary.

Uncertainty handling policy
List of policies and how they should be applied.

Miscellaneous
Specification of miscellaneous issues.

Figure 7.1: The complete activity template

This methodology follows general “use case style” conventions for specify-

ing steps in activity flows (default, alternative and mobile device event flows), as 

Cockburn (2000) describe in detail. For example, actions in activity flows should 

be numbered, as they occur in the flow. Chapter 8 provides concrete examples on 

this.

7.1.1 
Notation for ending activities in alternative flows

As alternative flows are likely to occur in several  cases,  we propose the 

notation EOA (end of activity) to indicate when an alternative flow ends the whole 

activity, in order to simplify the writing. When this notation is used, it means that 

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 117

all  flows  that  might  be  running  concurrently  are  also  terminated.  Chapter  8 

provides concrete examples on using this notation.

7.1.2 
Notation for acknowledgments

When specifying activities as text, we propose the following notation to spe-

cify acknowledgments (bold font, short form), to simplify writing:

• ack (T): short for “the game triggers acknowledgment of technology T”

The technology parameter T corresponds to the technology property88 of the 

actuator used to deliver the acknowledgment. The scope for the acknowledgment 

can be specified by associating the acknowledgment with an actor or external ac-

tuator. Figure 7.2 illustrates an example from our prototype The Audio Flashlight  

5:

Game ends level for Flashlight 1, Flashlight 2 and Spoiler (Spoiler is the win-
ner)

▪ ack (audio): defeat sound (Flashlight X)
▪ ack (audio): defeat sound (Flashlight Y)
▪ ack (audio): victory sound (Spoiler)

Figure 7.2: Example of acknowledgments in text specification

In this example, when the “Spoiler” player wins the game, the game delivers 

an acknowledgment as audio to all players. However, the contents of the acknow-

ledgments are not the same for all of them, in this example.  Chapter  8 provides 

examples of using this notation.

The acknowledgments in this example occur concurrently (as indicated by 

the unnumbered list). However, if the acknowledgments should happen in some 

specific sequence, the specification should use a numbered list that reflects this se-

quence.

88 Section 6.2.3 discusses the technology property of actuators. 

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 118

7.2 
Specifying scenarios in visual format

Since the beginning of this research work we would like to represent activit-

ies visually, mainly focused on the flow of actions that compose the activity. To 

accomplish this goal, we searched for a visual language based on a standard rep-

resentation that would provide:

• Support for modeling behavior aspects, control and action flows, as the 

activity specification is mainly concerned with those items;

• Support for specifying parallel activities, due to the (possible) distributed 

nature of pervasive mobile games;

• Operators and operands to represent the proposed domain concepts, min-

imizing possible extensions to the standard;

• Adequate abstraction level to represent the domain concepts. Too much 

detail could hinder using this approach.

We have selected the UML 2.4 Activity Diagrams (OMG 2011) as the basis 

for the visual language for the domain of pervasive mobile games. The UML 2.4 

specification89 (OMG 2011) describes an “activity” as follows:
“An activity specifies the coordination of executions of subordinate behaviors, using a 
control and data flow model. The subordinate behaviors coordinated by these models 
may be initiated because other behaviors in the model finish executing, because ob-
jects and data become available, or because events occur external to the flow. The 
flow of execution is modeled as activity nodes connected by activity edges. A node 
can be the execution of a subordinate behavior, such as an arithmetic computation, a  
call to an operation, or manipulation of object contents. Activity nodes also include 
flow-of-control constructs, such as synchronization, decision, and concurrency con-
trol.  Activities may form invocation hierarchies invoking other activities,  ultimately 
resolving to individual actions ... ”

It is arguable that other representations could be used, as UML Sequence 

Diagrams and State Machine Diagrams (OMG 2011). However, UML Sequence 

Diagrams offer a level of detail that is higher than necessary for our purposes. For 

example, UML Sequence diagrams deals with object instances and messages ex-

changing between objects. 

89 In this work, “UML 2.4 specification” refers to the “UML 2.4 specification, Superstructure”.

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 119

The focus of the proposed activity specification diagram is on the action 

flows. Because of this intention, we have not chosen UML State Machine Dia-

grams, as they emphasize representing the system as a set of states.

Another possibility would be using a Petri net  (Peterson 1981). However, 

the UML 2.4 specification  (2011) states  that  activity  diagrams have semantics 

based on Petri nets:  “Activities are redesigned to use a Petri-like semantics in-

stead of state machines. Among other benefits, this widens the number of flows  

that can be modeled, especially those that have parallel flows”. Hence, as UML is 

a well-known standard, we have opted to use UML Activity Diagrams. 

Therefore,  the  activity  concept  defined  in  Section  6.2.10 is  represented 

through an UML Activity.  The remainder of this section details  how the other 

concepts are mapped to UML Activity diagrams, along with extensions to charac-

terize some of the domain concepts (presented in Chapter 6). The UML concepts 

are highlighted with bold font.

7.2.1 
Specifying actions

In the UML specification (2011), an “action” is “ … a named element that  

is the fundamental unit of executable functionality.  The execution of an action  

represents some transformation or processing in the modeled system”.  Hence, we 

have chosen to map our  actions to this element. Actions are represented as  Ac-

tionNodes. Figure 7.3 illustrates the notation.

Figure 7.3: Notation for actions

Player interactions are specified also as ActionNodes. For actions related to 

interactions  with  implicit  style,  we define the stereotype  «imp» to differentiate 

from actions related to explicit-styled interactions (that do not have a defined ste-

reotype). An UML stereotype (OMG 2011) is a standard way (in UML) to create 

variations  of a modeling  element  using the same shape,  but with different  se-

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 120

mantics. This style property applies to other concepts, as will be discussed later. 

In this regard, the «imp» stereotype appears with many elements to denote impli-

citness.

The style of an interaction can be inferred also by the style of events it gen-

erates. Please see Section 7.2.7 for information on this.

7.2.2 
Specifying connections

Actions are connected through ActivityEdges (OMG 2011), which repres-

ent a direct connection between two diagram elements.  ActivityEdges may have 

optional  guards. In the UML 2.4 specification  (OMG 2011), a  guard denotes a 

condition  that  must  be  satisfied  for  the  activity  flow to  continue  through  the 

ActivityEdge. Figure 7.4 illustrates the ActivityEdge with a guard.

Figure 7.4: Activity edge with a guard (optional)

7.2.3 
Specifying start and end points

Figure 7.5 illustrates the notations for ActivityInitialNode and ActivityFi-

nalNode (OMG 2011), which denotes the starting and ending points for an activ-

ity.

Figure 7.5: Starting point (left circle) and end point (right circle) for an activity

ActivityInitialNodes have one outgoing  ActivityEdge (and no incoming 

ones), while ActivityFinalNodes have one incoming activity edge (and no outgo-

ing ones). Activities can have several  ActivityFinalNodes. In this case, the first 

one reached stops all execution tasks in the activity, thus terminating it.

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 121

7.2.4 
Specifying distributed activities

Distributed actions can be grouped in ActivityPartitions (OMG 2011). Fig-

ure 7.6 illustrates the notation, also known colloquially as the “swim lane” nota-

tion.

Partitions can be drawn either horizontally (as in Figure 7.6), or vertically. 

For example, Figure 7.6 could illustrate an example of a multi-player activity in-

volving two players. The partition “Player 1” would represent actions that are ex-

ecuted in first player's device, while the partition “Player 2” would represent ac-

tions that are executed in second player's device. The communication between the 

devices is represented as flows (Action 2 to Action 3, and Action 4 to Action 5).

Figure 7.6: Partition notation

For completeness, we present another way the UML specification defines to 

represent distributed activities, which corresponds to using stereotypes for the in-

volved actors. Figure 7.7 illustrates the example of Figure 7.6 using this notation.

Figure 7.7: Distributed activities using stereotypes

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 122

In  our  methodology,  the  preferred  notation  for  distributed  activities  is 

grouping actions in activity partitions.

7.2.5 
Specifying branching in activities

Branching in activities is specified through  DecisionNodes (OMG 2011). 

DecisionNodes have one (or more) incoming ActivityEdges and a set of outgoing 

ActivityEdges (at least one edge). All outgoing  ActivityEdges have  guards to 

specify branching conditions.  Those guards must cover all possible conditions, 

and they must be mutually exclusive. An alternative to specify a “catch-all” guard 

for conditions other than the primarily evaluated one is using [else].  

When an activity flow reaches a  DecisionNode, the guards are evaluated 

and the flow continues through the branch that satisfies the condition, while the 

other alternatives are abandoned. The DecisionNode does not specify the ordering 

the guards are evaluated, only the alternatives.

Branched flows can be merged with  MergeNodes,  which have the same 

notation as  DecisionNodes.  MergeNode have a set of incoming edges and one 

outgoing edge. However, merge nodes do not provide means for synchronization 

of alternative flows. Figure 7.8 illustrates an example with a DecisionNode and a 

MergeNode.

Figure 7.8: Notation for DecisionNodes and MergeNodes

Alternative flows may reach an end point, while the activity is not over yet. 

To represent this situation the UML defines a FlowFinalNode (OMG 2011), illus-

trated in Figure 7.9. 

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 123

Figure 7.9: Notation for FlowFinalNode

 The FlowFinalNode only terminates the referenced alternative flow, while 

ActivityFinalNodes90 terminate the whole activity (including all flows that might 

be running concurrently).

7.2.6 
Specifying concurrency in activities

Concurrent  actions  are specified  with  ForkNodes and  JoinNodes (OMG 

2011). When the activity flow reaches a  ForkNode, parallel flows start, which 

can be of any number. ForkNodes have one incoming activity edge.

Later, alternative flows can be synchronized with the JoinNode, which re-

ceives multiple activity edges and has only one outgoing edge.  ForkNodes and 

JoinNodes share the same notation, as Figure 7.10 illustrates.

Figure 7.10: Notation for ForkNodes and JoinNodes

The bars can be vertical or horizontal depending on the direction the flow is 

laid out.

7.2.7 
Specifying events

This section discusses the specification of interaction events, generic events, 

and time events.

90 Please see Section 7.2.3.

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 124

7.2.7.1 
Interaction events

To represent interaction events, we have chosen the UML element SendSig-

nalAction (OMG 2011). Figure 7.11 illustrates the notation.

Figure 7.11: A send signal action generating the event “Player hit obstacle”

The UML 2.4 specification (2011) defines SendSignalAction as “an action 

that creates a signal instance from its inputs, and transmits it to the target object,  

where it may cause the firing of a state machine transition or the execution of an  

activity”. Regarding UML Activity Diagrams, this concept was the one we con-

sidered the closest to our concept of interaction event.  In the SendSignalAction 

definition, a “signal” is defined as “the type of signal transmitted to the target ob-

ject”, with no stricter meaning. Also, although the definition refers to a  “target  

object”,  it  seems  the  specification  does  not  enforce  that  the  receiving  side  of 

SendSignalAction must be an object (as instances of some class)91. Some authors 

of UML books have also interpreted “signals” as concepts related to “events”, as 

(Larman 2004; Ambler 2005; Pilone and Pitman 2005; Graessle et al. 2005).

Interaction and interaction events are closely related. The style property of 

both interaction and interaction events should match, as of Consistency Rule 892. 

Hence, implicit-styled interactions can be identified by the style of events it gener-

ates. To differentiate between explicit and implicit style, we define the «imp» ste-

reotype for interaction events with implicit style. Figure 7.12 illustrates the nota-

tion.

Figure 7.12: Notation for interaction events with implicit style

91 As an example, please refer to Figure 12.132 of the UML 2.4 Superstructure specification: 
Page 422, Section “12.3.46 SendSignalAction (as specialized)”.

92 Section  6.3. This rule says: “(mandatory) the style property of interactions, generated events 
and associated acknowledgments must match”.

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 125

Interaction events are closely related to  acknowledgments. An interaction 

event implies the existence of a related acknowledgment.

7.2.7.2 
Generic events

Generic events correspond to other types of events that may happen in a 

game.  The  UML  2.4  specification  (2011) provides  the  AcceptEventAction 

(OMG 2011) to represent an action that waits for an event to occur. The semantics 

for this element defined in the UML 2.4 specification (2011) declare that when an 

AcceptEventAction  does not  have incoming activity  edges,  it  starts  when the 

activity starts and keeps on waiting for the specified event to occur. In this case, it 

can receive several events while the activity is happening. If there are incoming 

edges, the control flow has to reach it like normal action nodes. When the control 

flow reaches the AcceptEventAction, it stops until the node receives the specified 

event. Figure 7.13 illustrates the notation for AcceptEventAction.

Figure 7.13: Notation for generic events

Events may also interrupt actions or activities. In this case, the UML 2.4 

specification  provides  the  element  InterruptibleActivityRegion (OMG  2011) 

and a special connector (“zigzag like”) to indicate that the flow has been interrup-

ted. When the interruptions occur, all actions inside the interruptible region are 

aborted. Figure 7.14 illustrates the notation.

Figure 7.14: Notation for interruptible activity regions

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 126

7.2.7.3 
Repetitive time events

There is also a notation for timing (or periodic) events the UML 2.4 spe-

cification also defines as an AcceptEventAction. Figure 7.15 illustrates the nota-

tion for repetitive time events (OMG 2011):

Figure 7.15: Notation for repetitive time events

7.2.8 
Specifying acknowledgments

The acknowledgment is an important concept in this methodology, and thus 

receives special treatment. An acknowledgment is a special type of action, and is 

represented with the  ActionNode extended with UML stereotypes. We have de-

cided to use stereotypes to highlight acknowledgments in the diagram. The stereo-

type for acknowledgments is «ack». Also, we have defined another stereotype to 

differentiate  the  acknowledgment  style.  For  the  implicit style  the stereotype  is 

«ack, imp»,  while for the  explicit style  is just  «ack».  Hence, by default  ac-

knowledgments are considered as having explicit style. Figure 7.16 illustrates the 

notation.

Figure 7.16: Notation for explicit acks (left) and implicit acks (right)

The  acknowledgment  node  informs  the  subject  of  the  notification  (e.g. 

“obstacle hit”) and the technology of the actuator that is going to transmit this in-

formation (e.g. “vibration” in Figure 7.16).

When  associated  with  interaction  events,  the  acknowledgments  should 

match the interaction event style.

Acknowledgments are closely related to events.  Figure 7.17 illustrates an 

example flow with acknowledgments and an event.

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 127

Figure 7.17: Acknowledgments and events

The example  in  Figure  7.17 starts  when the  player  tilts  a  mobile  phone 

(equipped with an accelerometer), and the game detects the required gesture. In 

the virtual world, there may be obstacles in the player's way. If this is the case, the 

event “player has collided against wall” occurs, triggering an acknowledgment as 

vibration. If there are no obstacles, the game triggers an acknowledgment as au-

dio. This latter alternative can be considered as the common path, while the path 

generated from the collision is the alternative one.

The acknowledgment  scope (local,  remote,  or full)  is  specified using the 

partition notation discussed in Section 7.2.4. Local and remote acknowledgments 

appear only in the partition of the related actor. Full acknowledgments appear in 

all partitions (repeated).

7.2.9 
Specifying sub-activities

The  UML  2.4  specification  (2011) defines  CallBehaviorAction nodes 

(OMG 2011) that can be used in a main diagram to invoke other activities. These 

nodes are represented as an  ActionNode augmented with a rake-style  symbol. 

Figure 7.18 illustrates an example of the UML notation.

Figure 7.18: Notation for invoking sub-activities

In this example, when the control flow reaches the node, the “Fill order” 

activity is invoked. Using this notation is helpful for managing complex activities, 

when it is desirable to divide the activity into smaller sub-activities.

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA



The proposed domain specific language: operational level 128

7.3 
Summary

In this chapter, we have discussed the operational level for the DSL of our 

methodology. The operational level provides elements to specify scenarios in per-

vasive mobile games, in text and graphics form. A scenario corresponds to the 

specification of an activity – the interaction among players, devices, sensors and 

actuators in the pervasive mobile game. Scenarios are the last step in our method-

ology.

When specifying scenarios, we are concerned with intent – this is the de-

sired abstraction level for this level. In this regard, it is possible to compare the 

abstraction level of scenarios with the abstract level of use cases, when it comes to 

specifying the activity flows. The same idea applies to the visual format.

However, the proposed DSL operational level is very different from ordin-

ary use cases as the DSL provides specific rules, vocabulary and language for spe-

cifying activities in this domain (pervasive mobile games).

Apart from those differences, the specification of concrete activity flows in 

scenarios using text format shares ideas as the ones found in use case specifica-

tions. 

The language for specifying  activity  flows visually in scenarios  is  based 

UML Activity Diagrams, with some extensions. We have chosen this type of dia-

gram over other possibilities due to the level of abstraction being adequate for our 

purposes. Too much detailing could hinder using the diagram.

Next chapter provides concrete examples of applying notations described in 

this chapter.

DBD
PUC-Rio - Certificação Digital Nº 0711307/CA


	7 The proposed domain specific language: operational level
	7.1 Specifying scenarios in text format
	7.1.1 Notation for ending activities in alternative flows
	7.1.2 Notation for acknowledgments

	7.2 Specifying scenarios in visual format
	7.2.1 Specifying actions
	7.2.2 Specifying connections
	7.2.3 Specifying start and end points
	7.2.4 Specifying distributed activities
	7.2.5 Specifying branching in activities
	7.2.6 Specifying concurrency in activities
	7.2.7 Specifying events
	7.2.7.1 Interaction events
	7.2.7.2 Generic events
	7.2.7.3 Repetitive time events

	7.2.8 Specifying acknowledgments
	7.2.9 Specifying sub-activities

	7.3 Summary




