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Related work

InteMon

Hoke et al. [2006] proposes a system that relies on SPIRIT (Streaming

Pattern dIscoveRy in multIple Time-series, Papadimitriou et al. [2005]) to

perform a variant of incremental principal component analysis that uses energy

thresholding [Fukunaga, 1990] to determine the number of latent variables to

maintain a given reconstruction error. This technique explores the correlation

amongst monitored data and the key idea is that anomalies can be associated

with broken correlations in the underlying data, and thus indicated by a change

in the number of latent variables. While correlation detection methods are

available, most require O(N2) comparisons but a fast subspace algorithm, such

as SPIRIT, can track changes in the projection matrix in time complexity

linear to the dimensionality of the input stream. SPIRIT requires O(Nr) when

no extra orthonormalization step is performed. The monitoring solution is

evaluated in a data center at Carnegie Mellon with over 100 machines and

produces charts to aid the operations team as shown in figure 2.1, and to

monitor wireless sensors (temperature, light intensity, etc.) in [Sun et al., 2005].

Nevertheless, no evaluation metrics or benchmark data were reported.

Q-PCA

Lakhina et al. popularized using PCA for traffic anomaly detection where

it is used to separate IP network data into disjoint ‘normal’ and ‘anomalous’

subspaces, and detect an anomaly when the magnitude of the projection onto

the anomalous subspaces exceeds a Q-statistic threshold [Lakhina et al., 2004a,

2005]. The work showed the PCA subspace method can detect network-wide

anomalies when analyzing statistics extracted from trace logs, including the

entropy time series of IP header features, and is more effective than Fourier

approaches in automatic diagnosis of anomalies. PCA has also been successfully

applied to the network intrusion detection domain [Wang and Battiti, 2006,

Shyu et al., 2003, Thottan and Ji, 2003]. Lakhina considers normal traffic
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2.1(a): Original data

2.1(b): Latent variables

Figure 2.1: In this example, one variable is sufficient to maintain the recon-
struction error below 4% most of the time. Illustration from Hoke et al. [2006].
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to be SPE ≤ δ2
p, where SPE is the squared prediction or reconstruction

error and δ2
p denotes the threshold for the SPE at the 1 − p confidence level

given the statistics test know as Q-statistics, where the value is chosen at the

1− p = 99.9% confidence level which corresponds to a false alarm rate of p.

These works require the entire dataset in memory and an expensive SVD1

computation, where the time complexity over a block of data of length T is

O(Tr2) where r is the number of principal components, thus not appropriate for

real-time applications. Although Lakhina et al. suggests an online formulation

of the PCA-based detection algorithm using a sliding window [Lakhina et al.,

2004b], it has been noted in Ahmed et al. [2007a] that using stale measurements

based on a previous block of time to calculate the PCA Q-statistic threshold

resulted in a very high number of false positives. Ringberg et al. [2007]

criticizes Lakhina’s approach for being too sensitive to the number of principal

components defining the normal subspace as a parameter and it points out

that a large body of work used the same dataset, for which the parameters

were highly optimized.

KOAD

More recently, Ahmed et al. [2007a] address the streaming requirement

and propose KOAD (Kernel-based Online Anomaly Detection). This work is

an extended version of the Kernel Recursive Least Squares algorithm (KRLS)

as detailed in Engel et al. [2003] where it is shown to be competitive with a

state-of-the-art implementation of Support Vector Regression: requiring fewer

support samples in the dictionary and outperforming it in terms of speed

roughly by an order of magnitude. KOAD attempts to find a feature space

with an associated kernel function where normal measurements should cluster

and assumes that an anomaly should be distant from the cluster of normal

data, hence it uses the projection error given the current set of support

vectors as a measure of abnormality for a given sample, which is compared

with two thresholds in order to raise an alarm. To avoid contamination of the

dictionary with potential anomalous points, it uses an heuristic to re-evaluate

the usefulness of recent data points so they may be removed from the dictionary

of support vectors. Over six parameters must be informed to control the size

of the dictionary and to determine how samples can be turned obsolete. The

complexity of the algorithm is O(m2) for every standard step and O(m3) for

steps when an element removal occurs. m is the size of the dictionary and is run

using a Gaussian kernel, where their experiments show that high sparsity levels

1Singular Value Decomposition
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are achieved in practice and the typical number of elements in the dictionary

varies between 30 and 50.

Since it is based on a regression method, the target variable is defined

as the sum of the values in the input vector, which corresponds to the total

amount of traffic in the network at a given interval in the reported experiments.

The author comments that no additional temporal anomalies were found when

different models were attempted.

OCNM

In Ahmed et al. [2007a], KOAD is described to effectively identify a

region of normality that corresponds to a high-density region of the space.

Ahmed et al. [2007b] further formulates that the problem of learning such

a representation consists in constructing a Minimum Volume Set (MVS).

Therefore, the technique is evaluated against the One-Class Neighbor Machine

(OCNM) algorithm proposed by Munoz and Moguerza [2006] for estimating

MVSs or density counter clusters, as these are known in the MVS literature.

This algorithm is a block-based procedure and similarly to Q-PCA will only

be used for comparison purposes. The algorithm provides a binary decision

function indicating whether a data point is a member of the MVS. The

algorithm requires the choice of a sparsity measure (a distance function) and

identifies those points that lie inside the minimum volume set with the smallest

sparsity measure, up to a specified fraction µ of the number of total points (e.g.,

if µ = 0.98 it said to identify 2% of the outliers in the set). The n-th nearest

neighbour euclidean distance was used for such sparsity function, where it

involves calculating the distance from every point to every other in the sample

set. As each point is N-dimensional, the algorithm enjoys a time complexity of

O(T 2N).

Aberrant Behavior Detection

Brutlag [2000] uses as an extension of the Holt-Winters forecasting al-

gorithm, which supports incremental model updating via exponential smooth-

ing and is available in a popular open source tool2. The algorithm defines

an anomaly according to the number of forecast error beyond that exceeds a

threshold within an observation window. It depends on various model param-

eters that are difficult to estimate (i.e. intercept adaptation, slope adaptation

and seasonal period). Despite the fact that it only applies to a single stream,

2RRDTool
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it is worth mentioning it because it is the most sophisticated method publicly

available in the open source community and part of a real monitoring solution.

Figure 2.2: Aberrant behavior detection with Holt Winters. Illustration from
Brutlag [2000].
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