10 Robust cycles from symbolic blender-horseshoes

In this chapter we obtain robust heterodimensional cycles of any co-index (Definition 1.1) using symbolic blender-horseshoes (Definition 1.10). Our goal is prove Theorem E.

10.1 Robust symbolic cycles

To define symbolic *cu*-blender-horseshoes, we introduce the inverse symbolic skew product maps. Given $\Phi = \tau \ltimes \phi_{\xi} \in \mathcal{S}^{\alpha}_{k,\lambda,\beta}(D)$, for a bounded open subset D of a compact manifold G, constants $1 < \lambda < \beta$, $\alpha > 0$, and k > 1 (recall Definition 1.7), the symbolic skew product map

$$\Phi^* = \tau \ltimes \phi^*_{\xi} \in \mathcal{S}^{\alpha}_{k,\,\beta^{-1},\,\lambda^{-1}}(D),$$

where $\phi_{\xi}^*: D \to D$ is given by $\phi_{\xi}^*(x) = \phi_{\xi^*}^{-1}(x)$, is called *associated inverse* skew product map for Φ . Here ξ and ξ^* are points of Σ_k of the form: $\xi = (\dots, \xi_{-1}; \xi_0, \xi_1, \dots)$ and $\xi^* = (\dots, \xi_1; \xi_0, \xi_{-1}, \dots)$ (the conjugate sequence of ξ). Since $\tau(\xi)^* = \tau^{-1}(\xi^*)$, iterates of Φ^* correspond to iterates of Φ^{-1} . A symbolic cu-blender-horseshoes for Φ in $\mathcal{S}^{\alpha}_{k,\lambda,\beta}(D)$ is a symbolic cs-blenderhorseshoe for Φ^* .

There is a similar result for symbolic cu-blender-horseshoes of Corollary D.

Corollary 10.1. Let $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k) \in \mathcal{S}^{0,\alpha}_{k,\lambda_u,\beta_u}(D_u)$ with $1 < \lambda_u < \beta_u < \nu^{-\alpha}$. Assume that there exists an open set B_u in D_u satisfying the covering property for $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k)$. Then the maximal invariant set Γ_{Φ} of Φ in $\Sigma_k \times \overline{D}_u$ is a symbolic cu-blender-horseshoe for Φ whose superposition domain contains B_u .

Remark 10.2 (Continuations of blenders). Let Γ_{Φ}^{s} be a symbolic cs-blenderhorseshoe (resp. cu-blender-horseshoe) for a map $\Phi \in \mathcal{S}_{k,\lambda_{s},\beta_{s}}^{1,\alpha}(D_{s})$ (resp. $\mathcal{S}_{k,\lambda_{u},\beta_{u}}^{1,\alpha}(D_{u})$). We consider Γ_{Ψ}^{s} (resp. Γ_{Ψ}^{u}) the continuation of Γ_{Φ}^{s} (resp. Γ_{Φ}^{u}) for $\Psi \in \mathcal{S}_{k,\lambda_{s},\beta_{s}}^{1,\alpha}(D_{s})$ (resp. $\mathcal{S}_{k,\lambda_{u},\beta_{u}}^{1,\alpha}(D_{u})$). Let Γ_{Φ} be a symbolic blender-horseshoe of Φ . Recall that

$$W^{s}(\Gamma_{\Phi}; \Phi) = \{(\xi, x) \in \Sigma_{k} \times G : \lim_{n \to \infty} d(\Phi^{n}(\xi, x), \Gamma_{\Phi}) = 0\} \text{ and}$$
$$W^{u}(\Gamma_{\Phi}; \Phi) = \{(\xi, x) \in \Sigma_{k} \times G : \lim_{n \to \infty} d(\Phi^{-n}(\xi, x), \Gamma_{\Phi}) = 0\}.$$

Definition 10.3 (Cycles associated to symbolic blenders). Let Φ be a skewproduct map defined on $\Sigma_k \times G$. Assume that there are open bounded subsets D_s and D_u of G such that

- $\Phi_s = \Phi_{|D_s} \in \mathcal{S}^{1,\alpha}_{k,\lambda_s,\beta_s}(D_s)$ and $\Phi_u = \Phi_{|D_u} \in \mathcal{S}^{1,\alpha}_{k,\lambda_u,\beta_u}(D_s)$, here $\Phi_{|D_i}$ denotes the restriction of Φ to D_i , i = s, u.
- Φ_s has a symbolic cs blender-horseshoe Γ^s_Φ contained in Σ_k × D_s and Φ_u has a symbolic cu blender-horseshoe Γ^u_Φ contained in Σ_k × D_u.

We say that Φ has a symbolic cycle associated to Γ_{Φ}^{s} and Γ_{Φ}^{u} if their stable and unstable sets meet cyclically:

$$W^{s}(\Gamma^{s}_{\Phi}; \Phi) \cap W^{u}(\Gamma^{u}_{\Phi}; \Phi) \neq \emptyset \quad and \quad W^{u}(\Gamma^{s}_{\Phi}; \Phi) \cap W^{s}(\Gamma^{u}_{\Phi}; \Phi) \neq \emptyset.$$

We say that this symbolic cycle is S-robust if there is a neighborhood \mathcal{V} of Φ in $\mathcal{S}_{k,\lambda_s,\beta_s}^{1,\alpha}(D_s) \cap \mathcal{S}_{k,\lambda_u,\beta_u}^{1,\alpha}(D_u)$ such that for every $\Psi \in \mathcal{V}$ it holds $\Psi_{|D_s} \in \mathcal{S}_{k,\lambda_s,\beta_s}^{1,\alpha}(D_s)$, $\Psi_{|D_u} \in \mathcal{S}_{k,\lambda_u,\beta_u}^{1,\alpha}(D_s)$, and Ψ has a symbolic cycle associated to the cs blender Γ_{Ψ}^s and the cu blender Γ_{Ψ}^u , where Γ_{Ψ}^s and Γ_{Ψ}^s are the continuations of Γ_{Φ}^s and Γ_{Φ}^u , respectively.

The main technical step of the proof of Theorem E is the following:

Proposition 10.4. Let $\phi_1, \ldots, \phi_k, \varphi$ be $(\gamma, \hat{\gamma})$ -Lipschitz C^1 -diffeomorphisms on a compact Riemannian manifold G, recall Equation (1.3). Consider a onestep skew product map $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k)$ defined on $\Sigma_k \times G$. Assume that there are disjoint open and bounded subsets D_s, D_u of G such that

$$\Phi = \tau \ltimes (\phi_1, \dots, \phi_k) \in \mathcal{S}^{1,\alpha}_{k,\lambda_s,\beta_s}(D_s) \cap \mathcal{S}^{1,\alpha}_{k,\lambda_u,\beta_u}(D_u),$$

where $\alpha \in (0, 1], \nu \in (0, 1), and$

$$0 < \nu^{\alpha} < \gamma \le \lambda_s < \beta_s < 1 < \lambda_u < \beta_u \le \hat{\gamma} < \nu^{-\alpha}.$$

Assume also that there are open subsets $B_s \subset D_s$ and $B_u \subset D_u$ such that the following two properties hold.

i) Covering properties: $\overline{B}_s \subset \bigcup_{i=1}^k \phi_i(B_s)$ and $\overline{B}_u \subset \bigcup_{i=1}^k (\phi_i)^{-1}(B_u)$.

ii) Cyclic intersections: there are a subset \hat{B}_s of B_s , points $x \in \hat{B}_s$ and $y \in B_u$ such that

$$\varphi^n(x) \in B_u, \quad \phi^m_i(y) \in D_s, \quad and \quad (\phi_\ell)^{-1}(y) \in D_u$$

for some n, m > 0 and $j, \ell \in \{1, ..., k\}$.

Then the one-step map $\hat{\Phi} = \tau \ltimes (\phi_1, \ldots, \phi_k, \varphi)^1$ defined on $\Sigma_{k+1} \times G$ has a robust symbolic cycle associated to a cs-blender-horseshoe Γ_{Φ}^s and to a cublender-horseshoe Γ_{Φ}^u contained in $\Sigma_k \times D_s$ and $\Sigma_k \times D_u$, respectively.

To prove this proposition we need the following lemma:

Lemma 10.5. Let $\phi_1, \ldots, \phi_k, \varphi$ be $(\gamma, \hat{\gamma})$ -Lipschitz be C^1 -diffeomorphisms on a compact Riemannian manifold G. Consider a one-step skew product $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k)$ defined on $\Sigma_k \times G$ with a symbolic cs-blender-horseshoe Γ_{Φ} contained in $\Sigma_k \times D$, $D \subset G$. Assume that superposition domain of the blender contains an open subset B of D satisfying the covering property:

$$\overline{B} \subset \phi_1(B) \cup \cdots \cup \phi_k(B).$$

Let $\hat{\Phi} = \tau \ltimes (\phi_1, \ldots, \phi_k, \varphi)$ be a skew product map defined on $\Sigma_{k+1} \times G$ such that

$$\Phi = \hat{\Phi}|_{\Sigma_k \times G}.$$

There are a small $\delta > 0$ and a subset \tilde{B} of B such that every small perturbation $\hat{\Psi}$ of $\hat{\Phi}$ satisfies

$$W^{uu}(\Gamma^s_{\Psi}; \Psi) \cap \dot{H}^s \neq \emptyset$$

for every almost δ -horizontal disk \hat{H}^s in $\Sigma_{k+1} \times B$, recall Definition 1.9, where Γ^s_{Ψ} is the continuation of Γ^s_{Φ} for $\Psi = \hat{\Psi}|_{\Sigma_k \times G}$.

Proof. First observe that for each $(\xi, x) \in \Sigma_{k+1} \times G$, we have that

$$W_{loc}^{uu}((\xi, x); \hat{\Phi}) = W_{loc}^{u}(\xi; \tau) \times \{x\},$$

for the one-step map $\hat{\Phi}$. Then, by shrinking slightly the superposition domain B we can assume that there is an open set $\tilde{B} \subset B$ such that for every $\hat{\Psi}$ close enough to $\hat{\Phi}$, it holds

$$W_{loc}^{uu}((\xi, x); \hat{\Psi}) \subset \Sigma_{k+1} \times B \quad \text{for all } (\xi, x) \in \Sigma_{k+1} \times \tilde{B}.$$
(10.1)

We can also assume that B satisfies the covering property for $IFS(\Phi)$.

¹Note that the maps ϕ_i correspond to the symbol i, for $i \in \{1, \ldots, k\}$, and the map φ correspond to the symbol k + 1.

A slight modification on the proof of Theorem C (using that $\nu^{\alpha} < \gamma$, instead of $\nu^{\alpha} < \lambda$) shows that there is a small $\delta > 0$ such that for every small perturbation $\hat{\Psi}$ of $\hat{\Phi}$ we have

$$\Gamma^{+}_{\hat{\Psi}}(\Sigma^{-}_{k,k+1} \times \tilde{B}) \cap \hat{H}^{s} \neq \emptyset$$
(10.2)

for every δ -horizontal disk \hat{H}^s in $\Sigma_{k+1} \times \tilde{B}$, where

$$\Gamma^+_{\hat{\Psi}}(\Sigma^-_{k,k+1} \times \tilde{B}) \stackrel{\text{def}}{=} \bigcap_{n \ge 0} \hat{\Psi}^n(\Sigma^-_{k,k+1} \times \tilde{B})$$

and

$$\Sigma_{k,k+1}^{-} \stackrel{\text{def}}{=} \{\xi = (\xi_i)_{i \in \mathbb{Z}} \in \Sigma_{k+1} : \xi_i \in \{1, \dots, k\} \text{ for every } i < 0\},\$$

this means that the symbol k+1 corresponding to iterations by φ is not involved.

Consider a skew-product map $\hat{\Psi}$ close to $\hat{\Phi}$ satisfying (10.1) and (10.2), and let $\Gamma_{\Psi}^s \subset \Sigma_k \times G$ be the continuation of Γ_{Φ}^s for $\Psi = \hat{\Psi}|_{\Sigma_k \times G}$.

Claim 10.6. $\Gamma^+_{\hat{\Psi}}(\Sigma^-_{k,k+1} \times \tilde{B}) \subset W^{uu}_{loc}(\Gamma^s_{\Psi}; \hat{\Psi}).$

Proof. For a given $(\xi, x) \in \Gamma^+_{\hat{\Psi}}(\Sigma^-_{k,k+1} \times \tilde{B})$ we will show that

$$W_{loc}^{uu}((\xi, x); \Psi) \cap (\Sigma_k \times B) \subset \Gamma_{\Psi}^s.$$
(10.3)

Note that this inclusion implies the claim: if $(\zeta, z) \in W^{uu}_{loc}((\xi, x); \hat{\Psi}) \cap (\Sigma_k \times B)$ then by equation above, $(\zeta, z) \in \Gamma^s_{\Psi}$. Thus

$$W^{uu}_{loc}((\zeta, z); \hat{\Psi}) \subset W^{uu}_{loc}(\Gamma^s_{\Psi}; \hat{\Psi}).$$

Observe that $(\xi, x) \in W_{loc}^{uu}((\zeta, z); \hat{\Psi})$, then inclusion above implies that $(\xi, x) \in W_{loc}^{uu}(\Gamma_{\Psi}^{s}; \hat{\Psi})$, ending the proof of the claim.

To prove inclusion (10.3), recall that Γ_{Ψ}^{s} is a symbolic blender-horseshoe and thus, by Equation (1.11), we have that

$$\Gamma_{\Psi}^{+}(\Sigma_{k} \times B) \stackrel{\text{def}}{=} \bigcap_{n \ge 0} \Psi^{n}(\Sigma_{k} \times B) \subset \Gamma_{\Psi}^{s} \stackrel{\text{def}}{=} \bigcap_{n \in \mathbb{Z}} \Psi^{n}(\Sigma_{k} \times \overline{D}).$$

Hence, given $(\zeta, z) \in W_{loc}^{uu}((\xi, x); \hat{\Psi}) \cap (\Sigma_k \times B)$ it is enough to show that

$$\hat{\Psi}^{-n}(\zeta, z) = \Psi^{-n}(\zeta, z) \in \Sigma_k \times B$$
, for all $n \ge 0$

Observe that from the invariance of the local strong unstable set we get

$$\hat{\Psi}^{-n}(\zeta, z) \in \hat{\Psi}^{-n}\big(W^{uu}_{loc}((\xi, x); \hat{\Psi})\big) \subset W^{uu}_{loc}(\hat{\Psi}^{-n}(\xi, x); \hat{\Psi})$$
(10.4)

for all $n \ge 0$. Since $(\xi, x) \in \Gamma_{\hat{\Psi}}^+(\Sigma_{k,k+1}^- \times \tilde{B})$ we have that $\hat{\Psi}^{-n}(\xi, x) \in \Sigma_{k+1} \times \tilde{B}$ for all $n \ge 0$, thus by (10.1) it follows that

$$W_{loc}^{uu}(\hat{\Psi}^{-n}(\xi, x); \hat{\Psi}) \subset \Sigma_{k+1} \times B, \quad \text{for all } n \ge 0.$$
(10.5)

Therefore $\zeta \in \Sigma_k$, (10.4) and (10.5) imply that $\hat{\Psi}^{-n}(\zeta, z) \in \Sigma_k \times B$ for all $n \ge 0$. Thus $(\zeta, z) \in \Gamma_{\Psi}^+(\Sigma_k \times B) \subset \Gamma_{\Psi}^s$ proving (10.3), and thus the claim. \Box

The lemma follows noting that Claim 10.6 and Equation (10.2) imply that $W_{loc}^{uu}(\Gamma_{\Psi}^{s}; \hat{\Psi}) \cap \hat{H}^{s} \neq \emptyset$ for every δ -horizontal disk \hat{H}^{s} in $\Sigma_{k+1} \times \tilde{B}$. \Box

Proof of Proposition 10.4. By Corollaries D and 10.1, the maximal invariant sets Γ_{Φ}^{s} and Γ_{Φ}^{u} of Φ in $\Sigma_{k} \times \overline{D}_{s}$ and $\Sigma_{k} \times \overline{D}_{u}$, respectively, are a *cs* and a *cu*-blenders horseshoes whose superpositions domains contain B_{s} and B_{u} , respectively.

We split the proof of the proposition into several steps. First, we prove that $\hat{\Phi}$ has a symbolic cycle associated to Γ_{Φ}^{s} and Γ_{Φ}^{u} (see Claims 10.7, 10.8, and 10.9).

Claim 10.7. Let $\vartheta = (\vartheta_i)_{i \in \mathbb{Z}} \in \Sigma_{k+1}$ with $\vartheta_i = \ell \in \{1, \ldots, k\}$ for all $i \in \mathbb{Z}$. Then $W^s_{loc}(\vartheta; \tau) \times D_s \subset W^s(\Gamma^s_{\Phi}; \hat{\Phi})$ and $W^u_{loc}(\vartheta; \tau) \times D_u \subset W^u(\Gamma^u_{\Phi}; \hat{\Phi})$.

Proof. We see that $W^s_{loc}(\vartheta; \tau) \times D_s \subset W^s(\Gamma^s_{\Phi}; \hat{\Phi})$, the other inclusion is analogous. Let p_ℓ be the attracting fixed point of ϕ_ℓ in D_s . Note that $(\vartheta, p_\ell) \in \Gamma^s_{\Phi}$ and that for every $(\xi, x) \in W^s_{loc}(\vartheta; \tau) \times D_s$ one has that $d(\hat{\Phi}^n(\xi, x), (\vartheta, p_\ell)) \to 0$ as $n \to \infty$. Thus $(\xi, x) \in W^s(\Gamma^s_{\Phi}; \hat{\Phi})$, ending the proof of the claim. \Box

To get a symbolic cycle for $\hat{\Phi}$ associated to Γ_{Φ}^{s} and Γ_{Φ}^{u} we will see that the invariant sets meet cyclically.

Claim 10.8. $W^s(\Gamma^s_{\Phi}; \hat{\Phi}) \cap W^u(\Gamma^u_{\Phi}; \hat{\Phi}) \neq \emptyset.$

Proof. By hypothesis, there are $y \in D_u$ and m > 0 such that $\phi_j^m(y) \in D_s$ and $\phi_{\ell}^{-1}(y) \in D_u$ for some $j, \ell \in \{1, \ldots, k\}$. Let

$$\zeta = (\ldots, \ell, \ell; j, \stackrel{m}{\ldots}, j, \ell, \ell, \ldots).$$

Note that $\tau^{-1}(\zeta) \in W^u_{loc}(\vartheta; \tau)$, where ϑ is the constant sequence with $\vartheta_i = \ell \in \{1, \ldots, k\}$ for all *i*. By Claim 10.7,

$$\hat{\Phi}^{-1}(\zeta, y) = (\tau^{-1}(\zeta), \phi_{\ell}^{-1}(y)) \in W^u_{loc}(\vartheta; \tau) \times D_s \subset W^u(\Gamma^u_{\Phi}; \hat{\Phi}).$$

Thus, $(\zeta, y) \in W^u(\Gamma^u_{\Phi}; \hat{\Phi})$. Analogously we have,

$$\hat{\Phi}^m(\zeta, y) = \Phi^m(\zeta, y) = (\tau^m(\zeta), \phi_j^m(y)) \in W^s_{loc}(\vartheta; \tau) \times D_s \subset W^s(\Gamma_{\Phi}^s; \hat{\Phi}),$$

obtaining that $(\zeta, y) \in W^s(\Gamma^s_{\Phi}; \hat{\Phi})$. Thus $(\zeta, y) \in W^s(\Gamma^s_{\Phi}; \hat{\Phi}) \cap W^u(\Gamma^u_{\Phi}; \hat{\Phi})$. \Box

Claim 10.9. $W^u(\Gamma^s_{\Phi}; \hat{\Phi}) \cap W^s(\Gamma^u_{\Phi}; \hat{\Phi}) \neq \emptyset.$

Proof. By hypothesis, there are $x \in B_s$, n > 0 such that $\varphi^n(x) \in B_u$. Since Γ_{Φ}^u is a *cu*-blender-horseshoe we have that $B_u \subset \mathscr{P}(\Gamma_{\Phi}^u)$. Hence there is $\xi \in \Sigma_k$ such that $(\xi, \varphi^n(x)) \in \Gamma_{\Phi}^u$. Consider the sequence

$$\zeta = (\dots, 1, 1; k+1, \dots, k+1, \xi_0, \dots, \xi_n, \dots) \in \Sigma_{k+1}.$$

As the strong stable set of Γ^u_{Φ} is contained in its stable set we get

$$\hat{\Phi}^n \big(W^s_{loc}(\zeta; \tau) \times \{x\} \big) \subset W^s_{loc}(\xi; \tau) \times \{\varphi^n(x)\} = W^{ss} \big((\xi, \varphi^n(x)); \hat{\Phi} \big) \\ \subset W^s(\Gamma^u_{\Phi}; \hat{\Phi}).$$

On the one hand, inclusion above implies that the horizontal disk $\hat{H}^s = W^s_{loc}(\zeta; \tau) \times \{x\}$ in $\Sigma_{k+1} \times B_s$ satisfies $\hat{H}^s \subset W^s(\Gamma^u_{\Phi}; \hat{\Phi})$. On the other hand, by Lemma 10.5 we have that $W^u(\Gamma^s_{\Phi}; \hat{\Phi}) \cap \hat{H}^s \neq \emptyset$. Therefore, $W^u(\Gamma^s_{\Phi}; \hat{\Phi}) \cap W^s(\Gamma^u_{\Phi}; \hat{\Phi}) \neq \emptyset$, proving the claim.

Consider a neighborhood \mathcal{V} of $\hat{\Phi}$ such that for every $\hat{\Psi} \in \mathcal{V}$ it holds Lemma 10.5, covering property and cyclic intersection, that is,

• there are neighborhoods \mathcal{U}_i^s of ϕ_i and \mathcal{U}_i^u of ϕ_i^{-1} such that for $i = 1, \ldots, k$

$$B_{s,i} = \operatorname{int} \left(\cap_{\psi \in \mathcal{U}_i^s} \psi(B_s) \right) \quad \text{and} \quad B_{u,i} = \operatorname{int} \left(\cap_{\psi \in \mathcal{U}_i^u} \psi(B_u) \right),$$

are open covering of \overline{B}_s and \overline{B}_u , respectively;

• fix $x \in \tilde{B}_s$ and $y \in B_u$, n, m > 0, and $j, \ell \in \{1, \ldots, k\}$ in cyclic intersection condition. Then for every $\hat{\Psi} = \tau \ltimes \psi_{\xi} \in \mathcal{V}$ it holds

$$\psi_n^n(x) \in B_u, \quad \psi_{\hat{n}}^m(y) \in D_s \quad \text{and} \quad \psi_{\tilde{n}}^{-1}(y) \in B_u$$

for every $\eta, \hat{\eta}, \tilde{\eta} \in \Sigma_{k+1}$ such that $\eta_0 = \cdots = \eta_{n-1} = k+1$ and $\eta_i \in \{1, \ldots, k\}$ for i < 0 and $i \ge n$, $\hat{\eta}_0 = \cdots = \hat{\eta}_{m-1} = j$ and $\hat{\eta}_i \in \{1, \ldots, k\}$ for i < 0 and $i \ge m$, and $\tilde{\eta}_0 = \ell$.

We will see that for every map in the neighborhood \mathcal{V} the cyclic conditions hold, obtaining a robust symbolic cycle (Definition 10.3). Let $\hat{\Psi} \in \mathcal{V}$ and Γ_{Ψ}^{s} and Γ_{Ψ}^{u} be the continuation of Γ_{Φ}^{s} and Γ_{Φ}^{u} , respectively for $\Psi = \hat{\Psi}|_{\Sigma_{k} \times G}$. We have the assertions below which are analogous to Claims 10.7, 10.8 and 10.9.

Claim 10.10. Let $\vartheta = (\vartheta_i)_{i \in \mathbb{Z}} \in \Sigma_{k+1}$ with $\vartheta_i = \ell \in \{1, \ldots, k\}$ for all $i \in \mathbb{Z}$. Then $W^s_{loc}(\vartheta; \tau) \times D_s \subset W^s(\Gamma^s_{\Psi}; \hat{\Psi})$ and $W^u_{loc}(\vartheta; \tau) \times D_u \subset W^u(\Gamma^u_{\Psi}; \hat{\Psi})$.

The proof is analogous to Claim 10.7 and thus it is omitted.

Claim 10.11. $W^s(\Gamma^s_{\Psi}; \hat{\Psi}) \cap W^u(\Gamma^u_{\Psi}; \hat{\Psi}) \neq \emptyset.$

Proof. Consider $\zeta_0 = \cdots = \zeta_{m-1} = j$ and the sequence

$$\zeta = (\ldots, \ell, \ell; \zeta_0, \zeta_1, \ldots, \zeta_{m-1}, \ell, \ell, \ldots).$$

Note that $\tilde{\eta} \stackrel{\text{def}}{=} \tau^{-1}(\zeta) \in W^u_{loc}(\vartheta; \tau)$, where ϑ is the constant sequence with $\vartheta_i = \ell \in \{1, \ldots, k\}$ for all *i* and, by hypothesis, $\psi_{\tilde{\eta}}^{-1}(y) \in B_u$. By Claim 10.10,

$$\hat{\Psi}^{-1}(\zeta, y) = \Psi^{-1}(\zeta, y) = (\tau^{-1}(\zeta), \psi_{\tilde{\eta}}^{-1}(y)) \in W^u(\Gamma_{\Psi}^u; \hat{\Psi})$$

Thus, $(\zeta, y) \in W^u(\Gamma^u_{\Psi}; \hat{\Psi})$. Analogously we have $\tau^m(\zeta) \in W^s_{loc}(\vartheta; \tau)$ and $\psi^m_{\zeta}(y) \in D_s$. Then by Claim 10.10,

$$\hat{\Psi}^m(\zeta, y) = \Psi^m(\zeta, y) = (\tau^m(\zeta), \psi^m_\zeta(y)) \in W^s_{loc}(\vartheta; \tau) \times D_s \subset W^s(\Gamma^s_{\Psi}; \hat{\Psi}),$$

getting that $(\zeta, y) \in W^s(\Gamma^s_{\Psi}; \hat{\Psi})$. Thus $(\zeta, y) \in W^s(\Gamma^s_{\Psi}; \hat{\Psi}) \cap W^u(\Gamma^u_{\Psi}; \hat{\Psi})$. \Box

Lemma 10.12. $W^u(\Gamma^s_{\Psi}; \hat{\Psi}) \cap W^s(\Gamma^u_{\Psi}; \hat{\Psi}) \neq \emptyset.$

Proof. Let $\eta = (\eta_i)_i \in \Sigma_{k+1}$ such that $\eta_0 = \cdots = \eta_{n-1} = k+1$. By hypothesis $\psi_{\eta}^n(x) \in B_u$. Since Γ_{Ψ}^u is the continuation of the *cu*-blenderhorseshoe Γ_{Φ}^u we have that $B_u \subset \mathscr{P}(\Gamma_{\Psi}^u)$. Hence there is $\xi \in \Sigma_k$ such that $(\xi, \psi_{\eta}^n(x)) \stackrel{\text{def}}{=} (\xi, w) \in \Gamma_{\Psi}^u$.

Claim 10.13. Consider small $\delta > 0$ and the almost δ -horizontal disk \hat{H}^s associated to $W^s_{loc}(\zeta; \tau) \times \{x\}$ (recall Definition 1.9) where

$$\zeta \stackrel{\text{def}}{=} (\dots, \eta_{-1}; k+1, \dots, k+1, \xi_0, \dots, \xi_{n-1}, \xi_n \dots) \in \Sigma_{k+1}.$$

Then

$$\hat{H}^s \subset W^s((\xi, w); \hat{\Psi}) \subset W^s(\Gamma^u_{\Psi}; \hat{\Psi}).$$

Proof of the claim. Note that if $(\xi, w) \in \Gamma_{\Psi}^{u}$, then the second inclusion of the claim holds. Thus it is enough to see that for any given $(\mu, z) \in \hat{H}^{s}$ we have that $\hat{\Psi}^{n}(\mu, z) \in W^{s}((\xi, w); \hat{\Psi})$ (where n is as in hypothesis (ii)), that is,

$$d(\hat{\Psi}^m(\hat{\Psi}^n(\mu, z)), \hat{\Psi}^m(\xi, w)) \to 0 \quad \text{as } m \to \infty.$$
(10.6)

First note that by Definition 1.9, one has that $\mu \in W^s_{loc}(\zeta; \tau)$, thus $\tau^n(\mu)^+ = \xi^+$. Then

$$\lim_{m \to \infty} d(\hat{\Psi}^{m}(\hat{\Psi}^{n}(\mu, z)), \hat{\Psi}^{m}(\xi, w)) = \lim_{m \to \infty} d(\hat{\Psi}^{m}(\tau^{n}(\mu), \psi^{n}_{\mu}(z)), \hat{\Psi}^{m}(\xi, \psi^{n}_{\eta}(x)))$$
$$= \lim_{m \to \infty} \|\psi^{m}_{\tau^{n}(\mu)}(\psi^{n}_{\mu}(z)) - \psi^{m}_{\xi}(\psi^{n}_{\eta}(x))\|.$$

Fact 10.14. $\|\psi_{\mu}^{n}(z) - \psi_{\eta}^{n}(x)\|$ is bounded, say, $\|\psi_{\mu}^{n}(z) - \psi_{\eta}^{n}(x)\| \leq M$.

Let $A \stackrel{\text{\tiny def}}{=} \max\{\beta, \nu^{\alpha}\}$ and note that A < 1. Let us prove that

$$\|\psi_{\tau^n(\mu)}^m(\psi_{\mu}^n(z)) - \psi_{\xi}^m(\psi_{\eta}^n(x))\| \le \beta^m M + C_{\Psi} m A^m.$$
(10.7)

To prove inequality above, first recall that $\mu \in W^s_{loc}(\zeta; \tau)$, then by definition of ζ , we have that $\tau^n(\mu)^+ = \xi^+$, and thus $d_{\Sigma_k}(\tau^n(\mu), \xi) \leq \nu$.

Using the triangle inequality, β -contraction of ψ_{μ} , the Hölder property, Fact 10.14 and observation above, we have the following estimates for m = 1:

$$\begin{aligned} \|\psi_{\tau^{n}(\mu)}(\psi_{\mu}^{n}(z)) - \psi_{\xi}(\psi_{\eta}^{n}(x))\| &\leq \|\psi_{\tau^{n}(\mu)}(\psi_{\mu}^{n}(z)) - \psi_{\tau^{n}(\mu)}(\psi_{\eta}^{n}(x))\| + \\ &+ \|\psi_{\tau^{n}(\mu)}(\psi_{\eta}^{n}(x)) - \psi_{\xi}(\psi_{\eta}^{n}(x))\| \\ &\leq \beta \|\psi_{\mu}^{n}(z) - \psi_{\eta}^{n}(x)\| + C_{\Psi} d_{\Sigma_{k}}(\tau^{n}(\mu), \xi)^{\alpha} \\ &\leq \beta M + C_{\Psi} \nu^{\alpha}. \end{aligned}$$

Using the same arguments it follows the estimate for m = 2:

$$\begin{aligned} \|\psi_{\tau^{n}(\mu)}^{2}(\psi_{\mu}^{n}(z)) - \psi_{\xi}^{2}(\psi_{\eta}^{n}(x))\| &= \\ &= \|\psi_{\tau^{n+1}(\mu)} \circ \psi_{\tau^{n}(\mu)}(\psi_{\mu}^{n}(z)) - \psi_{\tau(\xi)} \circ \psi_{\xi}(\psi_{\eta}^{n}(x))\| \\ &\leq \|\psi_{\tau^{n+1}(\mu)} \circ \psi_{\tau^{n}(\mu)}(\psi_{\mu}^{n}(z)) - \psi_{\tau^{n+1}(\mu)} \circ \psi_{\xi}(\psi_{\eta}^{n}(x))\| + \\ &+ \|\psi_{\tau^{n+1}(\mu)} \circ \psi_{\xi}(\psi_{\eta}^{n}(x)) - \psi_{\tau(\xi)} \circ \psi_{\xi}(\psi_{\eta}^{n}(x))\| \\ &\leq \beta \|\psi_{\tau^{n}(\mu)}(\psi_{\mu}^{n}(z)) - \psi_{\xi}(\psi_{\eta}^{n}(x))\| + C_{\Psi} d_{\Sigma_{k}} (\tau^{n+1}(\mu), \tau(\xi))^{\alpha} \\ &\leq \beta (\beta M + C_{\Psi} \nu^{\alpha}) + C_{\Psi} \nu^{2\alpha} = \beta^{2} M + C_{\Psi} \beta \nu^{\alpha} + C_{\Psi} \nu^{2\alpha}. \end{aligned}$$

Using analogous estimates, we get that $\|\psi^m_{\tau^n(\mu)}(\psi^n_\mu(z)) - \psi^m_\xi(\psi^n_\eta(x))\|$ is smaller than

$$\beta^m M + C_{\Psi} \beta^{m-1} \nu^{\alpha} + C_{\Psi} \beta^{m-2} \nu^{2\alpha} + \dots + C_{\Psi} \beta \nu^{(m-1)\alpha} + C_{\Psi} \nu^{m\alpha}.$$

Since $A = \max\{\beta, \nu^{\alpha}\} < 1$, we have that

$$\|\psi_{\tau^{n}(\mu)}^{m}(\psi_{\mu}^{n}(z)) - \psi_{\xi}^{m}(\psi_{\eta}^{n}(x))\| \leq \beta^{m} M + C_{\Psi} m A^{m}.$$

Then Equation (10.7) is proved. Taking $m \to \infty$ in the same equation, we get (10.6), and thus that the almost horizontal disk $\hat{H}^s \subset W^s(\Gamma^u_{\Psi}; \hat{\Psi})$, proving the claim.

On the other hand, by Lemma 10.5, we have that $W^u(\Gamma_{\Psi}^s; \hat{\Psi}) \cap \hat{H}^s \neq \emptyset$. Therefore, $W^u(\Gamma_{\Psi}^s; \hat{\Psi}) \cap W^s(\Gamma_{\Psi}^u; \hat{\Psi}) \neq \emptyset$, proving the lemma.

Claim 10.11 and Lemma 10.12 imply that the invariant sets Γ_{Ψ}^s and Γ_{Ψ}^u meet cyclically for $\hat{\Psi}$, proving the proposition.

10.2

Heterodimensional cycles

In this section, we prove Theorem E. First, we need the following lemma which is a reformulation of a result in [19] using our terminology.

Lemma 10.15 (Proposition 2.3 in [19]). Let D be a bounded subset of G, $\phi : \overline{D} \to D$ be a (λ, β) -Lipschitz map with $\nu^{\alpha} < \lambda < \beta < 1$ and p_{ϕ} its attracting fixed point. Then there are $k \in \mathbb{N}$, an open neighborhood B of p_{ϕ} , and translations (in local coordinates) $\phi_1 \stackrel{\text{def}}{=} \phi, \phi_2, \dots, \phi_k$ of ϕ such that the maps ϕ_1, \dots, ϕ_k satisfy the covering property for the set B:

$$\overline{B} \subset \phi_1(B) \cup \ldots \cup \phi_k(B).$$

We observe that the number k of translations of ϕ depends on the dimension of G and the constant λ .

From Lemma 10.15 and Corollary D we immediately obtain the following consequence.

Corollary 10.16. Let $\phi_1, \phi_2, \ldots, \phi_k$ be as in Lemma 10.15. Then the skewproduct map $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k) \in S^{\alpha}_{k,\lambda,\beta}(D)$ has a symbolic cs-blenderhorseshoe whose superposition domain contains B.

Proof of Lemma 10.15. Consider the open ball $B_{\varepsilon}(p_{\phi}) \subset D$ of radius $\varepsilon > 0$ centered at p_{ϕ} . Note that there are k > 0 and points $d_1 = p_{\phi}, d_2, \ldots, d_k \in B_{\varepsilon}(p_{\phi})$, such that

$$\overline{B}_{\varepsilon}(p_{\phi}) \subset B_{\frac{\lambda}{2}\varepsilon}(d_1) \cup B_{\frac{\lambda}{2}\varepsilon}(d_2) \cup \ldots \cup B_{\frac{\lambda}{2}\varepsilon}(d_k).$$

Consider (in local coordinates) translations ϕ_i of ϕ , such that $B_{\frac{\lambda}{2}\varepsilon}(d_i) \subset \phi_i(B_{\varepsilon}(p_{\phi}))$, for all $i = 1, \ldots, k$. The choice of the points d_i and the inclusion above imply that

$$\overline{B}_{\varepsilon}(p_{\phi}) \subset \phi_1(B_{\varepsilon}(p_{\phi})) \cup \ldots \cup \phi_k(B_{\varepsilon}(p_{\phi})),$$

proving the lemma.

Proof of Theorem E. By hypothesis, the map F has a horseshoe Λ in N. Suppose that the contraction rate of F is $0 < \nu < 1$. Fix positive constants $\gamma, \hat{\gamma}$ with $\nu < \gamma < 1 < \hat{\gamma} < \nu^{-1}$.

Consider $\phi: G \to G$ a small perturbation of the identity map such that ϕ has two hyperbolic fixed points p and q satisfying the properties:

- i) p is a sink,
- ii) q is a source, and
- iii) $W^s(p,\phi) \pitchfork W^u(q,\phi) \neq \emptyset.$

There are disjoint neighborhoods D_s of p and D_u of q such that $\phi_{|_{D_s}}$ and $\phi_{|_{D_u}}^{-1}$ are (λ, β) -Lipschitz maps for some $\lambda < \beta < 1$, recall Definition 1.3, satisfying $\gamma < \lambda < \beta < 1 < \beta^{-1} < \lambda^{-1} < \hat{\gamma}$.

By Lemma 10.15 there are k > 0, open sets $B_s \subset D_s$ and $B_u \subset D_u$ containing p and q, respectively, and maps $\phi_1^s = \phi, \ldots, \phi_k^s$ and $\phi_1^u = \phi, \ldots, \phi_k^u$ such that

$$\overline{B}_s \subset \phi_1^s(B_s) \cup \ldots \cup \phi_k^s(B_s) \quad \text{and} \quad \overline{B}_u \subset (\phi_1^u)^{-1}(B_u) \cup \ldots \cup (\phi_k^u)^{-1}(B_u).$$
(10.8)

Consider the maps $\phi_i \colon G \to G, i = 1, \dots, k$, as follows:

$$\phi_i(x) = \begin{cases} \phi_i^s(x) & \text{if } x \in D_s \\ \\ \phi_i^u(x) & \text{if } x \in D_u \end{cases}$$

Note that these maps are $(\gamma, \hat{\gamma})$ -Lipschitz C^1 -diffeomorphisms. Then (10.8) is equivalent to

$$\overline{B}_s \subset \bigcup_{i=1}^k \phi_i(B_s) \text{ and } \overline{B}_u \subset \bigcup_{i=1}^k \phi_i^{-1}(B_u).$$

By construction,

$$\Phi = \tau \ltimes (\phi_1, \dots, \phi_k) \in \mathcal{S}_{k,\lambda_s,\beta_s}^{1,\alpha}(D_s) \cap \mathcal{S}_{k,\lambda_u,\beta_u}^{1,\alpha}(D_u),$$

where $\lambda_s = \lambda$, $\beta_s = \beta$, $\lambda_u = \beta^{-1}$ and $\beta_u = \lambda^{-1}$.

Let $\varphi \colon G \to G$ be a $(\gamma, \hat{\gamma})$ -Lipschitz C^1 -diffeomorphism such that $\varphi^n(x) \in B_u$ for some $x \in B_s$ and some $n \in \mathbb{N}$.

Claim 10.17. The map $\hat{\Phi} = \tau \ltimes (\phi_1, \ldots, \phi_k, \varphi)$ has a symbolic cycle associated to a cs-blender-horseshoe and cu-blender-horseshoe whose superposition domains contain B_s and B_u , respectively.

Proof. By condition (iii) there is a point $y \in B_u \cap (W^s(p,\phi_1) \cap W^u(q,\phi_1))$ such that $\phi_1^m(y) \in B_s$, for some $m \in \mathbb{N}$. Since $y \in B_u \cap (W^s(p,\phi_1) \cap W^u(q,\phi_1))$ we have that $\phi_1^{-1}(y) \in D_u$. Then adding the choice of φ above, the hypothesis of Proposition 10.4 are satisfied. Ending the proof of the claim.

To continue the proof, we need the following Proposition²:

Proposition 10.18. [15, 13] Let f be a skew product diffeomorphism given by

$$f: N \times G \to N \times G, \quad f(z,x) = (F(z), \phi_z(x)),$$

where $F: N \to N$ is a C^1 -diffeomorphism with a horseshoe $\Lambda \subset N$ of d "legs" and with contraction rate $\nu < 1$, and $\phi_z(\cdot): G \to G$ is a C^1 -diffeomorphism such that

$$\gamma < \|D\phi_z(x)v\| < \hat{\gamma}$$

for $v \in T_x G$ and $z \in \Lambda$, where $\nu < \gamma < \hat{\gamma} < \nu^{-1}$.

Then for every map $g \ C^1$ -close to f has a locally maximal invariant set $\Delta \subset N \times G$ homoeomorphic to $\Lambda \times G$ such that $g|_{\Delta}$ is conjugated to a symbolic skew-product map $\Psi_g \in \mathcal{S}^{1,\alpha}_{d,\gamma,\hat{\gamma}}(G)$, for $\alpha > 0$, recall Definition 1.7.

Recall that F has a horseshoe Λ in N. There is $\ell \in \mathbb{N}$ such that $F^{\ell}|_{\Lambda}$ is conjugated to a full shift of d symbols, for some d > k. Consider "rectangles" R_1, \ldots, R_d in N such that $\{R_1 \cap \Lambda, \ldots, R_d \cap \Lambda\}$ is a Markov partition for $F^{\ell}|_{\Lambda}$. Let $f: N \times G \to N \times G$ be the C^1 -diffeomorphism such that

$$\begin{split} f_{|_{(R_i \cap \Lambda) \times G}} &= F^{\ell} \times \phi_i \quad \text{for } i = 1, \dots, k \\ f_{|_{(R_i \cap \Lambda) \times G}} &= F^{\ell} \times \varphi \quad \text{for } i = k + 1, \dots, d. \end{split}$$

The map f restricted to $\Lambda \times G$ is conjugated to the symbolic one-step skew product map $\hat{\Phi} = \tau \ltimes (\phi_1, \ldots, \phi_k, \varphi, \ldots, \varphi) \in \mathcal{S}^{1,\alpha}_{d,\gamma,\hat{\gamma}}(G)$. To emphasize this conjugacy between f and $\hat{\Phi}$, we denote $f \stackrel{\text{def}}{=} f_{\hat{\Phi}}$.

Therefore, by Claim 10.17 and Proposition 10.18 we have that $f_{\hat{\Phi}}$ has a robust heterodimensional cycle associated with hyperbolic sets Γ_f^s and Γ_f^u , which came from the symbolic *cs*-blender-horseshoe and the *cu*-blenderhorseshoe.

The proof of the theorem is now complete.

²This proposition is detailed in [1].