
2

Simple cycles: the (C�C) case

We consider a diffeomorphism f : M → M having heterodimensional

cycle of co-index two associated with a pair of saddles P and Q of indices s+2

and s, respectively, that is central separated. Let s + 2 + u = d = dim(M),

where s� u ≥ 1. This means that if α1� . . . � αd are the eigenvalues of Df
π�P )
P

ordered in increasing modulus then |αs| < |αs+1|. Similarly, if β1� . . . � βd are

the eigenvalues of Df
π�Q)
Q ordered in increasing modulus then |βs+2| < |βs+3|.

There are four possibilities according to the central eigenvalues of the

cycle: (A) all central eigenvalues of the cycle are non-real; (B) either the central

eigenvalues associated with P are real and the central eigenvalues associated

with Q are non-real or vice-versa; (C) central eigenvalues of the cycle are real

and equal in modulus; and (D) all central eigenvalues of the cycle are real and

different in modulus.

We say that a diffeomorphism f has a (C�C)-cycle if it has a heterodi-

mensional cycle of co-index two associated with saddles P and Q which is

central separated, such that the central eigenvalues of Q are equal in modu-

lus and the central eigenvalues of P are also equal in modulus (cases (A) and

(C)). Analogously we say that a diffeomorphism f has a (R�C)-cycle if it has

a heterodimensional cycle of co-index two associated with saddles P and Q

which is central separated, such that the central eigenvalues of Q are real and

different in modulus and the central eigenvalues of P are non-real (case (B)).

We will study (C�C)-cycles in this chapter and Chapter 3, and (R�C)-cycles

in Chapter 4.

Following closely [5], we prove that arbitrarily C1-close to these heterodi-

mensional cycles there are new cycles (associated with the same saddles) such

that the dynamics in a neighborhood of these cycles is“affine”and partially hy-

perbolic (with bidimensional central direction). This new cycle is called simple,

see Definition 2.1. The key point is that the dynamics of simple cycles can be

essentially reduced to the analysis of a bidimensional iterated function system,

where the details will be given in the next chapter.
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2.1

Partially hyperbolic dynamics

We start defining partial hyperbolicity. Given a diffeomorphism f ∈

Diff1(M) and an f -invariant set Λ, a Df -invariant splitting with two bundles

E⊕F of TM over Λ is dominated if there are constants m > 0 and k < 1 such

that

� Dfmx |E� · � Df−m
x |F�< k� for every x ∈ Λ�

where � · � is the metric of M .

An Df -invariant splitting with three bundles E ⊕F ⊕G is dominated if

the bundles (E ⊕ F )⊕G and E ⊕ (F ⊕G) are both dominated.

Assume that f has a heterodimensional cycle of co-index two associated

with the saddles P and Q of indices s + 2 and s as above. We define Ess
P and

Ec
P as theDf

π�P )
P -invariant spaces corresponding to the eigenvalues (α1� . . . � αs)

and (αs+1� αs+2), respectively. Since |αs| < |αs+1| ≤ |αs+2| < 1 < |αs+3| these

spaces are well defined and contained in the stable bundle of P . For a point A in

the orbit OP of P we let E
ss
A and Ec

A the corresponding iterates of E
ss
P and Ec

P

by Df . Note that the stable bundle of A ∈ OP is E
s
A = Ess

A ⊕Ec
A. We proceed

similarly with the pointQ considering theDf
π�Q)
Q -invariant subespaces Euu

Q and

Ec
Q of the unstable bundle E

u
Q corresponding to the eigenvalues (βs+2+1� . . . � βd)

and (βs+1� βs+2) of Df
π�Q)
Q . We also consider the Df -invariant extensions of

these bundles to the orbit ofQ. In this way we obtain aDf -invariant dominated

splitting defined over the orbits of P and Q. For notational convenience we

write Ess
B = Es

B if B ∈ OQ and E
uu
A = Eu

A if A ∈ OP . Then the splitting

TAM = Ess
A ⊕ Ec

A ⊕ Euu
A � if A ∈ OP ∪ OQ

is well defined and dominated. Since the directions Ess and Euu are uniformly

hyperbolic (contracting and expanding, respectively), we say that this splitting

is partially hyperbolic.

2.2

(C�C)-Simple cycles

Let us start with an informal discussion about simple cycles. We will

perform a series of perturbations of the initial cycle to get a new diffeomorphism

with a heterodimensional cycle associated with the same saddles and such that

the dynamics in the cycle is “affine”.

Fix heteroclinic points X ∈ W s(OP ) ∩ W u(OQ) and Y ∈ W u(OP ) ∩

W s(OQ). After an arbitrarily small perturbation we can assume that X is a

transverse intersection and Y is a quasi-transverse one. We also can assume
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that there are small neighbourhoods UP and UQ of the orbits of P and Q,

respectively, where f is linear. After replacing X by some backward iterate

and Y by some forward iterate, and after a new perturbation, we will see that

there are small neighbourhoods UX ⊂ UQ of X and UY ⊂ UP of Y and large

natural numbers n and m such that fn(UX) ⊂ UP , f
m(UY ) ⊂ UQ, and f

n and

fm are affine maps (in local coordinates).

We fix the “neighbourhood of the cycle”

V = UP ∪ UQ ∪
� n�

i=−n

f i
�
UX

��
∪
� m�

i=−m

f i
�
UY

��

and study the dynamics of f in this neighborhood. Using that this dynamics

is affine and partially hyperbolic (with a partially hyperbolic splitting of the

form Ess ⊕ Ec ⊕ Euu where Ec is bidimensional), considering the quotient by

the strong stable Ess and strong unstable Euu directions we will reduce this

analysis to the study of a bidimensional iterated function system. We now go

to the details of these constructions.

Given a complex number τ = δ e2π i ψ, we consider the matrix

Cτ = δ

�
cos 2πψ − sin 2πψ

sin 2πψ cos 2πψ

�

� δ > 0� ψ ∈ [0� 1).

We now define linear maps Cα� Cβ : R
2 → R2 whose eigenvalues are

(α
def

= αs+1 = ρ e2π i φ� αs+2) and (β
def

= βs+1 = � e2π i ϕ� βs+2)� (2.1)

respectively, where 0 < ρ < 1 < � and φ� ϕ ∈ [0� 1).

We also define the linear reflection along the X-axis by EX.

Definition 2.1 ((C�C)-Simple cycle). A diffeomorphism f has a (C�C)-

simple cycle of co-index two associated with P and Q and this cycle is unfolded

in a simple way by the family (ft)t∈[−���]2, f0 = f , if the following conditions

hold:

i) There are local charts UP and UQ around P and Q

UP � UQ � [−1� 1]s × [−1� 1]2 × [−1� 1]u�

where f
π�P )
t

def

= �t = � and f
π�Q)
t

def

= Bt = B are linear maps of the form

�(xs� xc� xu) =
�
As(xs)� Cα(x

c)� Au(xu)
�

and

B(xs� xc� xu) =
�
Bs(xs)� Cβ(x

c)� Bu(xu)
�
�
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where As� Bs : Rs → Rs are contractions, corresponding to the contracting

eigenvalues (α1� . . . � αs) and (β1� . . . � βs), and Au� Bu : Ru → Ru are

expansions, corresponding to the expanding eigenvalues (αs+3� . . . � αd)

and (βs+3� . . . � βd).

ii) There is a partially hyperbolic splitting Ess ⊕Ec ⊕Euu, defined over the

orbits of P and Q, such that in these local charts they are of the form

Ess = Rs×{02}×{0u}� Ec = {0s}×R2×{0u}� Euu = {0s}×{02}×Ru.

iii) There are a quasi-transverse1 heteroclinic point YP ∈ W u(OP )∩W
s(OQ)

in the neighborhood UP , a natural number � > 0, and a neighborhood UYP

of YP in UP , such that, in these local coordinates:

• YP = (0
s� 02� yuP ), where yuP ∈ [−1� 1]u;

• YQ = f �t (YP ) ∈ UQ and YQ = (y
s
Q� 0

2� 0u), where ysQ ∈ [−1� 1]s;

• f �t
�
UYP

�
⊂ UQ and

f �t
def

= TPQ� t : UYP
→ f �t

�
UYP

�

is an affine map of the form

TPQ� t(x
s� xc� xu) =

�
T s
PQ(x

s) + ysQ� T
c
PQ(x

c) + t� T u
PQ(x

u − yuP )
�
�

where T s
PQ : R

s → Rs is a linear contraction �independent of t),

T u
PQ : R

u → Ru is a linear expansion �which also does not depend

on t) and T c
PQ : R

2 → R2 is either ±Id or the reflection EX.

iv) There are a transverse heteroclinic point XQ ∈ W u(OQ) � W s(OP ) in

the neighborhood UQ, a natural number r > 0, and a neighborhood UXQ

of XQ in UQ such that, in these local coordinates:

• XQ = (0
s� xcQ� 0

u), where xQ ∈ R2;

• XP = f rt (XQ) ∈ UP and XP = (0
s� xcP � 0

u), where xP ∈ R2;

• f rt
�
UXQ

�
⊂ UP and

f rt
def

= TQP�t = TQP : UXQ
→ f rt

�
UXQ

�

is an affine map of the form

TQP (x
s� xc� xu) =

�
T s
QP (x

s)� T c
QP (x

c)− xcQ + xcP � T
u
QP (x

u)
�
�

�dim
�
TY�

W
s�OQ)

�
+ dim

�
TY�

W
u�O� )

�
= d− 2 = dim�M)− 2.
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where T s
QP : R

s → Rs is a linear contraction, T u
QP : R

u → Ru is a

linear expansion and T c
QP : R

2 → R2 is either ±Id or the reflection

EX. Note that here the maps ft do not depend on t.

We say that � and B are the linear parts of the cycle, that XQ and YP are the

heteroclinic points, and TQP and TPQ�t are the transitions of the cycle.

Figure 2.1: Transitions of the cycle

We have the next result about the approximation of cycles by simple

ones:

Proposition 2.2. Let f be a diffeomorphism with a heterodimensional cycle

of co-index two associated with saddles P and Q which is central separated.

Assume that the central eigenvalues satisfy

|αs+1| = |αs+2| and |βs+1| = |βs+2|

Then any neighbourhood U of f contains diffeomorphisms having simple cycles

associated with P and Q which are unfolded in a simple way.

Proof. We start with some preparations and fix some notation. For simplicity

let us assume that Q and P are fixed points of f . By a small perturbation of

f we can assume that there are small neighbourhoods of P and Q, say UP and

UQ, where f is linear.

Consider W uu(Q) the strong unstable manifold of Q (the unique f -in-

variant manifold tangent to Euu
Q ). Using local coordinates around Q define the

following local manifolds of Q

W s
loc(Q)

def

= {(xs� 0c� 0u)} ⊂ W s(Q) ∩ UQ�

W u
loc(Q)

def

= {(0s� xc� xu)} ⊂ W u(Q) ∩ UQ�

W cu
loc(Q)

def

= {(0s� xc� 0u)} ⊂ W u(Q) ∩ UQ� and

W uu
loc (Q)

def

= {(0s� 02� xu)} ⊂ W uu(Q) ∩ UQ.

Similarly, letW ss(P ) be the strong stable manifold of P (the unique f -invariant

manifold tangent to Ess
P ), using local coordinates we define the following local
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manifolds of P

W u
loc(P )

def

= {(0s� 0c� xu)} ⊂ W u(P ) ∩ UP �

W s
loc(P )

def

= {(xs� xc� 0u)} ⊂ W s(P ) ∩ UP �

W cs
loc(P )

def

= {(0s� xc� 0u)} ⊂ W s(P ) ∩ UP � and

W ss
loc(P )

def

= {(xs� 02� 0u)} ⊂ W ss(P ) ∩ UP .

We now choose heteroclinic points of the cycle. Take heteroclinic points

X ∈ W u(Q) ∩ W s(P ) and Y ∈ W s(Q) ∩ W u(P ). After an arbitrarily small

perturbation of f , we can assume that the first intersection is transverse and the

second one quasi-transverse. Moreover, we can also suppose that X �∈ W uu(Q)

and X �∈ W ss(P ). Replacing X by some negative iterate we can assume

that X ∈ W u
loc(Q). Write X = (0s� xc� xu) and f−n(X) = (0s� xcn� x

u
n). Since

X /∈ W uu(Q) we have xc �= 02 and

||xun||

||xcn||
≤

|βs+3|
−n

|βs+1|−n
·
||xu||

||xc||
.

As |βs+3| > |βs+1| this implies that f
−n(X) is much closer to W cu

loc(Q) than

to W uu
loc (Q) for a sufficiently big n. Analogously, replacing X by some positive

iterate we can assume that X ∈ W s
loc(P ) and since |αs| < |αs+2| we have that

fm(X) is much closer to W cs
loc(P ) than W ss

loc(P ) for a sufficiently big m. Thus

after arbitrarily small perturbations we can assume that there are backward

iterate X̄Q of X that is in W cu
loc(Q), and forward iterate X̄P of X that is in

W cs
loc(P ). The points X̄Q and X̄P are depicted in Figure 2.2.

Figure 2.2: The heteroclinic points X̄Q and X̄P

Now take a quasi-transverse heteroclinic point Y ∈ W s(Q)∩W u(P ) and

we fix iterates (backward) ȲP and (forward) ȲQ of it such that ȲP ∈ W u
loc(P )

and ȲQ ∈ W s
loc(Q).

Claim 2.3. After an arbitrarily small perturbation of f , we can assume that

there are large r0� �0 > 0, negative iterates X̃Q of X̄Q and ỸP of ȲP , and small

neighborhoods UX̃Q
of X̃Q and UỸP

of ỸP such that the restrictions of f r0 to

UX̃Q
and of f �0 to UỸP

are linear maps preserving the splitting Ess⊕Ec⊕Euu.
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Proof. In the neighborbood UQ of Q there are f -invariant foliations Fu
Q, F

uu
Q ,

F c
Q, F

ss
Q and F s

Q that are tangent to the bundles E
uu ⊕ Ec� Euu� Ec� Ess and

Ec ⊕ Ess, respectively. Using the linearizing coordinates of f in UQ � [−1� 1]d

we consider the following locally f -invariant foliations:

• Fu
Q the foliation by (u+ 2)-planes parallel to {0

s} × [−1� 1]2 × [−1� 1]u,

• Fuu
Q the foliation by u-planes parallel to {0s} × {02} × [−1� 1]u,

• F c
Q the foliation by 2-planes parallel to {0

s} × [−1� 1]2 × {0u},

• F ss
Q the foliation by s-planes parallel to [−1� 1]s × {02} × {0u},

• F s
Q the foliation by (s+ 2)-planes parallel to [−1� 1]

s × [−1� 1]2 × {0u}.

Analogously, in the neighborbood UP of P there are foliations Fu
P , F

uu
P ,

F c
P , F

ss
P and F s

P that are tangent to the bundles E
uu ⊕ Ec� Euu� Ec� Ess and

Ec ⊕ Ess, respectively. As these foliations have the same local expression,

for simplicity, let us omit the subscript P and Q and consider the foliations

Fu�Fuu�F c�F ss and F s defined on UQ ∪ UP and denote by Fσ(X) the leaf of

Fσ containing X, for σ = u� uu� c� ss� s.

By construction there is r1 > 0 such that f
r1(X̄Q) = X̄P . Let us consider

images of these foliations by f r1 . After an arbitrarily small perturbation of f

we can assume that the following transversality conditions hold:

f r1
�
Fu(X̄Q)

�
�X̄P

Ess.

Given a set A and a point X ∈ A denote by C(A�X) the connected component

of A containing X. By domination the images of the leaves of Fu are close

to the leaves in Fu in UP . Replacing X̄P by some forward iterate of it,

say f r1+r2(X̄Q) = f r2(X̄P ), we can assume that after an arbitrarily small

perturbation we have

C
�
f r1+r1(Fu(X̄Q)) ∩ UP � f

r2(X̄P )
�
= Fu(f r2(X̄P ))�

then we have the invariance of the foliation Fu. Consider now negative iterates

of the foliations in UP by f
r1+r2 . Since the foliation Fu is f r1+r2-invariant, we

have the following transversality:

f−�r1+r2)
�
F ss(f r2(X̄P ))

�
�X̄Q

Eu.

By domination the backward iterates of the leaves of F ss are close to the leaves

in F ss in UQ. Then replacing X̄Q by some backward iterate of it, say f
−r3(X̄Q),
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we can assume that after an arbitrarily small perturbation we have

C
�
f−�r1+r2+r3)(F ss(f r2(X̄P ))) ∩ UQ� f

−r3(X̄Q)
�
= F ss(f−r3(X̄Q))�

then we have the invariance of the foliations F ss and Fu. Similarly, now we

consider the image of the foliations in UP by f r1+r2+r3 . After an arbitrarily

small perturbation we can assume that:

f r1+r2+r3
�
Fuu(f−r3(X̄Q))

�
�X̄P

Es.

By domination the images of the leaves of Fuu are close to the leaves in Fuu in

UP . Replacing f
r2(X̄P ) by some forward iterate of it, say f

r2+r4(X̄P ), we can

assume that after an arbitrarily small perturbation we have

C
�
f r1+r2+r3+r4(Fuu(f−r3(X̄Q))) ∩ UP � f

r2+r4(X̄P )
�
= Fuu(f r2+r4(X̄P ))�

then we have the invariance of the foliations Fss�Fu and Fuu. Following

analogously we have that there are r5� r6 > 0 such that for f r0 , where

r0 = r1 + · · ·+ r6, we get the invariance of all foliations.

Consider the X̃Q
def

= f−�r3+r5)(X̄Q) and X̃P
def

= f r1+r2+r4+r6(X̄P ). This

implies that (after a new arbitrarily small perturbation if necessary) there are

small neighborhoods UXQ
of X̃Q and UXP

of X̃P such that f
r0 (or some positive

iterate of it) preserves the foliations

f r0(Fσ(Z) ∩ UXQ
) = Fσ(f r0(Z)) ⊂ UXP

�

for σ = u� uu� c� ss� s, and the restriction of f r0 to UXQ
is linear.

Arguing analogously, we get �0, ỸP and an small neighborhood of ỸP such

that f �0(ỸP ) = ỸQ, the local foliations are f
�0 invariant, and the restriction of

f �0 to UYP
is linear. This completes the proof of the claim.

In the local coordinates in UQ and UP , write

X̃Q = (0
s� x̃cQ� 0

u) ∈ UQ� X̃P = f r0(X̃Q) = (0
s� x̃cP � 0

u) ∈ UP �

ỸP = (0
s� 0c� ỹuP ) ∈ UP � ỸQ = f �0(ỸP ) = (ỹ

s
Q� 0

c� 0u) ∈ UQ.

By the previous claim, in the local coordinates (around Q and P ) the

restriction of f r0 to the neighborhood UX̃Q
is of the form

f r0(xs� xc + x̃cQ� x
u) =

�
T̃ s
QP (x

s)� x̃cP + T̃ c
QP (x

c)� T̃ u
QP (x

u)
�
�

where T̃ s
QP is a linear contraction, T̃

u
QP a linear expansion, and T̃

c
QP linear.
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Similarly, the restriction of f �0 to the neighborhood UỸP
is of the form

f �0(xs� xc� xu + ỹuP ) =
�
T̃ s
PQ(x

s) + ỹsQ� T̃
c
PQ(x

c)� T̃ u
PQ(x

u)
�
�

where T̃ s
PQ is a linear contraction, T̃

u
PQ a linear expansion, and T̃

c
PQ linear.

It remains to prove that (after a new perturbation and after replacing X̃Q

and ỸP by some backward iterates and X̃P and ỸQ by some forward iterates)

we have identities or reflections in the central coordinates.

We fix k1 and k2 > 0 (the choice of these numbers is explained below) and

replace X̃Q and X̃P , by XQ = f−k1(X̃Q) = (0
s� xcQ� 0

u) and XP = fk2(X̃P ) =

(0s� xcP � 0
u). Let r

def

= k1+ r0+ k2, then the restriction of the map f
r to a small

neighborhood of XQ is of the form f r(xs� xc + xcQ� x
u) = (x̄s� x̄c� x̄u)� where

x̄s = (As)k2 ◦ T̃ s
QP ◦ (Bs)k1(xs)�

x̄c = xcP + (Cα)
k2 ◦ T̃ c

QP ◦ (Cβ)
k1(xc)� (2.2)

x̄u = (Au)k2 ◦ T̃ u
QP ◦ (Bu)k1(xu).

Clearly, the action of this map in the s-coordinate is a linear contraction

and its action in the u-coordinate is a linear expansion. Therefore we consider

T s
QP = (A

s)k2 ◦ T̃ s
QP ◦ (Bs)k1 and T u

QP = (A
u)k2 ◦ T̃ u

QP ◦ (Bu)k1 .

It remains to check that, for appropriate choices of large k1 and k2 and

after a small perturbation, the central part T c
QP = (Cα)

k2 ◦ T̃ c
QP ◦ (Cβ)

k1 can

be done as identity or reflection maps. Recall that |αs+1| = |αs+2| < 1 and

|βs+1| = |βs+2| > 1 and also the notation

αs+1 = ρ e2π i φ� φ ∈ [0� 1)� ρ < 1 and βs+1 = � e2π i ϕ� ϕ ∈ [0� 1)� � > 1.

We can assume, after a small perturbation, that ρn �m = 1 for some large n

and m. In particular, ρnk �mk = 1 for all k ≥ 1. We also can assume that

φ� ϕ ∈ Q. In particular, (Cα)
n j = ρn j Rj

n φ, and (Cβ)
mj = �mj Rj

mϕ, where Rθ

denotes the rotation of angle θ. As Rnφ and Rmϕ are rational rotation there is

large k such that

Rk
nφ = Rk

mϕ = Id.

Fix k2 = n k and k1 = mk, then (Cα)
k2 = ρnk Id and (Cβ)

k1 = ρmk Id. Thus

(Cα)
k2 ◦ T̃ c

QP ◦ (Cβ)
k1 = ρnk �mk T̃ c

QP = T̃ c
QP .
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As the segment of orbit going from XQ to XP can be chosen arbitrarily

large (it is enough to take large k) we can modify the action of f in the

central direction (without modifying the other directions) along the orbit

XQ� f(XQ)� . . . � f
r(XQ) = XP to transform T̃ c

QP in one of the maps Id�−Id� EX,

depending on the eigenvalues of the transition T̃QP . This concludes the con-

struction of the transition map TQP (this map does not depend on t). The

construction of the transition TPQ for the diffeomorphism f with a cycle is

done arguing exactly as above.

Finally, we consider an unfolding (ft)t∈[−���]2 of f = f0 as follows. Outside

of a small neighborhood of f−1(YQ) = f �−1(YP ) we consider ft = f and we

modify f in a neighborhood of f−1(YQ) in such a way the map f �t is of the

form

f �t (x
s� xc� xu) =

�
T s
PQ(x

s)� T c
PQ(x

c) + t� T u
PQ(x

u)
�
.

This concludes the proof of the proposition.
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