
4
Fast rank and subspace tracking

In this chapter, we introduce FRAHST (Fast Rank-Adaptive recursive

row-Householder Subspace Tracking), our extension that adapts both projec-

tion matrix and subspace rank on the fly. We provide details on how the orig-

inal complexity of O
(
Nr + r3

)
can be reduced to O

(
Nr + r2

)
. Subsequently,

we show how the method is used for anomaly detection and how it can be

integrated in a real-time monitoring solution.

4.1
Tracking the principal subspace basis

Strobach’s algorithm presented in Section 3.3.4 is the state-of-the-art

in the low complexity class subspace trackers but currently no adaptation

has been put forward to cope with the rank tracking problem. Throughout

our research, we experimented with several alternatives (such as YAST from

Badeau et al. [2008] and FDPM from Doukopoulos and Moustakides [2008])

and found this particular method to have the best properties: provides excellent

subspace estimates very efficiently in terms of computational and memory

requirements, and has no special parameters to tune. The algorithm is an

implementation of the orthogonal principle where the Q and S matrices

(3-4) are directly updated through a recursive Householder reduction. During

execution, the algorithm reads in new data snapshots z(t) ∈ <N from N

streams at time t and tracks the principal subspace projection matrix Q with

dominant complexity of 3Nr flops, which is the lower bound for this class of

algorithms where r is the known and constant subspace dimension.

We adopt the algorithm as listed in Figure 3.3 using the approximation

of ψ = 0, consequently (3-23c) can be omited and (3-23d) simplified. We can

save these few computation steps because we are only interested in subspace

tracking and these simplifications are barely noticeable in practice (as seen in

Figure 5.3) . This corresponds to the a posteriori projection approximation

criterion described in Section 3.3.3. More concretely, we use the Householder

reduction to recursively update the tracked subspace basis Q(t) of dimension

N × r considering the new data point:

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 37

[
S(t)

0 . . . 0

]
= H(t)

[
αS(t− 1) + h(t)h>(t)

Z1/2(t)h>(t)

]
(4-1)[

Q(t) zq(t)
]

=
[
Q(t− 1) z̄⊥(t)

]
H(t) (4-2)

where z̄⊥(t) is the unit-norm version of the complement of the orthogonal

projection of z(t) onto the principal subspace spanned by the column vectors

of Q(t− 1) and Z1/2 is the norm of this complement. The S-matrix is strongly

dominated by its diagonal elements, whose values approximate the principal

eigenvalues of the covariance, so we can interpret the transformation as a

compressor that keeps most of the energy in the principal eigenvalues given

the new input information. This is not an arbitrary heuristic, but follows from

the orthogonal iteration principal described in Section 3.3.2.

4.2
Tracking the principal subspace rank

Most subspace tracking algorithms have the dimensionality r of the

principal subspace given as a parameter. However, an algorithm that can

automatically infer the latent dimensions is widely applicable, especially for

monitoring changes in the underlying data stream.

We propose to adapt r, so that we maintain a high percentage fE of

the energy E(t). Energy thresholding is a common method to estimate the

number of principal components [Jolliffe, 2002] and is also adopted in SPIRIT

[Papadimitriou et al., 2005, Papadimitriou, 2005, Sun, 2007], which has already

shown to be useful for detecting unusual patterns in data center measurements

[Hoke et al., 2006]. The term energy is common in the signal processing

literature and E(t) is defined as

E(t) =
T∑

t=1

‖z(t)‖2 =
T∑

t=1

N∑
i=1

z2
i (t). (4-3)

We define T as the total number of intervals read so far. We let z̃(t) be

the reconstruction of z(t) based on the previously learnt projection matrix,

defined as follows:

z̃(t) = Q(t− 1)QT (t− 1)z(t) = Q(t− 1)h(t). (4-4)

Similarly, we have the energy Ẽ(t) of the reconstruction z̃ defined as

Ẽ(t) =
T∑

t=1

‖z̃(t)‖2. (4-5)

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 38

Lemma 3 Assuming the basis vectors qi, 1 ≤ i ≤ r are orthonormal, we have

Ẽ(t) =
1

T

T∑
t=1

‖h(t)‖2 =
T − 1

T
Ẽ(t− 1) +

1

T
‖h(t)‖.

Proof : It is straightforward from applying Pythagorean theorem and using

the orthonormality of the vectors qi, 1 ≤ i ≤ r

‖z̃(t)‖2 = ‖h1(t)q1(t− 1) + . . .+ hr(t)qr(t− 1)‖2

= h2
1(t)‖q1(t− 1)‖2 + . . .+ h2

r(t)‖qr(t− 1)‖2

= h2
1(t) + . . .+ h2

r(t) = ‖h(t)‖2

The result follows from summing over T . �

This underlies the importance of a subspace tracker that guarantees or-

thonormal estimates for the projection matrix. For instance, SPIRIT requires

an re-orthonormalization step for Lemma 3 to hold, and this amounts to an ex-

tra of O
(
Nr2

)
flops1. Our algorithm does not need this extra step, and updates

the Q-matrix maintaining its orthonormality by construction.

In terms of parameters, we have a low-energy fE and a high-energy

FE thresholds, and we keep enough number of latent variables r so that the

retained energy is within the range [fEE(t), FEE(t)]. Whenever it gets outside

these bounds, we increase or decrease by one unit accordingly. The main steps

for the online rank estimation are:

– Estimate the high-dimensional data energy E(t) incrementally from the

sum of squares of zi, for all 1 ≤ i ≤ N .

– Estimate the energy Ẽ(t) of the current r(t) latent variables.

– Adapt r(t + 1) if necessary. We add a new basis if the current latent

variables capture too little energy, i.e., Ẽ(t) < fEE(t), or drop one

dimension if the maintained energy is too high, i.e., Ẽ(t) > FEE(t).

The following lemma proves that the above steps guarantee the relative

reconstruction error is within the specified interval [fEE(t), FEE(t)].

Lemma 4 The relative squared error of the reconstruction satisfies

1− FE ≤
∑T

t=1 ‖z(t)− z̃(t)‖2∑T
t=1 ‖z(t)‖2

≤ 1− fE

1This computational complexity is necessary for all orthonormalization procedures such
as the classical and stabilized Gram-Schmidt as well as QR decomposition algorithms.

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 39

Proof : The measure z⊥(t) = z(t)−z̃(t) has been mentioned before in Section

3.3.4 where z(t) · z⊥(t) = 0. Therefore, we have

‖z(t)− z̃(t)‖2 = z̃>(t)[z(t)− z̃(t)]− z>(t)[z(t)− z̃(t)]︸ ︷︷ ︸
=0 (by orthogonality)

= ‖z(t)‖2 − ‖z̃(t)‖2

= ‖z(t)‖2 − ‖h(t)‖2 (by Lemma 3).

The results follows from the summing over T and from the definitions of

E (4-3) and Ẽ (4-5). �

In Section 5.3.4, we demonstrate that FRAHST’s reconstruction error

lies in the given range as expected: particularly when setting a range [fE, FE] =

[0.96, 0.98], our algorithm correctly maintains a relative reconstruction error

between 2% and 4% across various datasets.

4.2.1
Exponential forgetting

We can better exploit the temporal nature of the data by using an

exponential forgetting factor, which allows us to follow trend drifts over time.

We use the same α from (3-1) to properly keep track of the energy, discounting

it with the same rate. The update at each step is then:

E(t+ 1) =
t− 1

t
αE(t) +

1

t
‖z(t)‖2 (4-6)

Ẽ(t+ 1) =
t− 1

t
αẼ(t) +

1

t
‖z̃(t)‖2. (4-7)

The value of α doest not affect the computational cost of our method

and is therefore more appealing than a sliding window to compute sample

statistics, as the latter has buffering requirements.

4.2.2
Adapting data structures

Since r may change over time, our algorithm needs to account for resizing

of the two internal matrices Q and S matrices with dimensions N × r and

r × r respectively. In order to best preserve the properties of each matrix and

subsequently minimize losses in the quality of the tracked subspace, we devise

two simple heuristics to restructure both matrices. When r is incremented,

we append the normalized orthogonal error given by the current updated

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 40

projection matrix:

z†⊥(t) = z(t)−Q(t)Q>(t)z(t) (4-8)

Q(t+ 1) =
[
Q(t) z†(t)/‖z†(t)‖

]
(4-9)

where qr+1 now servers as an instantaneous estimate for the new basis

able to capture interesting information in the new direction. Even though we

relaxed the upper-right triangular shape constraint of the S-matrix, in the case

of a increase in r we restructure the matrix by adding the following estimate

to its new diagonal element:

S(t+ 1) =

[
S(t) 0

0 ‖z†⊥(t)‖2

]
. (4-10)

In the case when r is decremented, the two matrices are simply truncated

from r×r to (r−1)×(r−1) and we discard the values from the previous entries.

The motivation for these updates comes mainly from similar ideas employed

in [Yang, 1995b] and while other heuristics were experimented, including very

simple ones such as initializing with random orthonormal vectors, they all

severely damage the subspace estimates. This completes the necessary steps to

our extension which we summarise below in Figure 4.1.

4.3
Exception handling

The zero-input case requires the operation of the algorithm in ‘idle mode’,

which enables the algorithm to handle cases of vanishing inputs. It can be seen

in (4-11a) and (4-11b) that a null input will zero both Z(t) and h(t). Hence

no updating of the basis estimate in Q(t) is necessary because there is no

innovation in a zero input. We add a check to test the condition Z(t) < σ before

(4-11c) to bypass all remaining computations for that step. The singularity

threshold σ is machine and platform dependent but is a positive constant very

close to zero.

Fortunately, our rank estimation routine will already guarantee that the

S-matrix is not rank deficient, hence we do not need to handle special conditions

elsewhere.

4.4
Achieving lower asymptotic computational complexity

Our rank estimation is dominated by 2Nr flops from computing the

reconstruction error based on the updated projection matrix (4-11n), hence

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 41

parameters: 0 < fE < FE < 1 and 0 < α < 1
r(0)← 1
Q(0)← random orthonormal
S(0)← σI, where σ is a small positive constant
for t = 1, 2, . . .

read z(t) ∈ <N

h(t) = Q>(t− 1)z(t) (4-11a)

Z(t) = z>(t)z(t)− h>(t)h(t) (4-11b)

X(t) = αS(t− 1) + h(t)h>(t) (4-11c)

X>(t)b(t) = Z1/2h(t) solve−−−→ b(t) (4-11d)

ϕ2(t) =
1
2

+
1√

4(b>(t)b(t) + 1)
(4-11e)

δ(t) =
ϕ(t)

Z1/2(t)
(4-11f)

v(t) =
[

1− 2ϕ2(t)
2ϕ(t)

]
b(t) (4-11g)

S(t) = X(t)− 1
δ(t)

v(t)h>(t) (4-11h)

e(t) = δ(t)z(t)−Q(t− 1) [δ(t)h(t)− v(t)] (4-11i)

Q(t) = Q(t− 1)− 2e(t)v>(t) (4-11j)

E(t) = αE(t− 1) + ‖z‖2 (4-11k)

Ẽ(t) = αẼ(t− 1) + ‖h‖2 (4-11l)

if Ẽ(t) < fEE(t) and r(t) < N (4-11m)

z†⊥(t) = z(t)−Q(t)Q>(t)z(t) (4-11n)

Q(t+ 1) =
[
Q(t) z†(t)/‖z†(t)‖

]
(4-11o)

S(t+ 1) =
[
S(t) 0
0 ‖z†⊥(t)‖2

]
(4-11p)

r(t+ 1) = r(t) + 1 (4-11q)

else if Ẽ(t) > FEE(t) and r(t) > 1 (4-11r)
Q(t+ 1) = delete the rightmost column of Q(t) (4-11s)
S(t+ 1) = delete bottom row and rightmost column of S(t) (4-11t)
r(t+ 1) = r(t)− 1 (4-11u)

Figure 4.1: FRAHST algorithm

the entire algorithm has time complexity of 5Nr+O
(
N + r3

)
per update. The

space complexity O
(
Nr
)

is similarly very low.

The value of r depends on the threshold range and the actual data read

at each interval t. For example, in the specific datasets we experimented, r

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 42

rarely exceeds the value of 6 even for N larger than 200 when capturing 96%

of the energy. Despite the fact that r � N in most cases, in the worst case

analysis we have r = N and one can perceive the typical O
(
r3
)

complexity

for solving the systems of linear equations in step (4-11d) as a stumbling

block. Gaussian elimination or LU decomposition are the typical2 algorithms of

choice and require approximately r3 flops. It is theoretically possible to achieve

O
(
r2.376

)
by the asymptotically fastest known matrix multiplication (but

impractical) Coppersmith–Winograd algorithm [Coppersmith and Winograd,

1990, Robinson, 2005] or with the more realistic Strassen method that requires

about 4.7r2.807 flops [Bailey et al., 1990]. But neither alternatives are optimal.

In [Strobach, 2009a], the author suggests that the recursivity that is inherent

in the subspace tracking algorithm can be exploited by recursive updating

factorizations of inner matrices, but not much detail is provided. We follow

this thread and show how to apply the same suggested ideas for our rank-

adaptive extension and reduce the complexity of step (4-11d) to O
(
r2
)
.

4.4.1
Efficiently updating QR-factorizations

Instead of refactoring the X matrix on every update from scratch, it is

much more efficient to update each factor as necessary and a procedure for such

recurrent updates is widely known and require O
(
r2
)

flops (Chapter 12.5 in

Golub and Van Loan [1996] and Gill et al. [1972]). The idea is to work with the

QR decompositions of the X- and S- r× r square matrices and recognize that

(4-11c) and (4-11h) are ‘QR = QR + rank one’ updates that can be expressed

as

X(t) = XQ(t)XR(t) = SQ(t)SR(t)− h>(t)h(t) (4-12)

S(t) = SQ(t)SR(t) = XQ(t)XR(t)− 1/δ(t)v(t)h>(t) (4-13)

We illustrate the procedure considering the case AQAR = A ∈ Rr×r,

where we need to compute the QR factorization of A + bc> = AQ
1A

R
1 and

b, c ∈ Rr. The expression is written in the form A + bc> = AQ(AR +wc>)

where w = AQb. We use the procedure detailed in [Golub and Van Loan, 1996]

to restore the QR factorization of A which relies on computing two sequences

2Most software packages seem to call the DGESV from LAPACK to compute the solution
of linear equations.

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 43

J and G of Givens rotations as shown below:

QR-UPDATE(AQ,AR, b, c) (4-14)

J>1 . . .Jm−1w = ±‖w‖e1 (4-15)

J>1 . . .Jm−1(A
R +wc>) = H ± ‖w‖e1b

> = H1 (4-16)

G>m−1 . . .G
>
1H1 = AR

1 (4-17)

AQ
1 = AQJm−1 . . .J1G1 . . .Gm−1 (4-18)

output AQ
1 ,A

R
1 (4-19)

where e1 ≡ [1 0 . . . 0]> ∈ Rr. Each Jk is a Given rotation in planes k

and k + 1 [Algorithm 5.1.3 in Golub and Van Loan, 1996]. H1 can be shown

to be an ‘almost upper triangular’ Hessenberg matrix and its QR factorization

(4-17) can be computed by applying the G rotations in O
(
r2
)

[Algorithm 5.2.3

in Golub and Van Loan, 1996]. The entire update requires about 26r2 flops.

Once we have the QR factors, it is straight-forward to solve the linear system

from (4-11d) with complexity O
(
r2
)

by using back-substitution, which follows

from pre-multiplying the transpose of XQ and from the fact that XR is an

upper triangular matrix (step (4-20b)).

We are now left with the task to account for the resizing of the QR factors

of the S-matrix. Similarly, we use four procedures based on Givens rotations

from [Golub and Van Loan, 1996, Hajek, 2009] for both appending and deleting

column and row vector of the original matrix according to steps (4-11p) and

(4-11t) whilst maintaining the QR structure with quadratic complexity. We do

not give all details here, but all the routines QR-INSERT-ROW, QR-INSERT-COL,

QR-DELETE-COL and QR-DELETE-ROW are all very much alike to the above QR-

UPDATE and surgically manipulate the values of the upper triangular AR-matrix

via Givens rotations which is then used to produce a Hessenberg matrix to yield

the final two rotations that are used to update the AQ-matrix. We give the

pseudo-code for the asymptotically faster modification of FRAHST in Figure

4.2.

Considering that each routine costs roughly a total of 26r2 flops, and

adding r2 operations from the back-substitution step totals about 5Nr+157r2

which suggests that the asymptotically faster modified version only pays off

when r > 157. In practice, any implementation can switch to this version when

the dimension of the principal subspace is that high while using few operations

for the most common lower rank case. Regarding the implementation, we

note that MATLAB, for instance, only offers the QR-UPDATE function3 but all

3See the documentation for the qrupdate at http://www.mathworks.com/.

http://www.mathworks.com/
DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 44

Initialize SQ(0) = SR(0) = σI

Same steps (4-11a)-(4-11u) except for the following.

Replace (4-11c) and (4-11d) with:

XQ(t)XR(t)← QR-UPDATE(αSQ(t), αSR(t), h, h) (4-20a)

XRb = (XQ)>Z(t)1/2h(t) back-substitution−−−−−−−−−−→ b(t). (4-20b)

Replace (4-11h) with:

SQ(t)SR(t)← QR-UPDATE(XQ(t),XR(t), 1/δ(t)v,h). (4-20c)

Replace (4-11p) with:

SQ(t+ 1)SR(t+ 1)← QR-INSERT-ROW(SQ(t), SR(t) , r(t+ 1), 0) (4-20d)

SQ(t+ 1)SR(t+ 1)← QR-INSERT-COL(SQ(t+ 1), SR(t+ 1),

r(t+ 1), [0 0 . . . ‖z†⊥(t)‖2]) . (4-20e)
Replace (4-11t) with:

SQ(t+ 1)SR(t+ 1)← QR-DELETE-COL(SQ(t), SR(t), r(t)) (4-20f)

SQ(t+ 1)SR(t+ 1)← QR-DELETE-ROW(SQ(t+ 1), SR(t+ 1), r(t)) . (4-20g)

Figure 4.2: Asymptotically faster FRAHST algorithm with recurrent QR
updates.

routines are found in the Fortran package from Hajek [2009] which is greatly

optimized.

4.4.2
Efficiently updating LU-factorizations

We explore a second alternative to reduce the O
(
r3
)

term from the

original complexity in terms of fast Bennett LU-factor updating [Bennett,

1965], cited in [Strobach, 2009a] and the algorithm is detailed in [Stange et al.,

2007] and it only requires 4r2 flops for updating. Similarly to the previous

extension, this allows the linear system of equations to be solved in O
(
r2
)

by exploiting the ‘LU = LU + rank one’ updates in each step. However, now

we are dealing with the lower and upper triangular factors of the S- and X-

matrices. Analogous to the previous section, the main goal is to update the

LU decomposition after a rank-one update:

ALAU︸ ︷︷ ︸
A

+bc> = AQ
1A

R
1︸ ︷︷ ︸

New LU factors

(4-21)

which can be accomplished with an algorithm such as Bennett’s algo-

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 45

rithm, which is listed below [from Stange et al., 2007]:

LU-UPDATE(AL,AU , b, c)

for 1 ≤ i ≤ r (4-22)

AU
ii = AU

ii + bici (4-23)

ci = ci/A
U
ii (4-24)

for i+ 1 ≤ j ≤ r (4-25)

bj = bj − biLji (4-26)

Lji = Lji + cibj (4-27)

U ij = U ij + bicj (4-28)

cj = cj − ciU ij (4-29)

Once we have the LU factors for the X- matrix, solving the linear system

of equations from (4-11d) is a direct application of both forward- and back-

substitutions. The pseudo-code for the asymptotically faster modification of

FRAHST is given in Figure 4.3.

Initialize SL(0) = SU (0) = σI

Same steps (4-11a)-(4-11u) except for the following.
Replace (4-11c) and (4-11d) with:

XL(t)XU (t)← LU-UPDATE(αSL(t), αSU (t), h, h) (4-30a)

XLy(t) = Z(t)1/2h(t) forward-substitution−−−−−−−−−−−−→ y(t). (4-30b)

XUb = y(t) back-substitution−−−−−−−−−−→ b(t). (4-30c)

Replace (4-11h) with:

SL(t)SU (t)← LU-UPDATE(XL(t),XU (t), 1/δ(t)v,h). (4-30d)

Replace (4-11p) with:

SL(t+ 1) =
[
SL(t) 0

0 ‖z†⊥(t)‖

]
SU (t+ 1) =

[
SU (t) 0

0 ‖z†⊥(t)‖

]
(4-30e)

Replace (4-11t) with:

SL(t+ 1) = delete bottom row and right most column of SL(t) (4-30f)

SU (t+ 1) = delete bottom row and right most column of SU (t) (4-30g)

Figure 4.3: Asymptotically faster FRAHST algorithm with recurrent LU
updates.

The total complexity is about 5Nr+10r2 due to two 4r2 LU updates and

two r2 substitutions for solving the linear system. This is the lowest complexity

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 46

we achieve for the FRAHST algorithm. However, Bennett’s algorithm is

known to cause numerical stability problems during the updating procedure

[Stange et al., 2007], and we indeed experience a loss of quality in the

subspace estimates for this faster version in practice. Therefore, in general

we are recommending the previous QR version for a more stable approach

that performs equally well as the original. In Chapter 5, we compare the

performance of all the proposed versions (see Figure 5.4(c)).

Summary of the algorithm

The latent variables h(t) give us a compact representation of the raw

data z(t) and FRAHST guarantees high reconstruction accuracy (in terms of

the relative squared error, which is less than 1 − fE). When our streams are

highly correlated, as we often expect to be the case, the latent dimension r is

much smaller than the number N of streams and the Q-matrix captures the

linear combinations between them. Traditional batch methods for estimating

the principal components require time that depends on the duration T , and

most subspace trackers do not adapt the rank of the principal subspace in an

online manner. Our algorithm does not need to store any past values and has

very low computational requirements and can be applied to several important

tasks, such as anomaly detection by monitoring the current tracked rank and

forecasting by fitting auto-regressive models on the latent variables for the

next interval, especially to handle missing data – the latter techniques were

advocated in [Papadimitriou et al., 2005], but FRAHST has a lower dominant

complexity O
(
Nr
)

instead of O
(
Nr2

)
needed for SPIRIT to guarantee

the correct expected reconstruction error. This makes our algorithm more

attractive for the streaming scenario.

4.5
Real-time Anomaly Detection System

Now, we formalize the anomaly detection procedure based on the

FRAHST algorithm, and elaborate on the architecture for implementing a

real-time monitoring system.

4.5.1
Raising alarms

Our anomaly detection procedure follows directly from the rank-adaptive

nature of FRAHST. We propose to raise alarms whenever there is an increase

in rank, as laid out below.

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 47

last← 0

for t = 1, 2, . . .

FRAHST(t) (4-31)

if r(t) > r(t− 1) (4-32)

if t > last + 1: raise an alarm at t (4-33)

last← t (4-34)

Figure 4.4: Anomaly detection routine

The control variable last is used to suppress alarms when there are rank

increments in consecutive interval, which are likely to be false alarms. The

intuition is that a change in the underlying streams might be so great, that

more than one additional latent variables are necessary to achieve the same

reconstruction error.

4.5.2
Event-driven Architecture

We devise a loose-coupled event-driven architecture where all modules

are publishers or subscribers to an event broker, also known as event/message

bus [and widely popularized by Hohpe and Woolf, 2003]. The most impor-

tant components in a data center can be monitored using the Simple Network

Management Protocol (SNMP), which include routers, access servers, switches,

bridges, hubs, temperature sensors and computer hosts. The variables acces-

sible via SNMP are organized in hierarchical Management Information Bases

(MIBs) and a manager can get information from agents using the UDP proto-

col, typically via port 161. Not all data is available via SNMP, such as statis-

tics from a running MySql database or an Apache web server. As illustrated in

Figure 4.5, specific plugin modules are implemented to obtain all desired in-

formation which is then normalized into a JSON4 format which is sent to the

bus to be consumed by different processes via remote calls. We also integrate

with Nagios5 in order to reuse the existing plugins to enable a wide variety of

data to be available into our system. This normalized message contains: times-

tamp, event type identifier and the collected variables along with their names.

The user configures, in runtime via a web interface, a model that represents

the entities in the monitored infrastructure and are mapped to this raw data

accordingly. There are many challenges to implement efficient communication

4Javascript Object Notation
5A popular opensource monitoring system.

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 48

network

Event Bus
CEP Engine Visualization

Connectors

STOMP HTTP JMS JMX SSL/TCP

Plugin Manager

SNMP plugin MySql plugin Apache plugin

• UDP/TCP/HTTP
• High volume

raw data

Figure 4.5: Raw asynchronous events are collected and normalized messages
are sent to the event bus.

strategies to ensure minimum latency. For this reason most communication is

done over a persistent TCP socket using the STOMP6 protocol.

Different implementations were considered, but we chose Esper7 as the

event stream processing engine8 to power our solution. It is an excellent open

source project, easy to embedded and with the probably most expressive

event processing query language available. A CEP engine is analogous to a

‘inverted’ traditional database, where instead of having queries being made over

persistent tuples of data we now have persistent queries that run continuously

over streaming data.

The idea is to monitor streams as defined by continuous queries over the

incoming raw data. More specifically, the data center operator chooses a set

of streams to be monitored together and a query can be placed to join the

corresponding underlying streams in order to produce the input vector z(t)

for our algorithm at periodic equidistant intervals – the join operator and the

output rate of the query are features of the core stream processing engine.

This is necessary due to the asynchronous nature of the original events. Figure

6Streaming Text Orientated Message Protocol
7More information at http://www.espertech.com/.
8The terms event stream processing (ESP), complex event processing (CEP) and data

stream management system (DSMS) may be used interchangeably.

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 49

Complex Event Processing Engine

Event Processing Language Sliding window-based joins

Event Bus (high volume streams)

Complex Event Queries

Snapshot over monitored streams

FRAHST Anomaly Detection

Alarms Detections are
events themselves

Figure 4.6: We illustrate the processing flow in the system: a query is used to
join raw streams into a derived complex event that feeds our algorithm, which
is then apt to detect anomalies in variables under surveillance.

4.6 overviews the flow of the anomaly detection system and it is important

to realize that we have multiple instances of FRAHST running attached to

different queries with different set of streams. For example, one instance will

be detecting anomalies from a query that represents data regarding cpu and

memory usage from a cluster A, while another will monitor cluster B. This

solution is flexible and allows an expert user to leverage his previous knowledge

while maintaining an interpretation over the projected latent variables.

We use the adapter pattern for the actual integration with FRAHST

where a processor is attached to a continuous query and updates the algorithm

upon new events. The step (4-33) in Figure 4.4 notifies a listener which

consequently publishes an alarm event to the message broker so further actions

are taken; such as update charts, send SMS or XMPP messages. It is interesting

to observe that generated alarms can also be considered event streams, and

hence can be monitored. The sequence diagram in Figure 4.7 better illustrates

the interaction between the different subcomponents in the monitoring system.

During the each step interval, data is collected from different sources and

is aggregated by user-defined queries. Each query has an associated query

listener, which is responsible for forming the input data vector and delegating

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

Data Stream Anomaly Detection through Principal Subspace Tracking 50

:CollectorAgent :Broker :CEP Engine :QueryListener :FRAHST

send data
...

send data

consume

process query

notify

input z(t)

update

send latent variables

raise an alarm

Monitoring intervalMonitoring interval

Figure 4.7: Simplified sequence diagram of the update step.

over an adapter to the FRAHST implementation. Although we do not depict it

here, a user interface can consume both latent variables and alarm information

from the broker for visualization purposes. Most of the system is implemented

in the Java language, and ActiveMQ9 was used for the event broker.

Our solution has been adopted for a real data center, where it has been

shown to achieve high throughput and low latency. This use case has been

presented at an international forum recently [Clemente and Vieira, 2009].

9See http://activemq.apache.org/.

DBD
PUC-Rio - Certificação Digital Nº 0711319/CA

