
3.
Related Work: Traditional & Emergent Approaches

 “As more computational devices are put into place, designing the user experience as an

ensemble of interactions will become paramount… Consequently, it’s important to begin

planning and designing how real / virtual devices will cooperatively interoperate”.

Daniel M. Russell and Mark Weiser, “The Future of

Integrated Design of Ubiquitous Computing in Combined

Real & Virtual Worlds,” ACM - CHI, 1998.

In this Chapter, we provide an overview of traditional and emergent development

approaches, methodologies and processes. This related work was formulated in a

way to provide an adequate view of what Software Engineering offers for the

development of applications in different cognitive domains. We focus on RUP,

TROPOS, GAIA, Agile Methods, Mobile-D, and our reuse-oriented approach.

Finally, Section 3.7 summarizes the Chapter by presenting some closing remarks.

3.1.
RUP

RUP (Kroll and Kruchten 2003) is a framework for object-oriented processes,

which defines a large number of conceptual elements (e.g. roles, artifacts and

work flows). It is possible to instantiate this framework according to specific

needs of the software development processes, such as the RUP instance to SOA

(RUP SOA 2008). RUP is not agent-oriented as the methodologies presented in

Sections 3.2 to 3.3. The main phases of the RUP are described as follows: (i)

Conception: this phase comprehends the planning and the analysis of

requirements, in which the users’ profiles and the essential use cases are defined;

(ii) Elaboration: this phase considers the modeling of the project using diagrams

(e.g. UML sequence, collaboration, state, and class diagrams) and the interface

design; (iii) Construction: this phase comprehends the implementation of the

modeled application, by also considering the configuration of the development

environment and the persistence details; and (iv) Transition: this phase organizes

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 56

and performs the deployment of the developed application, which includes the

software packages availability, the distribution and the installation of the

application. We are particularly interested in the RUP because of its meta-process

feature, which allows other processes to extend its development model to deal

with specific purposes.

3.2.
TROPOS

TROPOS (Giunchiglia et al. 2003) is an agent-oriented software development

methodology. Basically, this methodology has two key principles: (a) the agent

concept associated with goal, task and various other knowledge levels, which are

used throughout the entire software development process; and (b) the notion that

the main phase of the development process is assigned to analysis and

specification of the application’s requirements. This methodology comprehends

five disciplines: (i) Early Requirements: this discipline consists of the

identification of the domain’s context under analysis as well as its modeling by

using goal-oriented approaches; (ii) Late Requirements: this discipline introduces

the application as another actor. Therefore, other application’s stakeholders are

elicited. The application as another actor is probably associated with other

stakeholders. Thus, it is important to consider the dependencies among them.

These dependencies represent the obligations of the application towards its

environment and actors; (iii) Architectural Design: this discipline considers some

new actors (e.g. other correlated applications) and the subgoals and subtasks of

the goals associated with them and the application under development; (iv)

Detailed Design: this discipline details the application’s actors by focusing on the

design of their capabilities using a detailed modeling to capture the actors’

rationale. It is also relevant to establish, for example, the protocols and other

technological support that will be used to orient the application’s implementation;

and (v) Implementation: this discipline is dependent on the details specified in the

design disciplines. The TROPOS suggests a mapping between the detailed design

and the implementation template. The code is added to the template using an

agent-oriented programming language supported by a programming platform,

such as JACK (Busetta et al. 1999).

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 57

Additionally, this methodology is centered on interesting concepts and

models, such as: actor, goal, dependency, task, resource, belief, Strategic

Dependency model and Strategic Rationale model (Yu 1997). All these concepts

and models are used in our approach from the modeling to the implementation of

intentional-MAS-driven ubiquitous applications. Moreover, our approach – in the

Ubiquitous Application Engineering – is inspired by the TROPOS disciplines and

its model-driven nature.

3.3.
GAIA

The GAIA Project (Román et al. 2002), developed by the Illinois University at

Urbana-Champaign, is a distributed middleware operating system infrastructure

that manages the resources contained in an intelligent environment and provides

support for Pervasive Computing. The Cerberus core service of GAIA integrates

identification, authentication and context awareness. GAIA allows applications to

be partitioned between different computers and to be moved from computer to

computer to satisfy the user in a controlled environment. This group developed a

methodology, called GAIA (Moraïtis et al. 2003). The GAIA methodology group

is particularly interested in the definition of a complete and general methodology,

which is specifically tailored to the analysis and design of Multi-Agent Systems.

According to GAIA, Multi-Agent Systems are composed of autonomous

interactive agents that live in an organized society in which each agent performs

some specific roles. The Multi-Agent System is determined based on a role

model, which identifies the roles that each agent will perform in the MAS

platform. Moreover, it establishes the protocols that will be used in the interaction

between various roles. Our interest in GAIA is centered on its experience (e.g.

popularity, several case studies, abstractions, protocols) in dealing with Multi-

Agent Systems challenges. Moreover, GAIA works with the intelligent

environment concept. In our approach we represent this intelligent environment as

a smart-space, which is composed of different stakeholders, devices, servers and

contents. These smart-spaces are distributed and connected using a MAS

platform, supported by novel technologies.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 58

3.4.
Agile Methods

The Agile Methods are methods based on iterative and incremental development,

in which the requirements evolve through cooperation between self-organizing

and cross-functional teams.

Ideas centered on the incremental software development have been traced

back to 1957 (Larman and Basili 2003). However, after the Agile Manifesto

(Beck et al. 2001) and according to (Larman 2004), lightweight methods (e.g.

Scrum (Schwaber and Beedle 2002), Crystal Clear (Cockburn 2004), Extreme

Programming (Beck 1999), Adaptive Software Development (Highsmith 2000),

Feature Driven Development (Palmer and Felsing 2001), and Dynamic Systems

Development Method (Stapleton 1999)) have been considered as agile methods.

The main idea of these methods is to develop the software based on small

iterations and without involving long-term investigation. Therefore, these

iterations are performed in short time-boxes, from one to four weeks.

Moreover, the Agile Manifesto comprehends some principles (Beck et al.

2001), such as: (i) rapid software delivery is used to satisfy the customers; (ii)

development progress measurement is based on the teams’ efforts/working; (iii)

constant interactions between the customers and the developers – face-to-face –

are encouraged; (iv) even late changes in requirements are welcome; and (v)

simplicity and regular adaptations to follow ever-changing situations are desired.

In order to achieve these principles, each iteration in agile methods

demands a team working through all the software development cycle. This

process includes activities from the requirements elicitation to the software

implantation. In addition, and to contribute to the software domain’s investigation,

a representative customer is appointed by the stakeholders to respond according to

their intentions. The purpose is to reduce undesirable outcome as well as to allow

constant adaptations (Highsmith 2000) throughout the project’s life-cycle.

Another particular characteristic of agile methods is the usage of small

teams to develop the software (Beck et al. 2001). This practice facilitates the

teams’ collaboration and communication. In case of larger dedication, it is

recommended to use multiple small teams. If it is possible, it is also desired to

establish a face-to-face communication among teams’ members. However, the

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 59

usage of e-mail, video-conferences, Skype and other resources are suggested to

make communication possible and to improve it. Finally, specific strategies

centered on pair programming, design patterns, domain-specific development, and

other support sets also reinforce the success of the agile-method-based project.

There are some project features that do not contribute to the success of agile

methods application, such as: (i) projects with large-scale development

dedication; (ii) projects with spread developers – i.e. dispersed teams that do not

share common facilities; and (iii) projects in which failures are really critical.

We have applied some principles of agile methods to our approach as the

ubiquitous scenarios are in constant evolution and the ubiquitous applications

must follow these changes over time. In this case, the use of sequential approaches

is not recommended. We found it desirable the use of an incremental support to

quickly adapt the application under construction according to the actual context.

Moreover, ubiquitous applications demand special attention from their users.

Therefore, it is also relevant the use of a method centered on the user satisfaction,

such as the agile methods.

3.5.
Mobile-D

Mobility-centered software development is an increasingly important

development approach for software companies. However, the mobile application

development is burdened with several challenges. Due to the mobility issue, we

can mention an interesting approach proposed in (Abrahamsson et al. 2004). This

approach suggests that agile methodologies can offer a good solution for mobile

application development. It is aimed at evaluating the suitability of agile methods

for mobile application development projects by bringing a set of improvements to

an established agile method, called Mobile-D. This recent approach is object-

oriented. Mobile-D offers support for dealing with technical constraints of mobile

application development by including some guidelines to improve and facilitate

the development process. Moreover, this methodology offers a comprehensive

specification for each phase and stage and for the associated tasks by considering

some principles that fit mobile development projects. Furthermore, Mobile-D has

been extended to include a new phase, called Evolve. This phase is concerned

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 60

with improving the product through constant end-user feedback. This suitable

development approach impressed us as it is specific for mobile application

development. Thus, it concerns with distribution, mobility, and some ever-

changing situations. However, it does not deals with some specific concerns of

ubiquitous applications development, such as: (i) intelligent smart-spaces, (ii)

ubiquitous profiles investigation at runtime, (iii) the balancing between invisibility

and transparency as well as personalization and privacy issues, and (iv) several

non-functional requirements that must be investigated "on the fly" by also

considering the ubiquitous context under analysis.

3.6.
Our Reuse-Oriented Approach vis-à-vis Related Work

As previously presented, the mentioned related work does not deal with specific

concerns of ubiquitous applications development (e.g. dynamic interface

construction, ubiquitous profiles manipulation at runtime, and quality criteria

analysis “on the fly”). Moreover, it is difficult to find related work that offers

engineering guidelines to promote reusable artifacts and facilitate the development

of intentional-MAS-driven ubiquitous applications from requirements’

specification to evaluation process. Therefore, we propose a reuse-oriented

approach for the systematic development of intentional ubiquitous applications by

combining some interesting support sets provided by the related work with

different technologies. These technologies were investigated and determined by

our research group since 2007 in order to compose adequate technological support

sets, specific to deal with commonly found ubiquitous issues. Figure 3.1

summarizes our approach’s main orientations based on emergent and traditional

approaches.

3.7.
Closing Remarks

This Chapter presented approaches, methodologies and processes focused on

different orientations: (i) RUP is an object-oriented process, with can be

instantiated to specific needs of the application; (ii) TROPOS is a goal-oriented

methodology that emphasizes the importance of the requirements to the

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 61

application development. This methodology provides resources to deal with the

intentions of the users from the requirements to code. Moreover, it is possible to

evaluate the application under construction from the requirements modeling,

which tries to previously “guarantee” the success of the developed application;

(iii) GAIA in an agent-oriented methodology, whose success in pervasive

scenarios is really great. However, this methodology does not apply intentional

agents. As previously explained, the intentionality can contribute to the agents’

cognitive capacity; (iv) Agile Methods that support iterative and incremental

development with some particular principles (e.g. rapid software development and

constant interactions to satisfy the users); and (v) Mobile-D that supports the

mobile applications development by using an agile methodology centered on the

object-oriented paradigm and mobility issues. This thesis proposes a Reuse-

Oriented Approach for Incremental and Systematic Development of Intentional

Ubiquitous Applications. The approach combines the ideas of Software Reuse,

Goal-Orientation and Intentional Multi-Agent-Systems. Moreover, the Ubiquitous

Application Engineering was defined by using the TROPOS disciplines and some

agile methods principles, and by reusing building blocks.

Figure 3.1 - Our approach vis-à-vis traditional and emergent approaches

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

