10
 Robust cycles from symbolic blender-horseshoes

In this chapter we obtain robust heterodimensional cycles of any co-index (Definition 1.1) using symbolic blender-horseshoes (Definition 1.10). Our goal is prove Theorem E.

10.1

Robust symbolic cycles

To define symbolic $c u$-blender-horseshoes, we introduce the inverse symbolic skew product maps. Given $\Phi=\tau \ltimes \phi_{\xi} \in \mathcal{S}_{k, \lambda, \beta}^{\alpha}(D)$, for a bounded open subset D of a compact manifold G, constants $1<\lambda<\beta, \alpha>0$, and $k>1$ (recall Definition 1.7), the symbolic skew product map

$$
\Phi^{*}=\tau \ltimes \phi_{\xi}^{*} \in \mathcal{S}_{k, \beta^{-1}, \lambda^{-1}}^{\alpha}(D),
$$

where $\phi_{\xi}^{*}: D \rightarrow D$ is given by $\phi_{\xi}^{*}(x)=\phi_{\xi^{*}}^{-1}(x)$, is called associated inverse skew product map for Φ. Here ξ and ξ^{*} are points of Σ_{k} of the form: $\xi=\left(\ldots \xi_{-1} ; \xi_{0}, \xi_{1}, \ldots\right)$ and $\xi^{*}=\left(\ldots \xi_{1} ; \xi_{0}, \xi_{-1}, \ldots\right)$ (the conjugate sequence of ξ). Since $\tau(\xi)^{*}=\tau^{-1}\left(\xi^{*}\right)$, iterates of Φ^{*} correspond to iterates of Φ^{-1}. A symbolic cu-blender-horseshoes for Φ in $\mathcal{S}_{k, \lambda, \beta}^{\alpha}(D)$ is a symbolic cs-blenderhorseshoe for Φ^{*}.

There is a similar result for symbolic $c u$-blender-horseshoes of Corollary D.

Corollary 10.1. Let $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right) \in \mathcal{S}_{k, \lambda_{u}, \beta_{u}}^{0, \alpha}\left(D_{u}\right)$ with $1<\lambda_{u}<\beta_{u}<$ $\nu^{-\alpha}$. Assume that there exists an open set B_{u} in D_{u} satisfying the covering property for $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right)$. Then the maximal invariant set Γ_{Φ} of Φ in $\Sigma_{k} \times \bar{D}_{u}$ is a symbolic cu-blender-horseshoe for Φ whose superposition domain contains B_{u}.

Remark 10.2 (Continuations of blenders). Let Γ_{Φ}^{s} be a symbolic cs-blenderhorseshoe (resp. cu-blender-horseshoe) for a map $\Phi \in \mathcal{S}_{k, \lambda_{s}, \beta_{s}}^{1, \alpha}\left(D_{s}\right)$ (resp. $\mathcal{S}_{k, \lambda_{u}, \beta_{u}}^{1, \alpha}\left(D_{u}\right)$). We consider Γ_{Ψ}^{s} (resp. Γ_{Ψ}^{u}) the continuation of Γ_{Φ}^{s} (resp. Γ_{Φ}^{u}) for $\Psi \in \mathcal{S}_{k, \lambda_{s}, \beta_{s}}^{1, \alpha}\left(D_{s}\right)\left(\right.$ resp. $\left.\mathcal{S}_{k, \lambda_{u}, \beta_{u}}^{1, \alpha}\left(D_{u}\right)\right)$.

Let Γ_{Φ} be a symbolic blender-horseshoe of Φ. Recall that

$$
\begin{aligned}
& W^{s}\left(\Gamma_{\Phi} ; \Phi\right)=\left\{(\xi, x) \in \Sigma_{k} \times G: \lim _{n \rightarrow \infty} d\left(\Phi^{n}(\xi, x), \Gamma_{\Phi}\right)=0\right\} \quad \text { and } \\
& W^{u}\left(\Gamma_{\Phi} ; \Phi\right)=\left\{(\xi, x) \in \Sigma_{k} \times G: \lim _{n \rightarrow \infty} d\left(\Phi^{-n}(\xi, x), \Gamma_{\Phi}\right)=0\right\}
\end{aligned}
$$

Definition 10.3 (Cycles associated to symbolic blenders). Let Φ be a skewproduct map defined on $\Sigma_{k} \times G$. Assume that there are open bounded subsets D_{s} and D_{u} of G such that

- $\Phi_{s}=\Phi_{\mid D_{s}} \in \mathcal{S}_{k, \lambda_{s}, \beta_{s}}^{1, \alpha}\left(D_{s}\right)$ and $\Phi_{u}=\Phi_{\mid D_{u}} \in \mathcal{S}_{k, \lambda_{u}, \beta_{u}}^{1, \alpha}\left(D_{s}\right)$, here $\Phi_{\mid D_{i}}$ denotes the restriction of Φ to $D_{i}, i=s, u$.
- Φ_{s} has a symbolic cs blender-horseshoe Γ_{Φ}^{s} contained in $\Sigma_{k} \times D_{s}$ and Φ_{u} has a symbolic cu blender-horseshoe Γ_{Φ}^{u} contained in $\Sigma_{k} \times D_{u}$.

We say that Φ has a symbolic cycle associated to Γ_{Φ}^{s} and Γ_{Φ}^{u} if their stable and unstable sets meet cyclically:

$$
W^{s}\left(\Gamma_{\Phi}^{s} ; \Phi\right) \cap W^{u}\left(\Gamma_{\Phi}^{u} ; \Phi\right) \neq \emptyset \quad \text { and } \quad W^{u}\left(\Gamma_{\Phi}^{s} ; \Phi\right) \cap W^{s}\left(\Gamma_{\Phi}^{u} ; \Phi\right) \neq \emptyset
$$

We say that this symbolic cycle is \mathcal{S}-robust if there is a neighborhood \mathcal{V} of Φ in $\mathcal{S}_{k, \lambda_{s}, \beta_{s}}^{1, \alpha}\left(D_{s}\right) \cap \mathcal{S}_{k, \lambda_{u}, \beta_{u}}^{1, \alpha}\left(D_{u}\right)$ such that for every $\Psi \in \mathcal{V}$ it holds $\Psi_{\mid D_{s}} \in$ $\mathcal{S}_{k, \lambda_{s}, \beta_{s}}^{1, \alpha}\left(D_{s}\right), \Psi_{\mid D_{u}} \in \mathcal{S}_{k, \lambda_{u}, \beta_{u}}^{1, \alpha}\left(D_{s}\right)$, and Ψ has a symbolic cycle associated to the cs blender Γ_{Ψ}^{s} and the cu blender Γ_{Ψ}^{u}, where Γ_{Ψ}^{s} and Γ_{Ψ}^{s} are the continuations of Γ_{Φ}^{s} and Γ_{Φ}^{u}, respectively.

The main technical step of the proof of Theorem E is the following:
Proposition 10.4. Let $\phi_{1}, \ldots, \phi_{k}, \varphi$ be $(\gamma, \hat{\gamma})$-Lipschitz C^{1}-diffeomorphisms on a compact Riemannian manifold G, recall Equation (1.3). Consider a onestep skew product map $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right)$ defined on $\Sigma_{k} \times G$. Assume that there are disjoint open and bounded subsets D_{s}, D_{u} of G such that

$$
\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right) \in \mathcal{S}_{k, \lambda_{s}, \beta_{s}}^{1, \alpha}\left(D_{s}\right) \cap \mathcal{S}_{k, \lambda_{u}, \beta_{u}}^{1, \alpha}\left(D_{u}\right),
$$

where $\alpha \in(0,1], \nu \in(0,1)$, and

$$
0<\nu^{\alpha}<\gamma \leq \lambda_{s}<\beta_{s}<1<\lambda_{u}<\beta_{u} \leq \hat{\gamma}<\nu^{-\alpha}
$$

Assume also that there are open subsets $B_{s} \subset D_{s}$ and $B_{u} \subset D_{u}$ such that the following two properties hold.
i) Covering properties: $\bar{B}_{s} \subset \bigcup_{i=1}^{k} \phi_{i}\left(B_{s}\right)$ and $\bar{B}_{u} \subset \bigcup_{i=1}^{k}\left(\phi_{i}\right)^{-1}\left(B_{u}\right)$.
ii) Cyclic intersections: there are a subset \tilde{B}_{s} of B_{s}, points $x \in \tilde{B}_{s}$ and $y \in B_{u}$ such that

$$
\varphi^{n}(x) \in B_{u}, \quad \phi_{j}^{m}(y) \in D_{s}, \quad \text { and } \quad\left(\phi_{\ell}\right)^{-1}(y) \in D_{u}
$$

for some $n, m>0$ and $j, \ell \in\{1, \ldots, k\}$.
Then the one-step map $\hat{\Phi}=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}, \varphi\right)^{1}$ defined on $\Sigma_{k+1} \times G$ has a robust symbolic cycle associated to a cs-blender-horseshoe Γ_{Φ}^{s} and to a cu-blender-horseshoe Γ_{Φ}^{u} contained in $\Sigma_{k} \times D_{s}$ and $\Sigma_{k} \times D_{u}$, respectively.

To prove this proposition we need the following lemma:
Lemma 10.5. Let $\phi_{1}, \ldots, \phi_{k}, \varphi$ be $(\gamma, \hat{\gamma})$-Lipschitz be C^{1}-diffeomorphisms on a compact Riemannian manifold G. Consider a one-step skew product $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right)$ defined on $\Sigma_{k} \times G$ with a symbolic cs-blender-horseshoe Γ_{Φ} contained in $\Sigma_{k} \times D, D \subset G$. Assume that superposition domain of the blender contains an open subset B of D satisfying the covering property:

$$
\bar{B} \subset \phi_{1}(B) \cup \cdots \cup \phi_{k}(B)
$$

Let $\hat{\Phi}=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}, \varphi\right)$ be a skew product map defined on $\Sigma_{k+1} \times G$ such that

$$
\Phi=\left.\hat{\Phi}\right|_{\Sigma_{k} \times G}
$$

There are a small $\delta>0$ and a subset \tilde{B} of B such that every small perturbation $\hat{\Psi}$ of $\hat{\Phi}$ satisfies

$$
W^{u u}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right) \cap \hat{H}^{s} \neq \emptyset
$$

for every almost δ-horizontal disk \hat{H}^{s} in $\Sigma_{k+1} \times B$, recall Definition 1.9, where Γ_{Ψ}^{s} is the continuation of Γ_{Φ}^{s} for $\Psi=\left.\hat{\Psi}\right|_{\Sigma_{k} \times G}$.

Proof. First observe that for each $(\xi, x) \in \Sigma_{k+1} \times G$, we have that

$$
W_{l o c}^{u u}((\xi, x) ; \hat{\Phi})=W_{l o c}^{u}(\xi ; \tau) \times\{x\}
$$

for the one-step map $\hat{\Phi}$. Then, by shrinking slightly the superposition domain B we can assume that there is an open set $\tilde{B} \subset B$ such that for every $\hat{\Psi}$ close enough to $\hat{\Phi}$, it holds

$$
\begin{equation*}
W_{l o c}^{u u}((\xi, x) ; \hat{\Psi}) \subset \Sigma_{k+1} \times B \quad \text { for all }(\xi, x) \in \Sigma_{k+1} \times \tilde{B} \tag{10.1}
\end{equation*}
$$

We can also assume that \tilde{B} satisfies the covering property for $\operatorname{IFS}(\Phi)$.

[^0]A slight modification on the proof of Theorem C (using that $\nu^{\alpha}<\gamma$, instead of $\nu^{\alpha}<\lambda$) shows that there is a small $\delta>0$ such that for every small perturbation $\hat{\Psi}$ of $\hat{\Phi}$ we have

$$
\begin{equation*}
\Gamma_{\hat{\Psi}}^{+}\left(\Sigma_{k, k+1}^{-} \times \tilde{B}\right) \cap \hat{H}^{s} \neq \emptyset \tag{10.2}
\end{equation*}
$$

for every δ-horizontal disk \hat{H}^{s} in $\Sigma_{k+1} \times \tilde{B}$, where

$$
\Gamma_{\hat{\Psi}}^{+}\left(\Sigma_{k, k+1}^{-} \times \tilde{B}\right) \stackrel{\text { def }}{=} \bigcap_{n \geq 0} \hat{\Psi}^{n}\left(\Sigma_{k, k+1}^{-} \times \tilde{B}\right)
$$

and

$$
\Sigma_{k, k+1}^{-} \stackrel{\text { def }}{=}\left\{\xi=\left(\xi_{i}\right)_{i \in \mathbb{Z}} \in \Sigma_{k+1}: \xi_{i} \in\{1, \ldots, k\} \text { for every } i<0\right\}
$$

this means that the symbol $k+1$ corresponding to iterations by φ is not involved.

Consider a skew-product map $\hat{\Psi}$ close to $\hat{\Phi}$ satisfying (10.1) and (10.2), and let $\Gamma_{\Psi}^{s} \subset \Sigma_{k} \times G$ be the continuation of Γ_{Φ}^{s} for $\Psi=\left.\hat{\Psi}\right|_{\Sigma_{k} \times G}$.
Claim 10.6. $\Gamma_{\hat{\Psi}}^{+}\left(\Sigma_{k, k+1}^{-} \times \tilde{B}\right) \subset W_{l o c}^{u u}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right)$.
Proof. For a given $(\xi, x) \in \Gamma_{\hat{\Psi}}^{+}\left(\Sigma_{k, k+1}^{-} \times \tilde{B}\right)$ we will show that

$$
\begin{equation*}
W_{l o c}^{u u}((\xi, x) ; \hat{\Psi}) \cap\left(\Sigma_{k} \times B\right) \subset \Gamma_{\Psi}^{s} \tag{10.3}
\end{equation*}
$$

Note that this inclusion implies the claim: if $(\zeta, z) \in W_{l o c}^{u u}((\xi, x) ; \hat{\Psi}) \cap\left(\Sigma_{k} \times B\right)$ then by equation above, $(\zeta, z) \in \Gamma_{\Psi}^{s}$. Thus

$$
W_{l o c}^{u u}((\zeta, z) ; \hat{\Psi}) \subset W_{l o c}^{u u}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right)
$$

Observe that $(\xi, x) \in W_{l o c}^{u u}((\zeta, z) ; \hat{\Psi})$, then inclusion above implies that $(\xi, x) \in$ $W_{l o c}^{u u}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right)$, ending the proof of the claim.

To prove inclusion (10.3), recall that Γ_{Ψ}^{s} is a symbolic blender-horseshoe and thus, by Equation (1.11), we have that

$$
\Gamma_{\Psi}^{+}\left(\Sigma_{k} \times B\right) \stackrel{\text { def }}{=} \bigcap_{n \geq 0} \Psi^{n}\left(\Sigma_{k} \times B\right) \subset \Gamma_{\Psi}^{s} \stackrel{\text { def }}{=} \bigcap_{n \in \mathbb{Z}} \Psi^{n}\left(\Sigma_{k} \times \bar{D}\right)
$$

Hence, given $(\zeta, z) \in W_{\text {loc }}^{u u}((\xi, x) ; \hat{\Psi}) \cap\left(\Sigma_{k} \times B\right)$ it is enough to show that

$$
\hat{\Psi}^{-n}(\zeta, z)=\Psi^{-n}(\zeta, z) \in \Sigma_{k} \times B, \quad \text { for all } n \geq 0
$$

Observe that from the invariance of the local strong unstable set we get

$$
\begin{equation*}
\hat{\Psi}^{-n}(\zeta, z) \in \hat{\Psi}^{-n}\left(W_{l o c}^{u u}((\xi, x) ; \hat{\Psi})\right) \subset W_{l o c}^{u u}\left(\hat{\Psi}^{-n}(\xi, x) ; \hat{\Psi}\right) \tag{10.4}
\end{equation*}
$$

for all $n \geq 0$. Since $(\xi, x) \in \Gamma_{\hat{\Psi}}^{+}\left(\Sigma_{k, k+1}^{-} \times \tilde{B}\right)$ we have that $\hat{\Psi}^{-n}(\xi, x) \in \Sigma_{k+1} \times \tilde{B}$ for all $n \geq 0$, thus by (10.1) it follows that

$$
\begin{equation*}
W_{l o c}^{u u}\left(\hat{\Psi}^{-n}(\xi, x) ; \hat{\Psi}\right) \subset \Sigma_{k+1} \times B, \quad \text { for all } n \geq 0 \tag{10.5}
\end{equation*}
$$

Therefore $\zeta \in \Sigma_{k}$, (10.4) and (10.5) imply that $\hat{\Psi}^{-n}(\zeta, z) \in \Sigma_{k} \times B$ for all $n \geq 0$. Thus $(\zeta, z) \in \Gamma_{\Psi}^{+}\left(\Sigma_{k} \times B\right) \subset \Gamma_{\Psi}^{s}$ proving (10.3), and thus the claim.

The lemma follows noting that Claim 10.6 and Equation (10.2) imply that $W_{l o c}^{u u}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right) \cap \hat{H}^{s} \neq \emptyset$ for every δ-horizontal disk \hat{H}^{s} in $\Sigma_{k+1} \times \tilde{B}$.

Proof of Proposition 10.4. By Corollaries D and 10.1, the maximal invariant sets Γ_{Φ}^{s} and Γ_{Φ}^{u} of Φ in $\Sigma_{k} \times \bar{D}_{s}$ and $\Sigma_{k} \times \bar{D}_{u}$, respectively, are a cs and a cu-blenders horseshoes whose superpositions domains contain B_{s} and B_{u}, respectively.

We split the proof of the proposition into several steps. First, we prove that $\hat{\Phi}$ has a symbolic cycle associated to Γ_{Φ}^{s} and Γ_{Φ}^{u} (see Claims 10.7, 10.8, and 10.9).
Claim 10.7. Let $\vartheta=\left(\vartheta_{i}\right)_{i \in \mathbb{Z}} \in \Sigma_{k+1}$ with $\vartheta_{i}=\ell \in\{1, \ldots, k\}$ for all $i \in \mathbb{Z}$. Then $W_{l o c}^{s}(\vartheta ; \tau) \times D_{s} \subset W^{s}\left(\Gamma_{\Phi}^{s} ; \hat{\Phi}\right)$ and $W_{l o c}^{u}(\vartheta ; \tau) \times D_{u} \subset W^{u}\left(\Gamma_{\Phi}^{u} ; \hat{\Phi}\right)$.

Proof. We see that $W_{l o c}^{s}(\vartheta ; \tau) \times D_{s} \subset W^{s}\left(\Gamma_{\Phi}^{s} ; \hat{\Phi}\right)$, the other inclusion is analogous. Let p_{ℓ} be the attracting fixed point of ϕ_{ℓ} in D_{s}. Note that $\left(\vartheta, p_{\ell}\right) \in \Gamma_{\Phi}^{s}$ and that for every $(\xi, x) \in W_{\text {loc }}^{s}(\vartheta ; \tau) \times D_{s}$ one has that $d\left(\hat{\Phi}^{n}(\xi, x),\left(\vartheta, p_{\ell}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus $(\xi, x) \in W^{s}\left(\Gamma_{\Phi}^{s} ; \hat{\Phi}\right)$, ending the proof of the claim.

To get a symbolic cycle for $\hat{\Phi}$ associated to Γ_{Φ}^{s} and Γ_{Φ}^{u} we will see that the invariant sets meet cyclically.
Claim 10.8. $W^{s}\left(\Gamma_{\Phi}^{s} ; \hat{\Phi}\right) \cap W^{u}\left(\Gamma_{\Phi}^{u} ; \hat{\Phi}\right) \neq \emptyset$.
Proof. By hypothesis, there are $y \in D_{u}$ and $m>0$ such that $\phi_{j}^{m}(y) \in D_{s}$ and $\phi_{\ell}^{-1}(y) \in D_{u}$ for some $j, \ell \in\{1, \ldots, k\}$. Let

$$
\zeta=\left(\ldots, \ell, \ell ; j, .^{m}, j, \ell, \ell, \ldots\right) .
$$

Note that $\tau^{-1}(\zeta) \in W_{\text {loc }}^{u}(\vartheta ; \tau)$, where ϑ is the constant sequence with $\vartheta_{i}=\ell \in$ $\{1, \ldots, k\}$ for all i. By Claim 10.7,

$$
\hat{\Phi}^{-1}(\zeta, y)=\left(\tau^{-1}(\zeta), \phi_{\ell}^{-1}(y)\right) \in W_{l o c}^{u}(\vartheta ; \tau) \times D_{s} \subset W^{u}\left(\Gamma_{\Phi}^{u} ; \hat{\Phi}\right) .
$$

Thus, $(\zeta, y) \in W^{u}\left(\Gamma_{\Phi}^{u} ; \hat{\Phi}\right)$. Analogously we have,

$$
\hat{\Phi}^{m}(\zeta, y)=\Phi^{m}(\zeta, y)=\left(\tau^{m}(\zeta), \phi_{j}^{m}(y)\right) \in W_{l o c}^{s}(\vartheta ; \tau) \times D_{s} \subset W^{s}\left(\Gamma_{\Phi}^{s} ; \hat{\Phi}\right),
$$

obtaining that $(\zeta, y) \in W^{s}\left(\Gamma_{\Phi}^{s} ; \hat{\Phi}\right)$. Thus $(\zeta, y) \in W^{s}\left(\Gamma_{\Phi}^{s} ; \hat{\Phi}\right) \cap W^{u}\left(\Gamma_{\Phi}^{u} ; \hat{\Phi}\right)$.
Claim 10.9. $W^{u}\left(\Gamma_{\Phi}^{s} ; \hat{\Phi}\right) \cap W^{s}\left(\Gamma_{\Phi}^{u} ; \hat{\Phi}\right) \neq \emptyset$.
Proof. By hypothesis, there are $x \in B_{s}, n>0$ such that $\varphi^{n}(x) \in B_{u}$. Since Γ_{Φ}^{u} is a $c u$-blender-horseshoe we have that $B_{u} \subset \mathscr{P}\left(\Gamma_{\Phi}^{u}\right)$. Hence there is $\xi \in \Sigma_{k}$ such that $\left(\xi, \varphi^{n}(x)\right) \in \Gamma_{\Phi}^{u}$. Consider the sequence

$$
\zeta=\left(\ldots, 1,1 ; k+1, . \stackrel{n}{.}, k+1, \xi_{0}, \ldots, \xi_{n}, \ldots\right) \in \Sigma_{k+1} .
$$

As the strong stable set of Γ_{Φ}^{u} is contained in its stable set we get

$$
\begin{aligned}
\hat{\Phi}^{n}\left(W_{l o c}^{s}(\zeta ; \tau) \times\{x\}\right) & \subset W_{l o c}^{s}(\xi ; \tau) \times\left\{\varphi^{n}(x)\right\}=W^{s s}\left(\left(\xi, \varphi^{n}(x)\right) ; \hat{\Phi}\right) \\
& \subset W^{s}\left(\Gamma_{\Phi}^{u} ; \hat{\Phi}\right)
\end{aligned}
$$

On the one hand, inclusion above implies that the horizontal disk $\hat{H}^{s}=$ $W_{\text {loc }}^{s}(\zeta ; \tau) \times\{x\}$ in $\Sigma_{k+1} \times B_{s}$ satisfies $\hat{H}^{s} \subset W^{s}\left(\Gamma_{\Phi}^{u} ; \hat{\Phi}\right)$. On the other hand, by Lemma 10.5 we have that $W^{u}\left(\Gamma_{\Phi}^{s} ; \hat{\Phi}\right) \cap \hat{H}^{s} \neq \emptyset$. Therefore, $W^{u}\left(\Gamma_{\Phi}^{s} ; \hat{\Phi}\right) \cap$ $W^{s}\left(\Gamma_{\Phi}^{u} ; \hat{\Phi}\right) \neq \emptyset$, proving the claim.

Consider a neighborhood \mathcal{V} of $\hat{\Phi}$ such that for every $\hat{\Psi} \in \mathcal{V}$ it holds Lemma 10.5, covering property and cyclic intersection, that is,

- there are neighborhoods \mathcal{U}_{i}^{s} of ϕ_{i} and \mathcal{U}_{i}^{u} of ϕ_{i}^{-1} such that for $i=1, \ldots, k$

$$
B_{s, i}=\operatorname{int}\left(\cap_{\psi \in \mathcal{U}_{i}^{s}} \psi\left(B_{s}\right)\right) \quad \text { and } \quad B_{u, i}=\operatorname{int}\left(\cap_{\psi \in \mathcal{U}_{i}^{u}} \psi\left(B_{u}\right)\right),
$$

are open covering of \bar{B}_{s} and \bar{B}_{u}, respectively;

- fix $x \in \tilde{B}_{s}$ and $y \in B_{u}, n, m>0$, and $j, \ell \in\{1, \ldots, k\}$ in cyclic intersection condition. Then for every $\hat{\Psi}=\tau \ltimes \psi_{\xi} \in \mathcal{V}$ it holds

$$
\psi_{\eta}^{n}(x) \in B_{u}, \quad \psi_{\tilde{\eta}}^{m}(y) \in D_{s} \quad \text { and } \quad \psi_{\tilde{\eta}}^{-1}(y) \in B_{u}
$$

for every $\eta, \hat{\eta}, \tilde{\eta} \in \Sigma_{k+1}$ such that $\eta_{0}=\cdots=\eta_{n-1}=k+1$ and $\eta_{i} \in\{1, \ldots k\}$ for $i<0$ and $i \geq n, \hat{\eta}_{0}=\cdots=\hat{\eta}_{m-1}=j$ and $\hat{\eta}_{i} \in\{1, \ldots k\}$ for $i<0$ and $i \geq m$, and $\tilde{\eta}_{0}=\ell$.

We will see that for every map in the neighborhood \mathcal{V} the cyclic conditions hold, obtaining a robust symbolic cycle (Definition 10.3).

Let $\hat{\Psi} \in \mathcal{V}$ and Γ_{Ψ}^{s} and Γ_{Ψ}^{u} be the continuation of Γ_{Φ}^{s} and Γ_{Φ}^{u}, respectively for $\Psi=\left.\hat{\Psi}\right|_{\Sigma_{k} \times G}$. We have the assertions below which are analogous to Claims 10.7, 10.8 and 10.9.

Claim 10.10. Let $\vartheta=\left(\vartheta_{i}\right)_{i \in \mathbb{Z}} \in \Sigma_{k+1}$ with $\vartheta_{i}=\ell \in\{1, \ldots, k\}$ for all $i \in \mathbb{Z}$. Then $W_{\text {loc }}^{s}(\vartheta ; \tau) \times D_{s} \subset W^{s}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right)$ and $W_{\text {loc }}^{u}(\vartheta ; \tau) \times D_{u} \subset W^{u}\left(\Gamma_{\Psi}^{u} ; \hat{\Psi}\right)$.

The proof is analogous to Claim 10.7 and thus it is omitted.
Claim 10.11. $W^{s}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right) \cap W^{u}\left(\Gamma_{\Psi}^{u} ; \hat{\Psi}\right) \neq \emptyset$.
Proof. Consider $\zeta_{0}=\cdots=\zeta_{m-1}=j$ and the sequence

$$
\zeta=\left(\ldots, \ell, \ell ; \zeta_{0}, \zeta_{1}, \ldots, \zeta_{m-1}, \ell, \ell, \ldots\right)
$$

Note that $\tilde{\eta} \stackrel{\text { dof }}{=} \tau^{-1}(\zeta) \in W_{l o c}^{u}(\vartheta ; \tau)$, where ϑ is the constant sequence with $\vartheta_{i}=\ell \in\{1, \ldots, k\}$ for all i and, by hypothesis, $\psi_{\tilde{\eta}}^{-1}(y) \in B_{u}$. By Claim 10.10,

$$
\hat{\Psi}^{-1}(\zeta, y)=\Psi^{-1}(\zeta, y)=\left(\tau^{-1}(\zeta), \psi_{\tilde{\eta}}^{-1}(y)\right) \in W^{u}\left(\Gamma_{\Psi}^{u} ; \hat{\Psi}\right) .
$$

Thus, $(\zeta, y) \in W^{u}\left(\Gamma_{\Psi}^{u} ; \hat{\Psi}\right)$. Analogously we have $\tau^{m}(\zeta) \in W_{\text {loc }}^{s}(\vartheta ; \tau)$ and $\psi_{\zeta}^{m}(y) \in D_{s}$. Then by Claim 10.10,

$$
\hat{\Psi}^{m}(\zeta, y)=\Psi^{m}(\zeta, y)=\left(\tau^{m}(\zeta), \psi_{\zeta}^{m}(y)\right) \in W_{l o c}^{s}(\vartheta ; \tau) \times D_{s} \subset W^{s}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right)
$$

getting that $(\zeta, y) \in W^{s}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right)$. Thus $(\zeta, y) \in W^{s}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right) \cap W^{u}\left(\Gamma_{\Psi}^{u} ; \hat{\Psi}\right)$.
Lemma 10.12. $W^{u}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right) \cap W^{s}\left(\Gamma_{\Psi}^{u} ; \hat{\Psi}\right) \neq \emptyset$.
Proof. Let $\eta=\left(\eta_{i}\right)_{i} \in \Sigma_{k+1}$ such that $\eta_{0}=\cdots=\eta_{n-1}=k+1$. By hypothesis $\psi_{\eta}^{n}(x) \in B_{u}$. Since Γ_{Ψ}^{u} is the continuation of the $c u$-blenderhorseshoe Γ_{Φ}^{u} we have that $B_{u} \subset \mathscr{P}\left(\Gamma_{\Psi}^{u}\right)$. Hence there is $\xi \in \Sigma_{k}$ such that $\left(\xi, \psi_{\eta}^{n}(x)\right) \stackrel{\text { def }}{=}(\xi, w) \in \Gamma_{\Psi}^{u}$.
Claim 10.13. Consider small $\delta>0$ and the almost δ-horizontal disk \hat{H}^{s} associated to $W_{\text {loc }}^{s}(\zeta ; \tau) \times\{x\}$ (recall Definition 1.9) where

$$
\zeta \stackrel{\text { def }}{=}\left(\ldots, \eta_{-1} ; k+1, . n ., k+1, \xi_{0}, \ldots, \xi_{n-1}, \xi_{n} \ldots\right) \in \Sigma_{k+1} .
$$

Then

$$
\hat{H}^{s} \subset W^{s}((\xi, w) ; \hat{\Psi}) \subset W^{s}\left(\Gamma_{\Psi}^{u} ; \hat{\Psi}\right) .
$$

Proof of the claim. Note that if $(\xi, w) \in \Gamma_{\Psi}^{u}$, then the second inclusion of the claim holds. Thus it is enough to see that for any given $(\mu, z) \in \hat{H}^{s}$ we have that $\hat{\Psi}^{n}(\mu, z) \in W^{s}((\xi, w) ; \hat{\Psi})$ (where n is as in hypothesis (ii)), that is,

$$
\begin{equation*}
d\left(\hat{\Psi}^{m}\left(\hat{\Psi}^{n}(\mu, z)\right), \hat{\Psi}^{m}(\xi, w)\right) \rightarrow 0 \quad \text { as } m \rightarrow \infty \tag{10.6}
\end{equation*}
$$

First note that by Definition 1.9, one has that $\mu \in W_{l o c}^{s}(\zeta ; \tau)$, thus $\tau^{n}(\mu)^{+}=\xi^{+}$. Then

$$
\begin{aligned}
\lim _{m \rightarrow \infty} d\left(\hat{\Psi}^{m}\left(\hat{\Psi}^{n}(\mu, z)\right), \hat{\Psi}^{m}(\xi, w)\right) & =\lim _{m \rightarrow \infty} d\left(\hat{\Psi}^{m}\left(\tau^{n}(\mu), \psi_{\mu}^{n}(z)\right), \hat{\Psi}^{m}\left(\xi, \psi_{\eta}^{n}(x)\right)\right) \\
& =\lim _{m \rightarrow \infty}\left\|\psi_{\tau^{n}(\mu)}^{m}\left(\psi_{\mu}^{n}(z)\right)-\psi_{\xi}^{m}\left(\psi_{\eta}^{n}(x)\right)\right\|
\end{aligned}
$$

Fact 10.14. $\left\|\psi_{\mu}^{n}(z)-\psi_{\eta}^{n}(x)\right\|$ is bounded, say, $\left\|\psi_{\mu}^{n}(z)-\psi_{\eta}^{n}(x)\right\| \leq M$.
Let $A \stackrel{\text { def }}{=} \max \left\{\beta, \nu^{\alpha}\right\}$ and note that $A<1$. Let us prove that

$$
\begin{equation*}
\left\|\psi_{\tau^{n}(\mu)}^{m}\left(\psi_{\mu}^{n}(z)\right)-\psi_{\xi}^{m}\left(\psi_{\eta}^{n}(x)\right)\right\| \leq \beta^{m} M+C_{\Psi} m A^{m} \tag{10.7}
\end{equation*}
$$

To prove inequality above, first recall that $\mu \in W_{l o c}^{s}(\zeta ; \tau)$, then by definition of ζ, we have that $\tau^{n}(\mu)^{+}=\xi^{+}$, and thus $d_{\Sigma_{k}}\left(\tau^{n}(\mu), \xi\right) \leq \nu$.

Using the triangle inequality, β-contraction of ψ_{μ}, the Hölder property, Fact 10.14 and observation above, we have the following estimates for $m=1$:

$$
\begin{aligned}
\left\|\psi_{\tau^{n}(\mu)}\left(\psi_{\mu}^{n}(z)\right)-\psi_{\xi}\left(\psi_{\eta}^{n}(x)\right)\right\| & \leq\left\|\psi_{\tau^{n}(\mu)}\left(\psi_{\mu}^{n}(z)\right)-\psi_{\tau^{n}(\mu)}\left(\psi_{\eta}^{n}(x)\right)\right\|+ \\
& \quad+\left\|\psi_{\tau^{n}(\mu)}\left(\psi_{\eta}^{n}(x)\right)-\psi_{\xi}\left(\psi_{\eta}^{n}(x)\right)\right\| \\
& \leq \beta\left\|\psi_{\mu}^{n}(z)-\psi_{\eta}^{n}(x)\right\|+C_{\Psi} d_{\Sigma_{k}}\left(\tau^{n}(\mu), \xi\right)^{\alpha} \\
& \leq \beta M+C_{\Psi} \nu^{\alpha} .
\end{aligned}
$$

Using the same arguments it follows the estimate for $m=2$:

$$
\begin{aligned}
& \left\|\psi_{\tau^{n}(\mu)}^{2}\left(\psi_{\mu}^{n}(z)\right)-\psi_{\xi}^{2}\left(\psi_{\eta}^{n}(x)\right)\right\|= \\
& \quad=\left\|\psi_{\tau^{n+1}(\mu)} \circ \psi_{\tau^{n}(\mu)}\left(\psi_{\mu}^{n}(z)\right)-\psi_{\tau(\xi)} \circ \psi_{\xi}\left(\psi_{\eta}^{n}(x)\right)\right\| \\
& \leq\left\|\psi_{\tau^{n+1}(\mu)} \circ \psi_{\tau^{n}(\mu)}\left(\psi_{\mu}^{n}(z)\right)-\psi_{\tau^{n+1}(\mu)} \circ \psi_{\xi}\left(\psi_{\eta}^{n}(x)\right)\right\|+ \\
& \quad \quad+\left\|\psi_{\tau^{n+1}(\mu)} \circ \psi_{\xi}\left(\psi_{\eta}^{n}(x)\right)-\psi_{\tau(\xi)} \circ \psi_{\xi}\left(\psi_{\eta}^{n}(x)\right)\right\| \\
& \leq \beta\left\|\psi_{\tau^{n}(\mu)}\left(\psi_{\mu}^{n}(z)\right)-\psi_{\xi}\left(\psi_{\eta}^{n}(x)\right)\right\|+C_{\Psi} d_{\Sigma_{k}}\left(\tau^{n+1}(\mu), \tau(\xi)\right)^{\alpha} \\
& \leq \beta\left(\beta M+C_{\Psi} \nu^{\alpha}\right)+C_{\Psi} \nu^{2 \alpha}=\beta^{2} M+C_{\Psi} \beta \nu^{\alpha}+C_{\Psi} \nu^{2 \alpha}
\end{aligned}
$$

Using analogous estimates, we get that $\left\|\psi_{\tau^{n}(\mu)}^{m}\left(\psi_{\mu}^{n}(z)\right)-\psi_{\xi}^{m}\left(\psi_{\eta}^{n}(x)\right)\right\|$ is smaller than

$$
\beta^{m} M+C_{\Psi} \beta^{m-1} \nu^{\alpha}+C_{\Psi} \beta^{m-2} \nu^{2 \alpha}+\cdots+C_{\Psi} \beta \nu^{(m-1) \alpha}+C_{\Psi} \nu^{m \alpha}
$$

Since $A=\max \left\{\beta, \nu^{\alpha}\right\}<1$, we have that

$$
\left\|\psi_{\tau^{n}(\mu)}^{m}\left(\psi_{\mu}^{n}(z)\right)-\psi_{\xi}^{m}\left(\psi_{\eta}^{n}(x)\right)\right\| \leq \beta^{m} M+C_{\Psi} m A^{m}
$$

Then Equation (10.7) is proved. Taking $m \rightarrow \infty$ in the same equation, we get (10.6), and thus that the almost horizontal disk $\hat{H}^{s} \subset W^{s}\left(\Gamma_{\Psi}^{u} ; \hat{\Psi}\right)$, proving the claim.

On the other hand, by Lemma 10.5, we have that $W^{u}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right) \cap \hat{H}^{s} \neq \emptyset$. Therefore, $W^{u}\left(\Gamma_{\Psi}^{s} ; \hat{\Psi}\right) \cap W^{s}\left(\Gamma_{\Psi}^{u} ; \hat{\Psi}\right) \neq \emptyset$, proving the lemma.

Claim 10.11 and Lemma 10.12 imply that the invariant sets Γ_{Ψ}^{s} and Γ_{Ψ}^{u} meet cyclically for $\hat{\Psi}$, proving the proposition.

10.2

Heterodimensional cycles
In this section, we prove Theorem E. First, we need the following lemma which is a reformulation of a result in [19] using our terminology.

Lemma 10.15 (Proposition 2.3 in [19]). Let D be a bounded subset of G, $\phi: \bar{D} \rightarrow D$ be a (λ, β)-Lipschitz map with $\nu^{\alpha}<\lambda<\beta<1$ and p_{ϕ} its attracting fixed point. Then there are $k \in \mathbb{N}$, an open neighborhood B of p_{ϕ}, and translations (in local coordinates) $\phi_{1} \stackrel{\text { def }}{=} \phi, \phi_{2}, \ldots, \phi_{k}$ of ϕ such that the maps $\phi_{1}, \ldots, \phi_{k}$ satisfy the covering property for the set B :

$$
\bar{B} \subset \phi_{1}(B) \cup \ldots \cup \phi_{k}(B)
$$

We observe that the number k of translations of ϕ depends on the dimension of G and the constant λ.

From Lemma 10.15 and Corollary D we immediately obtain the following consequence.

Corollary 10.16. Let $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$ be as in Lemma 10.15. Then the skewproduct map $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right) \in \mathcal{S}_{k, \lambda, \beta}^{\alpha}(D)$ has a symbolic cs-blenderhorseshoe whose superposition domain contains B.

Proof of Lemma 10.15. Consider the open ball $B_{\varepsilon}\left(p_{\phi}\right) \subset D$ of radius $\varepsilon>0$ centered at p_{ϕ}. Note that there are $k>0$ and points $d_{1}=p_{\phi}, d_{2}, \ldots, d_{k} \in$ $B_{\varepsilon}\left(p_{\phi}\right)$, such that

$$
\bar{B}_{\varepsilon}\left(p_{\phi}\right) \subset B_{\frac{\lambda}{2} \varepsilon}\left(d_{1}\right) \cup B_{\frac{\lambda}{2} \varepsilon}\left(d_{2}\right) \cup \ldots \cup B_{\frac{\lambda}{2} \varepsilon}\left(d_{k}\right)
$$

Consider (in local coordinates) translations ϕ_{i} of ϕ, such that $B_{\frac{\lambda}{2} \varepsilon}\left(d_{i}\right) \subset$ $\phi_{i}\left(B_{\varepsilon}\left(p_{\phi}\right)\right)$, for all $i=1, \ldots, k$. The choice of the points d_{i} and the inclusion above imply that

$$
\bar{B}_{\varepsilon}\left(p_{\phi}\right) \subset \phi_{1}\left(B_{\varepsilon}\left(p_{\phi}\right)\right) \cup \ldots \cup \phi_{k}\left(B_{\varepsilon}\left(p_{\phi}\right)\right)
$$

proving the lemma.
Proof of Theorem E. By hypothesis, the map F has a horseshoe Λ in N. Suppose that the contraction rate of F is $0<\nu<1$. Fix positive constants $\gamma, \hat{\gamma}$ with $\nu<\gamma<1<\hat{\gamma}<\nu^{-1}$.

Consider $\phi: G \rightarrow G$ a small perturbation of the identity map such that ϕ has two hyperbolic fixed points p and q satisfying the properties:
i) p is a sink,
ii) q is a source, and
iii) $W^{s}(p, \phi) \pitchfork W^{u}(q, \phi) \neq \emptyset$.

There are disjoint neighborhoods D_{s} of p and D_{u} of q such that $\phi_{D_{s}}$ and $\phi_{\left.\right|_{D_{u}}}^{-1}$ are (λ, β)-Lipschitz maps for some $\lambda<\beta<1$, recall Definition 1.3, satisfying $\gamma<\lambda<\beta<1<\beta^{-1}<\lambda^{-1}<\hat{\gamma}$.

By Lemma 10.15 there are $k>0$, open sets $B_{s} \subset D_{s}$ and $B_{u} \subset D_{u}$ containing p and q, respectively, and maps $\phi_{1}^{s}=\phi, \ldots, \phi_{k}^{s}$ and $\phi_{1}^{u}=\phi, \ldots, \phi_{k}^{u}$ such that

$$
\begin{equation*}
\bar{B}_{s} \subset \phi_{1}^{s}\left(B_{s}\right) \cup \ldots \cup \phi_{k}^{s}\left(B_{s}\right) \quad \text { and } \quad \bar{B}_{u} \subset\left(\phi_{1}^{u}\right)^{-1}\left(B_{u}\right) \cup \ldots \cup\left(\phi_{k}^{u}\right)^{-1}\left(B_{u}\right) . \tag{10.8}
\end{equation*}
$$

Consider the maps $\phi_{i}: G \rightarrow G, i=1, \ldots, k$, as follows:

$$
\phi_{i}(x)= \begin{cases}\phi_{i}^{s}(x) & \text { if } x \in D_{s} \\ \phi_{i}^{u}(x) & \text { if } x \in D_{u} .\end{cases}
$$

Note that these maps are $(\gamma, \hat{\gamma})$-Lipschitz C^{1}-diffeomorphisms. Then (10.8) is equivalent to

$$
\bar{B}_{s} \subset \bigcup_{i=1}^{k} \phi_{i}\left(B_{s}\right) \quad \text { and } \quad \bar{B}_{u} \subset \bigcup_{i=1}^{k} \phi_{i}^{-1}\left(B_{u}\right) .
$$

By construction,

$$
\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right) \in \mathcal{S}_{k, \lambda_{s}, \beta_{s}}^{1, \alpha}\left(D_{s}\right) \cap \mathcal{S}_{k, \lambda_{u}, \beta_{u}}^{1, \alpha}\left(D_{u}\right),
$$

where $\lambda_{s}=\lambda, \beta_{s}=\beta, \lambda_{u}=\beta^{-1}$ and $\beta_{u}=\lambda^{-1}$.
Let $\varphi: G \rightarrow G$ be a $(\gamma, \hat{\gamma})$-Lipschitz C^{1}-diffeomorphism such that $\varphi^{n}(x) \in B_{u}$ for some $x \in B_{s}$ and some $n \in \mathbb{N}$.
Claim 10.17. The map $\hat{\Phi}=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}, \varphi\right)$ has a symbolic cycle associated to a cs-blender-horseshoe and cu-blender-horseshoe whose superposition domains contain B_{s} and B_{u}, respectively.

Proof. By condition (iii) there is a point $y \in B_{u} \cap\left(W^{s}\left(p, \phi_{1}\right) \cap W^{u}\left(q, \phi_{1}\right)\right)$ such that $\phi_{1}^{m}(y) \in B_{s}$, for some $m \in \mathbb{N}$. Since $y \in B_{u} \cap\left(W^{s}\left(p, \phi_{1}\right) \cap W^{u}\left(q, \phi_{1}\right)\right)$ we have that $\phi_{1}^{-1}(y) \in D_{u}$. Then adding the choice of φ above, the hypothesis of Proposition 10.4 are satisfied. Ending the proof of the claim.

To continue the proof, we need the following Proposition ${ }^{2}$:
Proposition 10.18. [15, 13] Let f be a skew product diffeomorphism given by

$$
f: N \times G \rightarrow N \times G, \quad f(z, x)=\left(F(z), \phi_{z}(x)\right),
$$

where $F: N \rightarrow N$ is a C^{1}-diffeomorphism with a horseshoe $\Lambda \subset N$ of d"legs" and with contraction rate $\nu<1$, and $\phi_{z}(\cdot): G \rightarrow G$ is a C^{1}-diffeomorphism such that

$$
\gamma<\left\|D \phi_{z}(x) v\right\|<\hat{\gamma}
$$

for $v \in T_{x} G$ and $z \in \Lambda$, where $\nu<\gamma<\hat{\gamma}<\nu^{-1}$.
Then for every map $g C^{1}$-close to f has a locally maximal invariant set $\Delta \subset N \times G$ homoeomorphic to $\Lambda \times G$ such that $\left.g\right|_{\Delta}$ is conjugated to a symbolic skew-product map $\Psi_{g} \in \mathcal{S}_{d, \gamma, \hat{\gamma}}^{1, \alpha}(G)$, for $\alpha>0$, recall Definition 1.7.

Recall that F has a horseshoe Λ in N. There is $\ell \in \mathbb{N}$ such that $\left.F^{\ell}\right|_{\Lambda}$ is conjugated to a full shift of d symbols, for some $d>k$. Consider "rectangles" R_{1}, \ldots, R_{d} in N such that $\left\{R_{1} \cap \Lambda, \ldots, R_{d} \cap \Lambda\right\}$ is a Markov partition for $\left.F^{\ell}\right|_{\Lambda}$.

Let $f: N \times G \rightarrow N \times G$ be the C^{1}-diffeomorphism such that

$$
\begin{aligned}
& f_{\left.\right|_{\left(R_{i} \cap \Lambda\right) \times G}}=F^{\ell} \times \phi_{i} \quad \text { for } i=1, \ldots, k \\
& f_{\left(R_{i} \cap \Lambda\right) \times G}=F^{\ell} \times \varphi \quad \text { for } i=k+1, \ldots, d .
\end{aligned}
$$

The map f restricted to $\Lambda \times G$ is conjugated to the symbolic one-step skew product map $\hat{\Phi}=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}, \varphi, \ldots, \varphi\right) \in \mathcal{S}_{d, \gamma, \hat{\gamma}}^{1, \alpha}(G)$. To emphasize this conjugacy between f and $\hat{\Phi}$, we denote $f \stackrel{\text { def }}{=} f_{\hat{\Phi}}$.

Therefore, by Claim 10.17 and Proposition 10.18 we have that $f_{\hat{\Phi}}$ has a robust heterodimensional cycle associated with hyperbolic sets Γ_{f}^{s} and Γ_{f}^{u}, which came from the symbolic $c s$-blender-horseshoe and the $c u$-blenderhorseshoe.

The proof of the theorem is now complete.

[^1]
[^0]: ${ }^{1}$ Note that the maps ϕ_{i} correspond to the symbol i, for $i \in\{1, \ldots, k\}$, and the map φ correspond to the symbol $k+1$.

[^1]: ${ }^{2}$ This proposition is detailed in [1].

