
6
Performance Results

In this chapter we present a performance evaluation of our proposed

ray-tracing solution. Section 6.1 presents a synthetic analysis of GPU grid

reconstruction performance, comparing to an equivalent CPU implementation.

Following that, Section 6.2 evaluates our ray-tracing algorithm using static

scenes, with no grid rebuild. In this case, we are also interested in measuring

ray-tracing scalability and flexibility, in order to consider this technique for

rendering CAD models.

Afterwards, in Section 6.3, we perform a full evaluation of the integrated

ray-tracing system, using dynamic scenes to identify the possible benefits and

limitations of our method. Finally, Section 6.4 presents a detailed comparison

of our results with other state of the art research.

In all our tests, we have used a Core 2 Duo 3.0GHz CPU with an Nvidia

8800 Ultra graphics card. All scenes were rendered at 1024 x 1024 screen

resolution.

6.1
Grid Construction

The Uniform Grid reconstruction procedure has been evaluated against

a similar CPU implementation. The test scene consists of several triangles

randomly distributed inside a box with dimensions [-50, -50, -50] x [50, 50,

50]. Each triangle has a randomly determined size, obtained by varying the

radius of its enclosing bounding sphere from 0.2 to 1.0.

Grid resolution is determined using Equation 3-1. Therefore, increasing

the number of triangles not only increases the amount of data to be stored,

but also the number of cells in the resulting grid.

Triangles 5K 10K 50K 100K 200K 300K 400K 500K

CPU 0.8 1.5 10.2 33.8 94.1 167.4 253.0 353.6
Our Method 1.8 2.3 7.1 14.7 31.3 75.2 121.2 178.6

Table 6.1: Time in milliseconds to rebuild the entire grid structure.

DBD
PUC-Rio - Certificação Digital Nº 0711317/CB

Ray Tracing Dynamic Scenes on the GPU 49

As can be seen in Table 6.1, the GPU solution suffers from the overhead

of the graphics API for small scenes (10K triangles or less). However, this

procedure scales better than its CPU counterpart, obtaining faster grid rebuild

times for scenes with 50k triangles and more. Notice that table values do not

scale linearly, as was expected since both the number of triangles and the

number of cells increase with larger scenes.

6.2
Static Scenes

In order to measure ray-tracing performance independently of grid

rebuild, we have devised a number of static scene tests. In these, the

Uniform Grid is built only once during initialization. The first test measures

performance of primary rays only, by using a simple grey-scale shader with

no additional texture accesses. In the second test, we use additional material

information obtained from several textures to perform lighting computations,

and includes tracing shadow rays from a single point light. Finally, the third

test case further enables reflection rays for the entire scene.

6.2.1
CAD Models

The first three scenes consist of different CAD models, as shown in Figure

6.1. The first model, called “Boat”, is made of 50K triangles with no textures.

The second model is a small oil platform called “MonoBR”, made of 112K

triangles, including a few textured materials. The third model is a complex

section of the “P-40” oil platform, with more than 470K triangles. Table 6.2

summarizes ray-tracing performance for all test cases.

Scene # Tris Simple shading +One Light +Reflections

Boat 50K 21.3 11.7 4.1
MonoBR 112K 11.6 5.6 1.4
P40 470K 14.1 7.8 1.5

Table 6.2: Performance in frames per second (fps) for different static scenes.

An evident result is the scalability of the ray-tracing procedure according

to scene size. Even the “P-40” model with about half a million triangles can

be rendered at almost the same performance as the smaller “Boat”. In fact,

using the point of view in Figure 6.1(c), it even outperforms the “MonoBR”

scene.

This brings forth another advantage of the ray-tracing technique: au-

tomatic occlusion culling. In a CAD model, it is common for most of its

DBD
PUC-Rio - Certificação Digital Nº 0711317/CB

Ray Tracing Dynamic Scenes on the GPU 50

6.1(a): Boat with shadows and reflections. 6.1(b): MonoBR model with simple
shading.

6.1(c): P-40 model with over 470K
triangles.

6.1(d): MonoBR with shadows and re-
flections, notice added 3D perception and
realism.

Figure 6.1: Ray tracing CAD models at interactive rates, including shadows
and reflections.

complexity to lie inside the 3D structure. This means that several primitives are

hidden away by the outside surfaces, which act as one large occluder. The ray-

tracing algorithm automatically discards these hidden primitives, since it finds

the nearest triangle intersection by performing successive tests in increasing

depth order.

Usually, CAD models contain little or no material information. The

ray-tracing algorithm is capable of adding realism to the scene, not only

by providing illumination effects such as shadows but by enhancing material

properties such as metal reflectiveness. These observations make ray-tracing a

good candidate for visualizing this kind of models.

DBD
PUC-Rio - Certificação Digital Nº 0711317/CB

Ray Tracing Dynamic Scenes on the GPU 51

6.2.2
Benchmarks

The second batch of tests consist in a known benchmark for ray tracing

dynamic scenes. All models contain detailed material information, including

several high-resolution textures, as can be seen in Figures 6.2 and 6.3. In

this case we seek to evaluate the pure ray-tracing performance, disregarding

the acceleration structure rebuild. We use one animation key-frame from each

model, building the grid structure only once. The results in Table 6.3 will help

identify the bottleneck during the final rendering of the entire animation.

6.2(a): Wood-doll model with shadows. 6.2(b): Reflections in wood-doll makes it
appear polished.

6.2(c): Hand model with shadows. 6.2(d): Ben rendered with shadows.

Figure 6.2: Deformable meshes used in static and dynamic scene tests.

The first model is a simple “Wood-doll”, made of 5K triangles. The

second one is a “Hand”, modeled with 16K triangles. A runner character of

78K triangles is the model called “Ben”. Another model consists of several

“Marbles” that add up to almost 9K triangles. The fourth scene is made of

five wind-up “Toys”, totalling 11K triangles. Finally, the largest scene is a

faerie model inside a “Forest”, consisting in about 174K triangles.

DBD
PUC-Rio - Certificação Digital Nº 0711317/CB

Ray Tracing Dynamic Scenes on the GPU 52

Scene # Tris Simple shading +One Light +Reflections

Wood-doll 5K 71.5 54.6 14.6
Hand 16K 42.4 26.5 6.8
Ben 78K 19.6 16.5 4.4
Marbles 9K 108.9 88.1 16.5
Toys 11K 53.7 33.4 8.2
Forest 174K 6.3 3.4 0.7

Table 6.3: Performance in frames per second (fps) for a single key-frame of the
benchmark scenes.

As shown in Table 6.3, the two simplest scenes, “Wood-doll” and

“Marbles”, can be rendered with shading and shadows at speeds above 50 fps.

With the other less simple models, “Hand” and “Toys”, our implementation

can still achieve rendering rates of around 30 frames per second. The more

complex “Ben” model can be rendered at about the same speed as the “Boat”

model, similar in size, evaluated in the previous section.

The “Forest” scene is a classic worst-case scenario for the Uniform Grid:

a complex object (the faerie) at the center of a larger but simple scene (the

background). This is commonly known as the teapot in a stadium problem.

In these cases, grid resolution should be high to avoid cells with a large

number of triangles from the small complex object. However, it cannot be

set too high otherwise it would hamper ray-traversal performance through

large regions of empty space. Also, memory consumption from a large grid can

become a limiting factor.

Nevertheless, our implementation is capable of achieving interactive

rendering rates, except when enabling reflections in the more complex models.

6.2.3
Discussion

The performance results from the CAD models and the benchmark scenes

are consistent with the following observations:

1. Activating shading computations as well as shadow rays decreases

rendering performance by at most a factor of two.

2. Tracing reflection rays further reduces these values by a factor of four.

The first observation is not only due to the cost of tracing additional

shadow rays, which effectively doubles the number of rays being traced per

frame, but also due to additional memory operations required for shading

computations. Considering these two factors, performance is above what one

DBD
PUC-Rio - Certificação Digital Nº 0711317/CB

Ray Tracing Dynamic Scenes on the GPU 53

6.3(a): Several marbles rendered with
shadows and reflections.

6.3(b): Faerie dancing in the Forest scene.

6.3(c): Toys scene with shadows. 6.3(d): Same scene using reflective mate-
rials.

Figure 6.3: Scenes with unstructured movement used for static and dynamic
test cases.

would expect. We have further verified that using optimized traversal and

intersection routines for shadow rays have significantly reduced their overall

impact in rendering speed.

Furthermore, performance with one level of reflection is interactive for

scenes with less than 100K triangles. A simple explanation is that each

additional reflection ray performs the entire shading computations once more,

while also spawning additional shadow rays. In effect, this test has twice the

number of rays being traced per frame and also twice the number of shading

procedures being performed.

6.3
Dynamic Scenes

The main goal of this work is to ray-trace dynamic scenes, including

illumination effects, at interactive rendering rates. We have evaluated the

DBD
PUC-Rio - Certificação Digital Nº 0711317/CB

Ray Tracing Dynamic Scenes on the GPU 54

same six benchmarks, from Section 6.2.2, but this time we render their

entire animation sequences. The “Wood-doll”, “Hand” and “Ben” models

consist of deformable meshes that do not move along the scene. Meanwhile,

the “Marbles”, “Toys” and “Forest” scenes combine mesh deformation with

unstructured movements, comprising real-world test scenarios.

Scene # Tris Simple shading +One Light +Reflections

Wood-doll 5K 68.6 52.6 13.1
Hand 16K 41.2 25.2 6.4
Ben 78K 17.5 13.3 3.1
Marbles 9K 103.2 84.3 15.3
Toys 11K 52.7 28.9 7.8
Forest 174K 3.1 2.8 0.4

Table 6.4: Performance in frames per second (fps) for the entire animation of
each benchmark scene.

When rendering the entire animation, it is necessary to fully rebuild the

grid structure each new key-frame. Comparing the values in Table 6.4 with

Table 6.3, it is clear that this reconstruction procedure has little to no impact

in rendering performance. The frame-rate with full animations is up to 10%

smaller than when rendering a single key-frame. Only the “Forest” scene has

suffered a greater slowdown, from 30% to 50% depending on the test case.

6.4
Comparison with Related Work

In this section, we seek to evaluate our work in relation to other state of

the art research. We have chosen the test case with fully animated scenes

including shading, textures and shadows. Table 6.5 includes performance

figures from our technique, as well as other four related work.

The first work is a CPU implementation that uses a Uniform Grid

to trace packets of rays [Wald et al. 2006]. The second uses a deformable

bounding volume hierarchy to adapt to scene movement [Wald et al. 2007].

Another proposal uses a multi-core CPU to build a kd-tree structure in

parallel [Shevtsov et al. 2006]. Finally, the fourth related research is an

equivalent solution to ours, but one that uses a kd-tree as acceleration structure

inside the GPU [Zhou et al. 2008].

Values in Table 6.5 demonstrate the efficiency of our grid rebuild and ray-

tracing algorithms. Related to the work in [Wald et al. 2006, Wald et al. 2007],

we are capable of achieving up to four times faster rendering speeds. Only

when compared against a more optimized structure, as the kd-tree used

DBD
PUC-Rio - Certificação Digital Nº 0711317/CB

Ray Tracing Dynamic Scenes on the GPU 55

Scene Our
Method

CPU
Grid

CPU
BVH

CPU
kd-tree

GPU
kd-tree

Wood-doll 52.6 35.1 n/a n/a n/a
Hand 25.2 15.9 n/a n/a n/a
Ben 13.3 8.9 8.5 n/a n/a
Marbles 84.3 19.6 16.2 n/a n/a
Toys 28.9 9.4 10.5 23.5 32.0
Forest 2.8 1.3 2.3 5.8 6.4

Table 6.5: Frames-per-second comparison between our method and two state
of the art research, using complex shading and shadow rays.

in [Shevtsov et al. 2006, Zhou et al. 2008], our method achieves similar or

slightly lower frame rates.

In the more sparse “Toys” scene, we are able of surpassing the work

in [Shevtsov et al. 2006], but still achieve inferior performance than results

in [Zhou et al. 2008]. In the “Forest” scene, this situation is aggravated: our

implementation achieves about half the performance values than these two

related research. This once more indicates a limitation in the Uniform Grid

traversal (as discussed in Subsection 6.2.2).

To try and identify this possible bottleneck in our implementation,

we have split the total frame time of our solution into: key-frame upload

time, grid rebuild time and ray-tracing time. Table 6.6 below summarizes

our findings with the complete shading algorithm and shadow rays. For

comparison purposes, we have included the structure rebuild times from both

[Wald et al. 2006] and [Zhou et al. 2008].

Scene Key-frame
Upload

Grid
Rebuild

Ray-
Trace

CPU Grid
Rebuild

GPU kd-tree
Rebuild

Wood-doll 1.1 2.3 15.5 1.0 n/a
Hand 2.7 4.1 36.2 5.0 n/a
Ben 12.4 10.4 81.1 14.0 n/a
Marbles 1.6 1.8 8.6 2.0 n/a
Toys 1.8 3.0 34.9 4.0 12.0
Forest 27.1 54.8 295.4 68.0 77.0

Table 6.6: Analysis of times in milliseconds from our proposed implementation,
compared to related work.

From these results, we can conclude that uploading new key-frame data

to the GPU is not the current bottleneck. Even though in the “Forest” scene

a time of 27 ms starts to detriment overall performance, it is still not the most

time consuming step: the ray-tracing procedure is the major factor to slowing

down rendering rates.

DBD
PUC-Rio - Certificação Digital Nº 0711317/CB

Ray Tracing Dynamic Scenes on the GPU 56

Comparing our grid rebuild times with the ones from [Wald et al. 2006],

we find that our method is considerably faster except for the very simple

“Wood-doll” scene. This can be easily explained as the overhead of the GPU

implementation, which has already become evident in Section 6.1.

As expected, the kd-tree rebuild times from [Zhou et al. 2008] are higher

than our Uniform Grid implementation. Since our overall performance is worse

in the “Toys” and “Forest” scenes, we can conclude that our ray-tracing

procedure is taking most of the rendering times. Indeed, Table 6.6 show that

for all the other test scenes our current bottleneck is the ray-tracing step, which

can take up to ten times longer than the grid structure rebuild.

DBD
PUC-Rio - Certificação Digital Nº 0711317/CB

