2
 Simple cycles: the (\mathbb{C}, \mathbb{C}) case

We consider a diffeomorphism $f: M \rightarrow M$ having heterodimensional cycle of co-index two associated with a pair of saddles P and Q of indices $s+2$ and s, respectively, that is central separated. Let $s+2+u=d=\operatorname{dim}(M)$, where $s, u \geq 1$. This means that if $\alpha_{1}, \ldots, \alpha_{d}$ are the eigenvalues of $D f_{P}^{\pi(P)}$ ordered in increasing modulus then $\left|\alpha_{s}\right|<\left|\alpha_{s+1}\right|$. Similarly, if $\beta_{1}, \ldots, \beta_{d}$ are the eigenvalues of $D f_{Q}^{\pi(Q)}$ ordered in increasing modulus then $\left|\beta_{s+2}\right|<\left|\beta_{s+3}\right|$.

There are four possibilities according to the central eigenvalues of the cycle: (A) all central eigenvalues of the cycle are non-real; (B) either the central eigenvalues associated with P are real and the central eigenvalues associated with Q are non-real or vice-versa; (C) central eigenvalues of the cycle are real and equal in modulus; and (D) all central eigenvalues of the cycle are real and different in modulus.

We say that a diffeomorphism f has a $(\mathbb{C}, \mathbb{C}$)-cycle if it has a heterodimensional cycle of co-index two associated with saddles P and Q which is central separated, such that the central eigenvalues of Q are equal in modulus and the central eigenvalues of P are also equal in modulus (cases (A) and (C)). Analogously we say that a diffeomorphism f has a (\mathbb{R}, \mathbb{C})-cycle if it has a heterodimensional cycle of co-index two associated with saddles P and Q which is central separated, such that the central eigenvalues of Q are real and different in modulus and the central eigenvalues of P are non-real (case (B)). We will study (\mathbb{C}, \mathbb{C})-cycles in this chapter and Chapter 3 , and (\mathbb{R}, \mathbb{C})-cycles in Chapter 4.

Following closely [5], we prove that arbitrarily C^{1}-close to these heterodimensional cycles there are new cycles (associated with the same saddles) such that the dynamics in a neighborhood of these cycles is "affine" and partially hyperbolic (with bidimensional central direction). This new cycle is called simple, see Definition 2.1. The key point is that the dynamics of simple cycles can be essentially reduced to the analysis of a bidimensional iterated function system, where the details will be given in the next chapter.

2.1
 Partially hyperbolic dynamics

We start defining partial hyperbolicity. Given a diffeomorphism $f \in$ $\operatorname{Diff}^{1}(M)$ and an f-invariant set Λ, a $D f$-invariant splitting with two bundles $E \oplus F$ of $T M$ over Λ is dominated if there are constants $m>0$ and $k<1$ such that

$$
\left\|\left.D f_{x}^{m}\right|_{E}\right\| \cdot\left\|\left.D f_{x}^{-m}\right|_{F}\right\|<k, \quad \text { for every } x \in \Lambda,
$$

where $\|\cdot\|$ is the metric of M.
An $D f$-invariant splitting with three bundles $E \oplus F \oplus G$ is dominated if the bundles $(E \oplus F) \oplus G$ and $E \oplus(F \oplus G)$ are both dominated.

Assume that f has a heterodimensional cycle of co-index two associated with the saddles P and Q of indices $s+2$ and s as above. We define $E_{P}^{s s}$ and E_{P}^{c} as the $D f_{P}^{\pi(P)}$-invariant spaces corresponding to the eigenvalues $\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ and ($\alpha_{s+1}, \alpha_{s+2}$), respectively. Since $\left|\alpha_{s}\right|<\left|\alpha_{s+1}\right| \leq\left|\alpha_{s+2}\right|<1<\left|\alpha_{s+3}\right|$ these spaces are well defined and contained in the stable bundle of P. For a point A in the orbit \mathcal{O}_{P} of P we let $E_{A}^{s s}$ and E_{A}^{c} the corresponding iterates of $E_{P}^{s s}$ and E_{P}^{c} by $D f$. Note that the stable bundle of $A \in \mathcal{O}_{P}$ is $E_{A}^{s}=E_{A}^{s s} \oplus E_{A}^{c}$. We proceed similarly with the point Q considering the $D f_{Q}^{\pi(Q)}$-invariant subespaces $E_{Q}^{u u}$ and E_{Q}^{c} of the unstable bundle E_{Q}^{u} corresponding to the eigenvalues $\left(\beta_{s+2+1}, \ldots, \beta_{d}\right)$ and $\left(\beta_{s+1}, \beta_{s+2}\right)$ of $D f_{Q}^{\pi(Q)}$. We also consider the $D f$-invariant extensions of these bundles to the orbit of Q. In this way we obtain a $D f$-invariant dominated splitting defined over the orbits of P and Q. For notational convenience we write $E_{B}^{s s}=E_{B}^{s}$ if $B \in \mathcal{O}_{Q}$ and $E_{A}^{u u}=E_{A}^{u}$ if $A \in \mathcal{O}_{P}$. Then the splitting

$$
T_{A} M=E_{A}^{s s} \oplus E_{A}^{c} \oplus E_{A}^{u u}, \quad \text { if } A \in \mathcal{O}_{P} \cup \mathcal{O}_{Q}
$$

is well defined and dominated. Since the directions $E^{s s}$ and $E^{u u}$ are uniformly hyperbolic (contracting and expanding, respectively), we say that this splitting is partially hyperbolic.

2.2

(\mathbb{C}, \mathbb{C})-Simple cycles
Let us start with an informal discussion about simple cycles. We will perform a series of perturbations of the initial cycle to get a new diffeomorphism with a heterodimensional cycle associated with the same saddles and such that the dynamics in the cycle is "affine".

Fix heteroclinic points $X \in W^{s}\left(\mathcal{O}_{P}\right) \cap W^{u}\left(\mathcal{O}_{Q}\right)$ and $Y \in W^{u}\left(\mathcal{O}_{P}\right) \cap$ $W^{s}\left(\mathcal{O}_{Q}\right)$. After an arbitrarily small perturbation we can assume that X is a transverse intersection and Y is a quasi-transverse one. We also can assume
that there are small neighbourhoods \mathcal{U}_{P} and \mathcal{U}_{Q} of the orbits of P and Q, respectively, where f is linear. After replacing X by some backward iterate and Y by some forward iterate, and after a new perturbation, we will see that there are small neighbourhoods $\mathcal{U}_{X} \subset \mathcal{U}_{Q}$ of X and $\mathcal{U}_{Y} \subset \mathcal{U}_{P}$ of Y and large natural numbers n and m such that $f^{n}\left(\mathcal{U}_{X}\right) \subset \mathcal{U}_{P}, f^{m}\left(\mathcal{U}_{Y}\right) \subset \mathcal{U}_{Q}$, and f^{n} and f^{m} are affine maps (in local coordinates).

We fix the "neighbourhood of the cycle"

$$
\mathcal{V}=\mathcal{U}_{P} \cup \mathcal{U}_{Q} \cup\left(\bigcup_{i=-n}^{n} f^{i}\left(\mathcal{U}_{X}\right)\right) \cup\left(\bigcup_{i=-m}^{m} f^{i}\left(\mathcal{U}_{Y}\right)\right)
$$

and study the dynamics of f in this neighborhood. Using that this dynamics is affine and partially hyperbolic (with a partially hyperbolic splitting of the form $E^{s s} \oplus E^{c} \oplus E^{u u}$ where E^{c} is bidimensional), considering the quotient by the strong stable $E^{s s}$ and strong unstable $E^{u u}$ directions we will reduce this analysis to the study of a bidimensional iterated function system. We now go to the details of these constructions.

Given a complex number $\tau=\delta e^{2 \pi i \psi}$, we consider the matrix

$$
C_{\tau}=\delta\left(\begin{array}{cc}
\cos 2 \pi \psi & -\sin 2 \pi \psi \\
\sin 2 \pi \psi & \cos 2 \pi \psi
\end{array}\right), \quad \delta>0, \psi \in[0,1)
$$

We now define linear maps $C_{\alpha}, C_{\beta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ whose eigenvalues are

$$
\begin{equation*}
\left(\alpha \stackrel{\text { def }}{=} \alpha_{s+1}=\rho e^{2 \pi i \phi}, \alpha_{s+2}\right) \quad \text { and } \quad\left(\beta \stackrel{\text { def }}{=} \beta_{s+1}=\varrho e^{2 \pi i \varphi}, \beta_{s+2}\right) \tag{2.1}
\end{equation*}
$$

respectively, where $0<\rho<1<\varrho$ and $\phi, \varphi \in[0,1)$.
We also define the linear reflection along the \mathbb{X}-axis by $E_{\mathbb{X}}$.
Definition 2.1 ((\mathbb{C}, \mathbb{C})-Simple cycle). A diffeomorphism f has a (\mathbb{C}, \mathbb{C}) simple cycle of co-index two associated with P and Q and this cycle is unfolded in a simple way by the family $\left(f_{t}\right)_{t \in[-\epsilon, \epsilon]^{2}}, f_{0}=f$, if the following conditions hold:
i) There are local charts \mathcal{U}_{P} and \mathcal{U}_{Q} around P and Q

$$
\mathcal{U}_{P}, \mathcal{U}_{Q} \simeq[-1,1]^{s} \times[-1,1]^{2} \times[-1,1]^{u}
$$

where $f_{t}^{\pi(P)} \stackrel{\text { def }}{=} \mathcal{A}_{t}=\mathcal{A}$ and $f_{t}^{\pi(Q)} \stackrel{\text { def }}{=} \mathcal{B}_{t}=\mathcal{B}$ are linear maps of the form

$$
\begin{aligned}
& \mathcal{A}\left(x^{s}, x^{c}, x^{u}\right)=\left(A^{s}\left(x^{s}\right), C_{\alpha}\left(x^{c}\right), A^{u}\left(x^{u}\right)\right) \quad \text { and } \\
& \mathcal{B}\left(x^{s}, x^{c}, x^{u}\right)=\left(B^{s}\left(x^{s}\right), C_{\beta}\left(x^{c}\right), B^{u}\left(x^{u}\right)\right),
\end{aligned}
$$

where $A^{s}, B^{s}: \mathbb{R}^{s} \rightarrow \mathbb{R}^{s}$ are contractions, corresponding to the contracting eigenvalues $\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ and $\left(\beta_{1}, \ldots, \beta_{s}\right)$, and $A^{u}, B^{u}: \mathbb{R}^{u} \rightarrow \mathbb{R}^{u}$ are expansions, corresponding to the expanding eigenvalues $\left(\alpha_{s+3}, \ldots, \alpha_{d}\right)$ and $\left(\beta_{s+3}, \ldots, \beta_{d}\right)$.
ii) There is a partially hyperbolic splitting $E^{s s} \oplus E^{c} \oplus E^{u u}$, defined over the orbits of P and Q, such that in these local charts they are of the form
$E^{s s}=\mathbb{R}^{s} \times\left\{0^{2}\right\} \times\left\{0^{u}\right\}, \quad E^{c}=\left\{0^{s}\right\} \times \mathbb{R}^{2} \times\left\{0^{u}\right\}, \quad E^{u u}=\left\{0^{s}\right\} \times\left\{0^{2}\right\} \times \mathbb{R}^{u}$.
iii) There are a quasi-transverse ${ }^{1}$ heteroclinic point $Y_{P} \in W^{u}\left(\mathcal{O}_{P}\right) \cap W^{s}\left(\mathcal{O}_{Q}\right)$ in the neighborhood \mathcal{U}_{P}, a natural number $\ell>0$, and a neighborhood $\mathcal{U}_{Y_{P}}$ of Y_{P} in \mathcal{U}_{P}, such that, in these local coordinates:

- $Y_{P}=\left(0^{s}, 0^{2}, y_{P}^{u}\right)$, where $y_{P}^{u} \in[-1,1]^{u}$;
- $Y_{Q}=f_{t}^{\ell}\left(Y_{P}\right) \in \mathcal{U}_{Q}$ and $Y_{Q}=\left(y_{Q}^{s}, 0^{2}, 0^{u}\right)$, where $y_{Q}^{s} \in[-1,1]^{s}$;
- $f_{t}^{\ell}\left(\mathcal{U}_{Y_{P}}\right) \subset \mathcal{U}_{Q}$ and

$$
f_{t}^{\ell \ell \text { def }}=T_{P Q, t}: \mathcal{U}_{Y_{P}} \rightarrow f_{t}^{\ell}\left(\mathcal{U}_{Y_{P}}\right)
$$

is an affine map of the form

$$
T_{P Q, t}\left(x^{s}, x^{c}, x^{u}\right)=\left(T_{P Q}^{s}\left(x^{s}\right)+y_{Q}^{s}, T_{P Q}^{c}\left(x^{c}\right)+t, T_{P Q}^{u}\left(x^{u}-y_{P}^{u}\right)\right),
$$

where $T_{P Q}^{s}: \mathbb{R}^{s} \rightarrow \mathbb{R}^{s}$ is a linear contraction (independent of t), $T_{P Q}^{u}: \mathbb{R}^{u} \rightarrow \mathbb{R}^{u}$ is a linear expansion (which also does not depend on t) and $T_{P Q}^{c}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is either $\pm \mathrm{Id}$ or the reflection $E_{\mathbb{X}}$.
iv) There are a transverse heteroclinic point $X_{Q} \in W^{u}\left(\mathcal{O}_{Q}\right) \pitchfork W^{s}\left(\mathcal{O}_{P}\right)$ in the neighborhood \mathcal{U}_{Q}, a natural number $r>0$, and a neighborhood $\mathcal{U}_{X_{Q}}$ of X_{Q} in \mathcal{U}_{Q} such that, in these local coordinates:

- $X_{Q}=\left(0^{s}, x_{Q}^{c}, 0^{u}\right)$, where $x_{Q} \in \mathbb{R}^{2}$;
- $X_{P}=f_{t}^{r}\left(X_{Q}\right) \in \mathcal{U}_{P}$ and $X_{P}=\left(0^{s}, x_{P}^{c}, 0^{u}\right)$, where $x_{P} \in \mathbb{R}^{2}$;
- $f_{t}^{r}\left(\mathcal{U}_{X_{Q}}\right) \subset \mathcal{U}_{P}$ and

$$
f_{t}^{r} \stackrel{\text { def }}{=} T_{Q P, t}=T_{Q P}: \mathcal{U}_{X_{Q}} \rightarrow f_{t}^{r}\left(\mathcal{U}_{X_{Q}}\right)
$$

is an affine map of the form

$$
\begin{aligned}
& T_{Q P}\left(x^{s}, x^{c}, x^{u}\right)=\left(T_{Q P}^{s}\left(x^{s}\right), T_{Q P}^{c}\left(x^{c}\right)-x_{Q}^{c}+x_{P}^{c}, T_{Q P}^{u}\left(x^{u}\right)\right), \\
& { }^{1} \operatorname{dim}\left(T_{Y_{P}} W^{s}\left(\mathcal{O}_{Q}\right)\right)+\operatorname{dim}\left(T_{Y_{P}} W^{u}\left(\mathcal{O}_{P}\right)\right)=d-2=\operatorname{dim}(M)-2 .
\end{aligned}
$$

where $T_{Q P}^{s}: \mathbb{R}^{s} \rightarrow \mathbb{R}^{s}$ is a linear contraction, $T_{Q P}^{u}: \mathbb{R}^{u} \rightarrow \mathbb{R}^{u}$ is a linear expansion and $T_{Q P}^{c}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is either $\pm \mathrm{Id}$ or the reflection $E_{\mathbb{X}}$. Note that here the maps f_{t} do not depend on t.

We say that \mathcal{A} and \mathcal{B} are the linear parts of the cycle, that X_{Q} and Y_{P} are the heteroclinic points, and $T_{Q P}$ and $T_{P Q, t}$ are the transitions of the cycle.

Figure 2.1: Transitions of the cycle
We have the next result about the approximation of cycles by simple ones:

Proposition 2.2. Let f be a diffeomorphism with a heterodimensional cycle of co-index two associated with saddles P and Q which is central separated. Assume that the central eigenvalues satisfy

$$
\left|\alpha_{s+1}\right|=\left|\alpha_{s+2}\right| \quad \text { and } \quad\left|\beta_{s+1}\right|=\left|\beta_{s+2}\right|
$$

Then any neighbourhood \mathcal{U} of f contains diffeomorphisms having simple cycles associated with P and Q which are unfolded in a simple way.

Proof. We start with some preparations and fix some notation. For simplicity let us assume that Q and P are fixed points of f. By a small perturbation of f we can assume that there are small neighbourhoods of P and Q, say \mathcal{U}_{P} and \mathcal{U}_{Q}, where f is linear.

Consider $W^{u u}(Q)$ the strong unstable manifold of Q (the unique f-invariant manifold tangent to $E_{Q}^{u u}$). Using local coordinates around Q define the following local manifolds of Q

$$
\begin{aligned}
& W_{\text {loc }}^{s}(Q) \stackrel{\text { def }}{=}\left\{\left(x^{s}, 0^{c}, 0^{u}\right)\right\} \subset W^{s}(Q) \cap \mathcal{U}_{Q}, \\
& W_{\text {loc }}^{u}(Q) \stackrel{\text { def }}{=}\left\{\left(0^{s}, x^{c}, x^{u}\right)\right\} \subset W^{u}(Q) \cap \mathcal{U}_{Q}, \\
& W_{\text {loc }}^{c u}(Q) \stackrel{\text { def }}{=}\left\{\left(0^{s}, x^{c}, 0^{u}\right)\right\} \subset W^{u}(Q) \cap \mathcal{U}_{Q}, \quad \text { and } \\
& W_{\text {loc }}^{u u}(Q) \stackrel{\text { def }}{=}\left\{\left(0^{s}, 0^{2}, x^{u}\right)\right\} \subset W^{u u}(Q) \cap \mathcal{U}_{Q} .
\end{aligned}
$$

Similarly, let $W^{s s}(P)$ be the strong stable manifold of P (the unique f-invariant manifold tangent to $E_{P}^{s s}$), using local coordinates we define the following local
manifolds of P

$$
\begin{aligned}
& W_{\text {loc }}^{u}(P) \stackrel{\text { def }}{=}\left\{\left(0^{s}, 0^{c}, x^{u}\right)\right\} \subset W^{u}(P) \cap \mathcal{U}_{P}, \\
& W_{\text {loc }}^{s}(P) \stackrel{\text { def }}{=}\left\{\left(x^{s}, x^{c}, 0^{u}\right)\right\} \subset W^{s}(P) \cap \mathcal{U}_{P}, \\
& W_{\text {loc }}^{c s}(P) \stackrel{\text { def }}{=}\left\{\left(0^{s}, x^{c}, 0^{u}\right)\right\} \subset W^{s}(P) \cap \mathcal{U}_{P}, \quad \text { and } \\
& W_{\text {loc }}^{s s}(P) \stackrel{\text { def }}{=}\left\{\left(x^{s}, 0^{2}, 0^{u}\right)\right\} \subset W^{s s}(P) \cap \mathcal{U}_{P}
\end{aligned}
$$

We now choose heteroclinic points of the cycle. Take heteroclinic points $X \in W^{u}(Q) \cap W^{s}(P)$ and $Y \in W^{s}(Q) \cap W^{u}(P)$. After an arbitrarily small perturbation of f, we can assume that the first intersection is transverse and the second one quasi-transverse. Moreover, we can also suppose that $X \notin W^{u u}(Q)$ and $X \notin W^{s s}(P)$. Replacing X by some negative iterate we can assume that $X \in W_{l o c}^{u}(Q)$. Write $X=\left(0^{s}, x^{c}, x^{u}\right)$ and $f^{-n}(X)=\left(0^{s}, x_{n}^{c}, x_{n}^{u}\right)$. Since $X \notin W^{u u}(Q)$ we have $x^{c} \neq 0^{2}$ and

$$
\frac{\left\|x_{n}^{u}\right\|}{\left\|x_{n}^{c}\right\|} \leq \frac{\left|\beta_{s+3}\right|^{-n}}{\left|\beta_{s+1}\right|^{-n}} \cdot \frac{\left\|x^{u}\right\|}{\left\|x^{c}\right\|}
$$

As $\left|\beta_{s+3}\right|>\left|\beta_{s+1}\right|$ this implies that $f^{-n}(X)$ is much closer to $W_{\text {loc }}^{c u}(Q)$ than to $W_{l o c}^{u u}(Q)$ for a sufficiently big n. Analogously, replacing X by some positive iterate we can assume that $X \in W_{\text {loc }}^{s}(P)$ and since $\left|\alpha_{s}\right|<\left|\alpha_{s+2}\right|$ we have that $f^{m}(X)$ is much closer to $W_{l o c}^{c s}(P)$ than $W_{l o c}^{s s}(P)$ for a sufficiently big m. Thus after arbitrarily small perturbations we can assume that there are backward iterate \bar{X}_{Q} of X that is in $W_{l o c}^{c u}(Q)$, and forward iterate \bar{X}_{P} of X that is in $W_{l o c}^{c s}(P)$. The points \bar{X}_{Q} and \bar{X}_{P} are depicted in Figure 2.2.

Figure 2.2: The heteroclinic points \bar{X}_{Q} and \bar{X}_{P}
Now take a quasi-transverse heteroclinic point $Y \in W^{s}(Q) \cap W^{u}(P)$ and we fix iterates (backward) \bar{Y}_{P} and (forward) \bar{Y}_{Q} of it such that $\bar{Y}_{P} \in W_{\text {loc }}^{u}(P)$ and $\bar{Y}_{Q} \in W_{\text {loc }}^{s}(Q)$.

Claim 2.3. After an arbitrarily small perturbation of f, we can assume that there are large $r_{0}, \ell_{0}>0$, negative iterates \tilde{X}_{Q} of \bar{X}_{Q} and \tilde{Y}_{P} of \bar{Y}_{P}, and small neighborhoods $\mathcal{U}_{\tilde{X}_{Q}}$ of \tilde{X}_{Q} and $\mathcal{U}_{\tilde{Y}_{P}}$ of \tilde{Y}_{P} such that the restrictions of $f^{r_{0}}$ to $\mathcal{U}_{\tilde{X}_{Q}}$ and of $f^{\ell_{0}}$ to $\mathcal{U}_{\tilde{Y}_{P}}$ are linear maps preserving the splitting $E^{s s} \oplus E^{c} \oplus E^{u u}$.

Proof. In the neighborbood \mathcal{U}_{Q} of Q there are f-invariant foliations $\mathcal{F}_{Q}^{u}, \mathcal{F}_{Q}^{u u}$, $\mathcal{F}_{Q}^{c}, \mathcal{F}_{Q}^{s s}$ and \mathcal{F}_{Q}^{s} that are tangent to the bundles $E^{u u} \oplus E^{c}, E^{u u}, E^{c}, E^{s s}$ and $E^{c} \oplus E^{s s}$, respectively. Using the linearizing coordinates of f in $\mathcal{U}_{Q} \simeq[-1,1]^{d}$ we consider the following locally f-invariant foliations:

- \mathcal{F}_{Q}^{u} the foliation by $(u+2)$-planes parallel to $\left\{0^{s}\right\} \times[-1,1]^{2} \times[-1,1]^{u}$,
- $\mathcal{F}_{Q}^{u u}$ the foliation by u-planes parallel to $\left\{0^{s}\right\} \times\left\{0^{2}\right\} \times[-1,1]^{u}$,
- \mathcal{F}_{Q}^{c} the foliation by 2-planes parallel to $\left\{0^{s}\right\} \times[-1,1]^{2} \times\left\{0^{u}\right\}$,
- $\mathcal{F}_{Q}^{s s}$ the foliation by s-planes parallel to $[-1,1]^{s} \times\left\{0^{2}\right\} \times\left\{0^{u}\right\}$,
- \mathcal{F}_{Q}^{s} the foliation by $(s+2)$-planes parallel to $[-1,1]^{s} \times[-1,1]^{2} \times\left\{0^{u}\right\}$.

Analogously, in the neighborbood \mathcal{U}_{P} of P there are foliations $\mathcal{F}_{P}^{u}, \mathcal{F}_{P}^{u u}$, $\mathcal{F}_{P}^{c}, \mathcal{F}_{P}^{s s}$ and \mathcal{F}_{P}^{s} that are tangent to the bundles $E^{u u} \oplus E^{c}, E^{u u}, E^{c}, E^{s s}$ and $E^{c} \oplus E^{s s}$, respectively. As these foliations have the same local expression, for simplicity, let us omit the subscript P and Q and consider the foliations $\mathcal{F}^{u}, \mathcal{F}^{u u}, \mathcal{F}^{c}, \mathcal{F}^{s s}$ and \mathcal{F}^{s} defined on $\mathcal{U}_{Q} \cup \mathcal{U}_{P}$ and denote by $\mathcal{F}^{\sigma}(X)$ the leaf of \mathcal{F}^{σ} containing X, for $\sigma=u, u u, c, s s, s$.

By construction there is $r_{1}>0$ such that $f^{r_{1}}\left(\bar{X}_{Q}\right)=\bar{X}_{P}$. Let us consider images of these foliations by $f^{r_{1}}$. After an arbitrarily small perturbation of f we can assume that the following transversality conditions hold:

$$
f^{r_{1}}\left(\mathcal{F}^{u}\left(\bar{X}_{Q}\right)\right) \pitchfork_{\bar{X}_{P}} E^{s s} .
$$

Given a set A and a point $X \in A$ denote by $\mathcal{C}(A, X)$ the connected component of A containing X. By domination the images of the leaves of \mathcal{F}^{u} are close to the leaves in \mathcal{F}^{u} in \mathcal{U}_{P}. Replacing \bar{X}_{P} by some forward iterate of it, say $f^{r_{1}+r_{2}}\left(\bar{X}_{Q}\right)=f^{r_{2}}\left(\bar{X}_{P}\right)$, we can assume that after an arbitrarily small perturbation we have

$$
\mathcal{C}\left(f^{r_{1}+r_{1}}\left(\mathcal{F}^{u}\left(\bar{X}_{Q}\right)\right) \cap \mathcal{U}_{P}, f^{r_{2}}\left(\bar{X}_{P}\right)\right)=\mathcal{F}^{u}\left(f^{r_{2}}\left(\bar{X}_{P}\right)\right)
$$

then we have the invariance of the foliation \mathcal{F}^{u}. Consider now negative iterates of the foliations in \mathcal{U}_{P} by $f^{r_{1}+r_{2}}$. Since the foliation \mathcal{F}^{u} is $f^{r_{1}+r_{2}}$-invariant, we have the following transversality:

$$
f^{-\left(r_{1}+r_{2}\right)}\left(\mathcal{F}^{s s}\left(f^{r_{2}}\left(\bar{X}_{P}\right)\right)\right) \pitchfork_{\bar{X}_{Q}} E^{u} .
$$

By domination the backward iterates of the leaves of $\mathcal{F}^{s s}$ are close to the leaves in $\mathcal{F}^{s s}$ in \mathcal{U}_{Q}. Then replacing \bar{X}_{Q} by some backward iterate of it, say $f^{-r_{3}}\left(\bar{X}_{Q}\right)$,
we can assume that after an arbitrarily small perturbation we have

$$
\mathcal{C}\left(f^{-\left(r_{1}+r_{2}+r_{3}\right)}\left(\mathcal{F}^{s s}\left(f^{r_{2}}\left(\bar{X}_{P}\right)\right)\right) \cap \mathcal{U}_{Q}, f^{-r_{3}}\left(\bar{X}_{Q}\right)\right)=\mathcal{F}^{s s}\left(f^{-r_{3}}\left(\bar{X}_{Q}\right)\right)
$$

then we have the invariance of the foliations $\mathcal{F}^{s s}$ and \mathcal{F}^{u}. Similarly, now we consider the image of the foliations in \mathcal{U}_{P} by $f^{r_{1}+r_{2}+r_{3}}$. After an arbitrarily small perturbation we can assume that:

$$
f^{r_{1}+r_{2}+r_{3}}\left(\mathcal{F}^{u u}\left(f^{-r_{3}}\left(\bar{X}_{Q}\right)\right)\right) \pitchfork_{\bar{X}_{P}} E^{s}
$$

By domination the images of the leaves of $\mathcal{F}^{u u}$ are close to the leaves in $\mathcal{F}^{u u}$ in \mathcal{U}_{P}. Replacing $f^{r_{2}}\left(\bar{X}_{P}\right)$ by some forward iterate of it, say $f^{r_{2}+r_{4}}\left(\bar{X}_{P}\right)$, we can assume that after an arbitrarily small perturbation we have

$$
\mathcal{C}\left(f^{r_{1}+r_{2}+r_{3}+r_{4}}\left(\mathcal{F}^{u u}\left(f^{-r_{3}}\left(\bar{X}_{Q}\right)\right)\right) \cap \mathcal{U}_{P}, f^{r_{2}+r_{4}}\left(\bar{X}_{P}\right)\right)=\mathcal{F}^{u u}\left(f^{r_{2}+r_{4}}\left(\bar{X}_{P}\right)\right)
$$

then we have the invariance of the foliations $\mathcal{F}^{s s}, \mathcal{F}^{u}$ and $\mathcal{F}^{u u}$. Following analogously we have that there are $r_{5}, r_{6}>0$ such that for $f^{r_{0}}$, where $r_{0}=r_{1}+\cdots+r_{6}$, we get the invariance of all foliations.

Consider the $\tilde{X}_{Q} \stackrel{\text { def }}{=} f^{-\left(r_{3}+r_{5}\right)}\left(\bar{X}_{Q}\right)$ and $\tilde{X}_{P} \stackrel{\text { def }}{=} f^{r_{1}+r_{2}+r_{4}+r_{6}}\left(\bar{X}_{P}\right)$. This implies that (after a new arbitrarily small perturbation if necessary) there are small neighborhoods $\mathcal{U}_{X_{Q}}$ of \tilde{X}_{Q} and $\mathcal{U}_{X_{P}}$ of \tilde{X}_{P} such that $f^{r_{0}}$ (or some positive iterate of it) preserves the foliations

$$
f^{r_{0}}\left(\mathcal{F}^{\sigma}(Z) \cap \mathcal{U}_{X_{Q}}\right)=\mathcal{F}^{\sigma}\left(f^{r_{0}}(Z)\right) \subset \mathcal{U}_{X_{P}}
$$

for $\sigma=u, u u, c, s s, s$, and the restriction of $f^{r_{0}}$ to $\mathcal{U}_{X_{Q}}$ is linear.
Arguing analogously, we get ℓ_{0}, \tilde{Y}_{P} and an small neighborhood of \tilde{Y}_{P} such that $f^{\ell_{0}}\left(\tilde{Y}_{P}\right)=\tilde{Y}_{Q}$, the local foliations are $f^{\ell_{0}}$ invariant, and the restriction of $f^{\ell_{0}}$ to $\mathcal{U}_{Y_{P}}$ is linear. This completes the proof of the claim.

In the local coordinates in \mathcal{U}_{Q} and \mathcal{U}_{P}, write

$$
\begin{aligned}
& \tilde{X}_{Q}=\left(0^{s}, \tilde{x}_{Q}^{c}, 0^{u}\right) \in \mathcal{U}_{Q}, \quad \tilde{X}_{P}=f^{r_{0}}\left(\tilde{X}_{Q}\right)=\left(0^{s}, \tilde{x}_{P}^{c}, 0^{u}\right) \in \mathcal{U}_{P}, \\
& \tilde{Y}_{P}=\left(0^{s}, 0^{c}, \tilde{y}_{P}^{u}\right) \in \mathcal{U}_{P}, \quad \tilde{Y}_{Q}=f^{\ell_{0}}\left(\tilde{Y}_{P}\right)=\left(\tilde{y}_{Q}^{s}, 0^{c}, 0^{u}\right) \in \mathcal{U}_{Q} .
\end{aligned}
$$

By the previous claim, in the local coordinates (around Q and P) the restriction of $f^{r_{0}}$ to the neighborhood $\mathcal{U}_{\tilde{X}_{Q}}$ is of the form

$$
f^{r_{0}}\left(x^{s}, x^{c}+\tilde{x}_{Q}^{c}, x^{u}\right)=\left(\tilde{T}_{Q P}^{s}\left(x^{s}\right), \tilde{x}_{P}^{c}+\tilde{T}_{Q P}^{c}\left(x^{c}\right), \tilde{T}_{Q P}^{u}\left(x^{u}\right)\right)
$$

where $\tilde{T}_{Q P}^{s}$ is a linear contraction, $\tilde{T}_{Q P}^{u}$ a linear expansion, and $\tilde{T}_{Q P}^{c}$ linear.

Similarly, the restriction of $f^{\ell_{0}}$ to the neighborhood $\mathcal{U}_{\tilde{Y}_{P}}$ is of the form

$$
f^{\ell_{0}}\left(x^{s}, x^{c}, x^{u}+\tilde{y}_{P}^{u}\right)=\left(\tilde{T}_{P Q}^{s}\left(x^{s}\right)+\tilde{y}_{Q}^{s}, \tilde{T}_{P Q}^{c}\left(x^{c}\right), \tilde{T}_{P Q}^{u}\left(x^{u}\right)\right)
$$

where $\tilde{T}_{P Q}^{s}$ is a linear contraction, $\tilde{T}_{P Q}^{u}$ a linear expansion, and $\tilde{T}_{P Q}^{c}$ linear.
It remains to prove that (after a new perturbation and after replacing \tilde{X}_{Q} and \tilde{Y}_{P} by some backward iterates and \tilde{X}_{P} and \tilde{Y}_{Q} by some forward iterates) we have identities or reflections in the central coordinates.

We fix k_{1} and $k_{2}>0$ (the choice of these numbers is explained below) and replace \tilde{X}_{Q} and \tilde{X}_{P}, by $X_{Q}=f^{-k_{1}}\left(\tilde{X}_{Q}\right)=\left(0^{s}, x_{Q}^{c}, 0^{u}\right)$ and $X_{P}=f^{k_{2}}\left(\tilde{X}_{P}\right)=$ $\left(0^{s}, x_{P}^{c}, 0^{u}\right)$. Let $r \stackrel{\text { def }}{=} k_{1}+r_{0}+k_{2}$, then the restriction of the map f^{r} to a small neighborhood of X_{Q} is of the form $f^{r}\left(x^{s}, x^{c}+x_{Q}^{c}, x^{u}\right)=\left(\bar{x}^{s}, \bar{x}^{c}, \bar{x}^{u}\right)$, where

$$
\begin{align*}
& \bar{x}^{s}=\left(A^{s}\right)^{k_{2}} \circ \tilde{T}_{Q P}^{s} \circ\left(B^{s}\right)^{k_{1}}\left(x^{s}\right), \\
& \bar{x}^{c}=x_{P}^{c}+\left(C_{\alpha}\right)^{k_{2}} \circ \tilde{T}_{Q P}^{c} \circ\left(C_{\beta}\right)^{k_{1}}\left(x^{c}\right), \tag{2.2}\\
& \bar{x}^{u}=\left(A^{u}\right)^{k_{2}} \circ \tilde{T}_{Q P}^{u} \circ\left(B^{u}\right)^{k_{1}}\left(x^{u}\right) .
\end{align*}
$$

Clearly, the action of this map in the s-coordinate is a linear contraction and its action in the u-coordinate is a linear expansion. Therefore we consider

$$
T_{Q P}^{s}=\left(A^{s}\right)^{k_{2}} \circ \tilde{T}_{Q P}^{s} \circ\left(B^{s}\right)^{k_{1}} \quad \text { and } \quad T_{Q P}^{u}=\left(A^{u}\right)^{k_{2}} \circ \tilde{T}_{Q P}^{u} \circ\left(B^{u}\right)^{k_{1}}
$$

It remains to check that, for appropriate choices of large k_{1} and k_{2} and after a small perturbation, the central part $T_{Q P}^{c}=\left(C_{\alpha}\right)^{k_{2}} \circ \tilde{T}_{Q P}^{c} \circ\left(C_{\beta}\right)^{k_{1}}$ can be done as identity or reflection maps. Recall that $\left|\alpha_{s+1}\right|=\left|\alpha_{s+2}\right|<1$ and $\left|\beta_{s+1}\right|=\left|\beta_{s+2}\right|>1$ and also the notation

$$
\alpha_{s+1}=\rho e^{2 \pi i \phi}, \phi \in[0,1), \rho<1 \quad \text { and } \quad \beta_{s+1}=\varrho e^{2 \pi i \varphi}, \varphi \in[0,1), \varrho>1
$$

We can assume, after a small perturbation, that $\rho^{n} \varrho^{m}=1$ for some large n and m. In particular, $\rho^{n k} \varrho^{m k}=1$ for all $k \geq 1$. We also can assume that $\phi, \varphi \in \mathbb{Q}$. In particular, $\left(C_{\alpha}\right)^{n j}=\rho^{n j} R_{n \phi}^{j}$, and $\left(C_{\beta}\right)^{m j}=\varrho^{m j} R_{m \varphi}^{j}$, where R_{θ} denotes the rotation of angle θ. As $R_{n \phi}$ and $R_{m \varphi}$ are rational rotation there is large k such that

$$
R_{n \phi}^{k}=R_{m \varphi}^{k}=\mathrm{Id} .
$$

Fix $k_{2}=n k$ and $k_{1}=m k$, then $\left(C_{\alpha}\right)^{k_{2}}=\rho^{n k}$ Id and $\left(C_{\beta}\right)^{k_{1}}=\rho^{m k}$ Id. Thus

$$
\left(C_{\alpha}\right)^{k_{2}} \circ \tilde{T}_{Q P}^{c} \circ\left(C_{\beta}\right)^{k_{1}}=\rho^{n k} \varrho^{m k} \tilde{T}_{Q P}^{c}=\tilde{T}_{Q P}^{c}
$$

As the segment of orbit going from X_{Q} to X_{P} can be chosen arbitrarily large (it is enough to take large k) we can modify the action of f in the central direction (without modifying the other directions) along the orbit $X_{Q}, f\left(X_{Q}\right), \ldots, f^{r}\left(X_{Q}\right)=X_{P}$ to transform $\tilde{T}_{Q P}^{c}$ in one of the maps Id, $-\mathrm{Id}, E_{\mathbb{X}}$, depending on the eigenvalues of the transition $\tilde{T}_{Q P}$. This concludes the construction of the transition map $T_{Q P}$ (this map does not depend on t). The construction of the transition $T_{P Q}$ for the diffeomorphism f with a cycle is done arguing exactly as above.

Finally, we consider an unfolding $\left(f_{t}\right)_{t \in[-\epsilon,]^{2}}$ of $f=f_{0}$ as follows. Outside of a small neighborhood of $f^{-1}\left(Y_{Q}\right)=f^{\ell-1}\left(Y_{P}\right)$ we consider $f_{t}=f$ and we modify f in a neighborhood of $f^{-1}\left(Y_{Q}\right)$ in such a way the map f_{t}^{ℓ} is of the form

$$
f_{t}^{\ell}\left(x^{s}, x^{c}, x^{u}\right)=\left(T_{P Q}^{s}\left(x^{s}\right), T_{P Q}^{c}\left(x^{c}\right)+t, T_{P Q}^{u}\left(x^{u}\right)\right) .
$$

This concludes the proof of the proposition.

