5
 Blenders

In this chapter, following [9, Section 6.2.1], we first introduce a simplified model of a blender with central direction $c>1$. The main result in Section 5.1 is the intersection property in Proposition 5.1 implying that an invariant manifold of a saddle of s-index s topologically behaves as a saddle of bigger s-index. We see in Section 5.2 that these blenders are robust.

5.1

Geometric model of blender
Fix $c>1$ and $n \geq 2$ and consider a diffeomorphism $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that the maximal invariant set of f in the rectangle $R=[0,1]^{n}$ is an affine Smale horseshoe contained in the interior of R.

Figure 5.1: Rectangles

For notational simplicity, let us consider the case $n=2$ and $c=2$. Suppose that the affine horseshoe has four legs. Let I_{1}, \ldots, I_{4} be pairwise disjoint closed intervals in $(0,1)$ such that $f(R) \cap R$ is the union of the vertical rectangles $A_{i}=I_{i} \times[0,1], i=1, \ldots, 4$. Analogously, let J_{1}, \ldots, J_{4} be pairwise disjoint closed intervals in $(0,1)$ such that $f^{-1}(R) \cap R$ is the union of four horizontal rectangles $f^{-1}\left(A_{i}\right)=[0,1] \times J_{i}, i=1, \ldots, 4$. Denote by $\left(x_{q}, y_{q}\right)$ the fixed point of f in the rectangle A_{1}.

Let $\sigma<1$ be the rate of contraction of f in R and take $1<\lambda<\beta<$ $\max \left\{2, \sigma^{-1}\right\}$. Consider $0<\lambda_{0}, \beta_{0}<1$ with $\beta-\beta_{0}, \lambda-\lambda_{0} \in(0,1)$.

Figure 5.2: The map F
We define a diffeomorphism $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ whose restriction to the cube $\mathbf{C}=[-1,1]^{2} \times R$ is defined as follows:

$$
F(t, s, x, y)= \begin{cases}(\lambda t, \beta s, f(x, y)) & \text { if }(x, y) \in f^{-1}\left(A_{1}\right) \tag{5.1}\\ \left(\lambda t, \beta s-\beta_{0}, f(x, y)\right) & \text { if }(x, y) \in f^{-1}\left(A_{2}\right) \\ \left(\lambda t-\lambda_{0}, \beta s, f(x, y)\right) & \text { if }(x, y) \in f^{-1}\left(A_{3}\right) \\ \left(\lambda t-\lambda_{0}, \beta s-\beta_{0}, f(x, y)\right) & \text { if }(x, y) \in f^{-1}\left(A_{4}\right)\end{cases}
$$

where and $t, s \in[-1,1]$. Let Γ be the maximal invariant (hyperbolic) set of F in the cube \mathbf{C}. Under these assumptions the set $\mathbf{C} \cap F(\mathbf{C})$ is the union of the following four sets

$$
\begin{aligned}
\mathbb{A}_{1} & =[-1,1] \times[-1,1] \times A_{1}, \\
\mathbb{A}_{2} & =[-1,1] \times\left[-1, \beta-\beta_{0}\right] \times A_{2}, \\
\mathbb{A}_{3} & =\left[-1, \lambda-\lambda_{0}\right] \times[-1,1] \times A_{3}, \\
\mathbb{A}_{4} & =\left[-1, \lambda-\lambda_{0}\right] \times\left[-1, \beta-\beta_{0}\right] \times A_{4} .
\end{aligned}
$$

Consider the hyperbolic fixed point $Q=\left(0,0, x_{q}, y_{q}\right) \in \mathbb{A}_{1}$ of F of s-index 1 and its local stable manifold

$$
W_{l o c}^{s}(Q ; F) \stackrel{\text { def }}{=}\{(0,0)\} \times[0,1] \times\left\{y_{q}\right\},
$$

which is the connected component of $W^{s}(Q ; F) \cap \mathbf{C}$ that contains Q.
We define vertical segments, strips, and blocks to the right of $W_{\text {loc }}^{s}(Q ; F)$ as follows:

- A vertical segment to the right of $W_{\text {loc }}^{s}(Q ; F)$ is a segment of the form $\varsigma=\{(t, s, x)\} \times[0,1]$, where $x \in[0,1]$ and $0<t, s \leq 1$.
- A vertical block to the right of $W_{\text {loc }}^{s}(Q ; F)$ is a set of the form $\mathrm{B}=$ $\left[t_{1}, t_{2}\right] \times\left[s_{1}, s_{2}\right] \times\{x\} \times[0,1]$, where $x \in[0,1], 0<t_{1}<t_{2} \leq 1$ and $0<s_{1}<s_{2} \leq 1$. Consider $a(\mathrm{~B})=\left(t_{2}-t_{1}\right) \cdot\left(s_{2}-s_{1}\right)$ the area of the base of this vertical block.
- A t-vertical strip to the right of $W_{\text {loc }}^{s}(Q ; F)$ is a set of the form $\Delta^{t}=$ $\left[t_{1}, t_{2}\right] \times\{s\} \times\{x\} \times[0,1]$, where $x \in[0,1], s \in(0,1]$ and $0<t_{1}<t_{2} \leq 1$. We denote by $w_{t}\left(\Delta^{t}\right)=\left(t_{2}-t_{1}\right)$ the t-width of Δ^{t}.
- A s-vertical strip to the right of $W_{\text {loc }}^{s}(Q ; F)$ is a set of the form $\Delta^{s}=$ $\{t\} \times\left[s_{1}, s_{2}\right] \times\{x\} \times[0,1]$, where $x \in[0,1], t \in(0,1]$ and $0<s_{1}<s_{2} \leq 1$. We denote by $w_{s}\left(\Delta^{s}\right)=\left(s_{2}-s_{1}\right)$ the s-width of Δ^{s}.

Figure 5.3: t-vertical strips and s-vertical strips

The following intersection result is the main step of this section.
Proposition 5.1. Consider the map F and the cube \mathbf{C} in (5.1) and the hyperbolic fixed point Q of F. Then the stable manifold of Q intersects every vertical block B to the right of $W_{\text {loc }}^{s}(Q ; F)$ in \mathbf{C}.

5.1.1
 Proof of Proposition 5.1

To prove the proposition, we will rewrite it using iterated function systems (IFS). See Proposition 5.2 which is just a reformulation of Proposition 5.1 in terms of the IFS's obatined considering the quotient dynamics by the hyperbolic part.

More precisely, consider the maps

- $\alpha_{1}(t, s)=\left(\phi_{1}(t), \psi_{1}(s)\right)$ for $t \in\left[-\frac{1}{\lambda}, \frac{1}{\lambda}\right]$ and $s \in\left[-\frac{1}{\beta}, \frac{1}{\beta}\right]$;
- $\alpha_{2}(t, s)=\left(\phi_{1}(t), \psi_{2}(s)\right)$ for $t \in\left[-\frac{1}{\lambda}, \frac{1}{\lambda}\right]$ and $s \in\left[\frac{-1+\beta_{0}}{\beta}, 1\right]$;
- $\alpha_{3}(t, s)=\left(\phi_{2}(t), \psi_{1}(s)\right)$ for $t \in\left[\frac{-1+\lambda_{0}}{\lambda}, 1\right]$ and $s \in\left[-\frac{1}{\beta}, \frac{1}{\beta}\right]$;
- $\alpha_{4}(t, s)=\left(\phi_{2}(t), \psi_{2}(s)\right)$ for $t \in\left[\frac{-1+\lambda_{0}}{\lambda}, 1\right]$ and $s \in\left[\frac{-1+\beta_{0}}{\beta}, 1\right]$,
where $\phi_{1}, \phi_{2}, \psi_{1}, \psi_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are the expanding maps given by
- $\phi_{1}(t)=\lambda t \quad$ and $\quad \phi_{2}(t)=\lambda t-\lambda_{0}$,

Figure 5.4: $\phi_{1}, \phi_{2}: \mathbb{R} \rightarrow \mathbb{R}$

- $\psi_{1}(s)=\beta s \quad$ and $\quad \psi_{2}(s)=\beta s-\beta_{0}$.

Indeed, considering the quotient of the dynamics of F by the sum of the strong stable and strong unstable directions, one gets the bidimensional central dynamics given by the compositions of maps $\alpha_{i}, i=1, \ldots, 4$, above. More precisely, observe that

- $F^{-1}\left(\mathbb{A}_{1}\right)=\left[-\frac{1}{\lambda}, \frac{1}{\lambda}\right] \times\left[-\frac{1}{\beta}, \frac{1}{\beta}\right] \times f^{-1}\left(A_{1}\right)$;
- $F^{-1}\left(\mathbb{A}_{2}\right)=\left[-\frac{1}{\lambda}, \frac{1}{\lambda}\right] \times\left[\frac{-1+\beta_{0}}{\beta}, 1\right] \times f^{-1}\left(A_{2}\right)$;
- $F^{-1}\left(\mathbb{A}_{3}\right)=\left[\frac{-1+\lambda_{0}}{\lambda}, 1\right] \times\left[-\frac{1}{\beta}, \frac{1}{\beta}\right] \times f^{-1}\left(A_{3}\right)$;
- $F^{-1}\left(\mathbb{A}_{4}\right)=\left[\frac{-1+\lambda_{0}}{\lambda}, 1\right] \times\left[\frac{-1+\beta_{0}}{\beta}, 1\right] \times f^{-1}\left(A_{4}\right)$
and that the map α_{i} is the "central part"of the restriction of F to $F^{-1}\left(\mathbb{A}_{i}\right)$.
Proposition 5.2. Let $\mathcal{G}=\mathcal{G}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ be the iterated function system generated by the compositions of the maps $\alpha_{i}, i=1, \ldots, 4$. Then given any open set $O \subset[0,1]^{2}$ there is a map $\alpha \in \mathcal{G}$ such that $(0,0) \in \alpha(O)$.

We need the following one-dimensional version of the proposition above.
Lemma 5.3 (Lemma 6.7 in [9]). Denote by $\mathcal{G}\left(\phi_{1}, \phi_{2}\right)$ the iterated function system generated by the maps

$$
\phi_{1}(t)=\lambda t \quad \text { and } \quad \phi_{2}(t)=\lambda t-\lambda_{0},
$$

where $0<\lambda_{0}<1<\lambda<2$. Then given any open interval $I \subset[0,1]$ there is $\phi \in \mathcal{G}\left(\phi_{1}, \phi_{2}\right)$ such that $0 \in \phi(I)$.

Proof. Note that $\phi_{2}\left(\frac{\lambda_{0}}{\lambda}\right)=0$, then it is enough to prove that there is a map $\varphi \in \mathcal{G}\left(\phi_{1}, \phi_{2}\right)$ such that $\frac{\lambda_{0}}{\lambda} \in \varphi(I)$. Then $\phi=\phi_{2} \circ \varphi$ satisfies the conclusion in the lemma. Let $I=I_{0}$ be an open interval in $[0,1]$ that does not contain $\frac{\lambda_{0}}{\lambda}$. We will define inductively intervals $I_{n} \subset[0,1]$ as follows: if I_{n} does not contain $\frac{\lambda_{0}}{\lambda}$ we let

$$
I_{n+1}=\left\{\begin{array}{lll}
\phi_{1}\left(I_{n}\right) & \text { if } & I_{n} \subset\left(0, \frac{1}{\lambda}\right], \\
\phi_{2}\left(I_{n}\right) & \text { if } & I_{n} \subset\left(\frac{\lambda_{0}}{\lambda}, 1\right] .
\end{array}\right.
$$

Note that the length of $\left|I_{n+1}\right|$ of I_{n+1} is $\lambda\left|I_{n}\right|$. Thus if the intervals I_{n} are inductively defined and do not contain $\frac{\lambda_{0}}{\lambda}$ then $\left|I_{n+1}\right|=\lambda^{n}\left|I_{0}\right|$. Since $\lambda>1$, this implies that there is a first $n_{0}>0$ such that $I_{n_{0}}$ contains $\frac{\lambda_{0}}{\lambda}$. Taking φ the composition of the corresponding ϕ_{i} we prove the claim and thus the lemma.

Proof of Proposition 5.2. Given an open set O in $[0,1]^{2}$, there are intervals $I_{t}, I_{s} \subset[0,1]$ such that $O \supset I_{t} \times I_{s}$. Applying Lemma 5.3 to the intervals I_{t} and I_{s}, and to the maps (ϕ_{1}, ϕ_{2}) and (ψ_{1}, ψ_{2}), respectively, we get maps

$$
\phi=\phi_{i_{n}} \circ \cdots \circ \phi_{i_{1}} \in \mathcal{G}\left(\phi_{1}, \phi_{2}\right) \quad \text { and } \quad \psi=\psi_{j_{m}} \circ \cdots \circ \psi_{j_{1}} \in \mathcal{G}\left(\psi_{1}, \psi_{2}\right)
$$

such that $0 \in \phi\left(I_{t}\right)$ and $0 \in \psi\left(I_{s}\right)$, respectively. Suppose that $n \leq m$. Then, since $\phi_{1}(0)=0$, to prove the proposition it is enough to consider the maps

$$
\alpha_{k}= \begin{cases}\left(\phi_{i_{k}}, \psi_{j_{k}}\right) & \text { for } \quad k=1, \ldots, n \\ \left(\phi_{1}, \psi_{j_{k}}\right) & \text { for } \quad k=n+1, \ldots, m,\end{cases}
$$

and their composition.
Proof of Proposition 5.1. Let $\mathrm{B}=\mathrm{B}_{0}=\left[t_{1}, t_{2}\right] \times\left[s_{1}, s_{2}\right] \times\{x\} \times[0,1]$ be a vertical block to the right of $W_{\text {loc }}^{s}(Q ; F)$. It is enough to proof that

$$
\begin{equation*}
F^{N}\left(\mathrm{~B}_{0}\right) \cap W_{l o c}^{s}(Q ; F) \neq \emptyset \quad \text { for some } N \geq 0 . \tag{5.2}
\end{equation*}
$$

Recall that $a\left(\mathrm{~B}_{0}\right)=\left(t_{2}-t_{1}\right) \cdot\left(s_{2}-s_{1}\right)>0$ is the area of the base of the block B_{0}. Write $I_{t}=\left[t_{1}, t_{2}\right]$ and $I_{s}=\left[s_{1}, s_{2}\right]$ and consider $w_{t}\left(\mathrm{~B}_{0}\right)=t_{2}-t_{1}$ and $w_{s}\left(\mathrm{~B}_{0}\right)=s_{2}-s_{1}$ the t and s-widths of the block.

First recall that $W_{\text {loc }}^{s}(Q ; F)=\{(0,0)\} \times[0,1] \times\left\{y_{q}\right\}$. In the two last coordinates the action of the map F is given by the map f, more precisely, we have a contraction and an expansion in each coordinate, respectively. To get the intersection in (5.2), we need to prove that there is $N>0$ such that $F^{N}\left(\mathrm{~B}_{0}\right) \supset\{(0,0, x(N))\} \times[0,1]$ for some $x(N) \in[0,1]$. Indeed, this inclusion is given by Proposition 5.2. Let us go to the details. We call t-interval the first interval of a block and s-interval the second one.

The intervals $I_{t}=I_{t}(0)$ and $I_{s}=I_{s}(0)$, that form the base of the block B_{0}, might satisfy one of the following cases:
i) $I_{t} \subseteq\left(0, \frac{\lambda_{0}}{\lambda}\right) \cup\left(\frac{\lambda_{0}}{\lambda}, \frac{1}{\lambda}\right]$ and $I_{s} \subseteq\left(0, \frac{\beta_{0}}{\beta}\right) \cup\left(\frac{\beta_{0}}{\beta}, \frac{1}{\beta}\right]$;
ii) $I_{t} \subseteq\left(0, \frac{\lambda_{0}}{\lambda}\right) \cup\left(\frac{\lambda_{0}}{\lambda}, \frac{1}{\lambda}\right]$ and $I_{s} \subseteq\left(\frac{\beta_{0}}{\beta}, 1\right]$;
iii) $I_{t} \subseteq\left(\frac{\lambda_{0}}{\lambda}, 1\right]$ and $I_{s} \subseteq\left(0, \frac{\beta_{0}}{\beta}\right) \cup\left(\frac{\beta_{0}}{\beta}, \frac{1}{\beta}\right]$;
iv) $I_{t} \subseteq\left(\frac{\lambda_{0}}{\lambda}, 1\right]$ and $I_{s} \subseteq\left(\frac{\beta_{0}}{\beta}, 1\right]$;
v) $I_{t} \subseteq\left(0, \frac{\lambda_{0}}{\lambda}\right) \cup\left(\frac{\lambda_{0}}{\lambda}, \frac{1}{\lambda}\right]$ and $I_{s} \ni \frac{\beta_{0}}{\beta}$;
vi) $I_{t} \subseteq\left(\frac{\lambda_{0}}{\lambda}, 1\right]$ and $I_{s} \ni \frac{\beta_{0}}{\beta}$;
vii) $I_{t} \ni \frac{\lambda_{0}}{\lambda}$ and $I_{s} \subseteq\left(0, \frac{\beta_{0}}{\beta}\right) \cup\left(\frac{\beta_{0}}{\beta}, \frac{1}{\beta}\right]$;
viii) $I_{t} \ni \frac{\lambda_{0}}{\lambda}$ and $I_{s} \subseteq\left(\frac{\beta_{0}}{\beta}, 1\right]$;
ix) $I_{t} \ni \frac{\lambda_{0}}{\lambda}$ and $I_{s} \ni \frac{\beta_{0}}{\beta}$.

We claim that there are essentially three cases to consider (cases (ix), (v), and (i)) and that the other cases follow analogously.

Case (ix): If the intervals I_{t} and I_{s} satisfy case (ix), then $F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{4}$ intersects $W_{l o c}^{s}(Q ; F)$, thus we are done and $N=1$.

Cases (v), (vi), (vii), and (viii): First, if the intervals I_{t} and I_{s} satisfy case (v), then the s-interval of $F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{2}$ contains 0 , and $F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{2}$ contains a t-vertical strip

$$
\Delta^{t}(1)=I_{t}(1) \times\{s(1)\} \times\{x(1)\} \times[0,1]
$$

to the right of $W_{l o c}^{s}(Q ; F)$ with $w_{t}\left(\Delta^{t}(1)\right) \geq \lambda w_{t}\left(\mathrm{~B}_{0}\right)$. There are three possibilities for $\Delta^{t}(1)$:

- $I_{t}(1) \subset\left[0, \frac{\lambda_{0}}{\lambda}\right) \cup\left(\frac{\lambda_{0}}{\lambda}, \frac{1}{\lambda}\right]$. Then $F\left(F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{2}\right) \cap \mathbb{A}_{2}$ contains a t-vertical strip $\Delta^{t}(2)=I_{t}(2) \times\{s(2)\} \times\{x(2)\} \times[0,1]$ to the right of $W_{l o c}^{s}(Q ; F)$ with $w_{t}\left(\Delta^{t}(2)\right) \geq \lambda^{2} w_{t}\left(\mathrm{~B}_{0}\right)$.
- $I_{t}(1) \subset\left(\frac{\lambda_{0}}{\lambda}, 1\right]$. Then $F\left(F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{2}\right) \cap \mathbb{A}_{4}$ contains a t-vertical strip $\Delta^{t}(2)=I_{t}(2) \times\{s(2)\} \times\{x(2)\} \times[0,1]$ to the right of $W_{l o c}^{s}(Q ; F)$ with $w_{t}\left(\Delta^{t}(2)\right) \geq \lambda^{2} w_{t}\left(\mathrm{~B}_{0}\right)$.
- $I_{t}(1) \ni \frac{\lambda_{0}}{\lambda}$. Then $F\left(F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{2}\right) \cap \mathbb{A}_{4}$ intersects $W_{\text {loc }}^{s}(Q ; F)$.

Arguing as in Lemma 5.3 and considering the t-vertical strip $\Delta^{t}(2)$ there are three possibilities as above and we repeat the process until getting a first N such that the interval $I_{t}(N)$ contains $\frac{\lambda_{0}}{\lambda}$, (this natural number N exists because $\lambda>1$, then the width of the strips are increasing).

The three cases below follow similarly:

- for case (vi), $F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{4}$ contains a t-vertical strip $\Delta^{t}(1)$ to the right of $W_{l o c}^{s}(Q ; F)$ with $w_{t}\left(\Delta^{t}(1)\right) \geq \lambda w_{t}\left(\mathrm{~B}_{0}\right)$.
- for case (vii), $F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{3}$ contains a s-vertical strip $\Delta^{s}(1)$ to the right of $W_{l o c}^{s}(Q ; F)$ with $w_{s}\left(\Delta^{s}(1)\right) \geq \beta w_{s}\left(\mathrm{~B}_{0}\right)$.
- for case (viii), $F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{4}$ contains a s-vertical strip $\Delta^{s}(1)$ to the right of $W_{l o c}^{s}(Q ; F)$ with $w_{s}\left(\Delta^{s}(1)\right) \geq \beta w_{s}\left(\mathrm{~B}_{0}\right)$.

Cases (i), (ii), (iii), and (iv): First, suppose that the intervals I_{t} and I_{s} of the block B_{0} satisfy case (i). Then $F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{1}$ contains a vertical block $\mathrm{B}_{1}=I_{t}(1) \times I_{s}(1) \times\{x(1)\} \times[0,1]$ to the right of $W_{l o c}^{s}(Q ; F)$ with $a\left(\mathrm{~B}_{1}\right) \geq \lambda \beta a\left(\mathrm{~B}_{0}\right)$. There are nine possibilities analogous to (i) \sim (ix) for the intervals $I_{t}(1)$ and $I_{s}(1)$. Arguing again as in Proposition 5.2 (this is possible since $\lambda>1$ and $\beta>1$) we repeat the process until getting a first N such that intervals $I_{t}(N)$ and $I_{s}(N)$ satisfy $I_{t}(N) \ni \frac{\lambda_{0}}{\lambda}$ and $I_{s}(N) \ni \frac{\beta_{0}}{\beta}$. The number N exists because $\lambda>1$ and $\beta>1$ and thus then the area/width of the base/strips are increasing.

The three cases bellow are similar to case (i):

- for case (ii), $F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{2}$ contains a vertical block $\mathrm{B}_{1}=I_{t}(1) \times I_{s}(1) \times$ $\{x(1)\} \times[0,1]$ to the right of $W_{l o c}^{s}(Q ; F)$ with $a\left(\mathrm{~B}_{1}\right) \geq \lambda \beta a\left(\mathrm{~B}_{0}\right)$.
- for case (iii), $F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{3}$ contains a vertical block $\mathrm{B}_{1}=I_{t}(1) \times I_{s}(1) \times$ $\{x(1)\} \times[0,1]$ to the right of $W_{l o c}^{s}(Q ; F)$ with $a\left(\mathrm{~B}_{1}\right) \geq \lambda \beta a\left(\mathrm{~B}_{0}\right)$.
- for case (iv), $F\left(\mathrm{~B}_{0}\right) \cap \mathbb{A}_{4}$ contains a vertical block $\mathrm{B}_{1}=I_{t}(1) \times I_{s}(1) \times$ $\{x(1)\} \times[0,1]$ to the right of $W_{l o c}^{s}(Q ; F)$ with $a\left(\mathrm{~B}_{1}\right) \geq \lambda \beta a\left(\mathrm{~B}_{0}\right)$.

The proof of the proposition is now complete.

5.2
 Cone fields and robustness

5.2.1

Cone fields

Consider the map F defined in Equation 5.1, $F: \mathbf{C} \rightarrow \mathbb{R}^{n+2}$, where $\mathbf{C}=[-1,1]^{2} \times[0,1]^{n}$, and the maximal invariant set of the map F in the cube \mathbf{C} is Γ. We call the set Γ a model of blender. Note that Γ has a dominated splitting (recall Section 2.1) of the form $\mathbb{X} \oplus \mathbb{T} \oplus \mathbb{S} \oplus \mathbb{Y}$, where \mathbb{X} and \mathbb{Y} are the strong stable and strong unstable bundles (corresponding to the stable and unstable bundles of the quotient horseshoe), respectively, and \mathbb{T} and \mathbb{S} the weak unstable bundles (corresponding to the weak expansions λ and β). This dominated splitting can be extended (and we do) to the whole cube \mathbf{C}. To emphasize this domination, from now on, we will write the strong stable direction in the first coordinate and the strong unstable in the last one. That is if $[0,1]^{n}=[0,1]^{s}+[0,1]^{u}$, where s is the dimension of the stable direction of
the horseshoe and u is the dimension of the unstable one, we write

$$
\mathbf{C}=[0,1]^{s} \times[-1,1]^{2} \times[0,1]^{u} .
$$

Consider cone fields $\mathfrak{C}^{s}, \mathfrak{C}^{u u}, \mathfrak{C}^{u}, \mathfrak{C}^{1}$ and \mathfrak{C}^{2} defined as follows. Given $x \in \mathbf{C}$ and the decomposition of the tangent bundle $\mathbb{X} \oplus \mathbb{T} \oplus \mathbb{S} \oplus \mathbb{Y}$ over x, we consider (for simplicity the dependence on x is omitted)

$$
\begin{aligned}
& \mathfrak{C}^{s}=\left\{\left(v^{s}, v^{1}, v^{2}, v^{u}\right) \in \mathbb{X} \oplus \mathbb{T} \oplus \mathbb{S} \oplus \mathbb{Y},\left\|\left(v^{1}, v^{2}, v^{u}\right)\right\|<\left\|v^{s}\right\|\right\}, \\
& \mathfrak{C}^{u u}=\left\{\left(v^{s}, v^{1}, v^{2}, v^{u}\right) \in \mathbb{X} \oplus \mathbb{T} \oplus \mathbb{S} \oplus \mathbb{Y},\left\|\left(v^{s}, v^{1}, v^{2}\right)\right\|<\left\|v^{u}\right\|\right\}, \\
& \mathfrak{C}^{u}=\left\{\left(v^{s}, v^{1}, v^{2}, v^{u}\right) \in \mathbb{X} \oplus \mathbb{T} \oplus \mathbb{S} \oplus \mathbb{Y},\left\|v^{s}\right\|<\left\|\left(v^{1}, v^{2}, v^{u}\right)\right\|\right\}, \\
& \mathfrak{C}^{1}=\left\{\left(v^{s}, v^{1}, v^{2}, v^{u}\right) \in \mathbb{X} \oplus \mathbb{T} \oplus \mathbb{S} \oplus \mathbb{Y},\left\|\left(v^{2}, v^{u}\right)\right\|<\left\|\left(v^{s}, v^{1}\right)\right\|\right\}, \\
& \mathfrak{C}^{2}=\left\{\left(v^{s}, v^{1}, v^{2}, v^{u}\right) \in \mathbb{X} \oplus \mathbb{T} \oplus \mathbb{S} \oplus \mathbb{Y},\left\|\left(v^{s}, v^{1}\right)\right\|<\left\|\left(v^{2}, v^{u}\right)\right\|\right\} .
\end{aligned}
$$

Due to the domination ${ }^{1}$ of $\mathbb{X} \oplus \mathbb{T} \oplus \mathbb{S} \oplus \mathbb{Y}$ we have that the cones $\mathfrak{C}^{s}, \mathfrak{C}^{\mathfrak{u u}}, \mathfrak{C}^{u}, \mathfrak{C}^{1}$ and \mathfrak{C}^{2} are invariant under the derivative $D F^{ \pm 1}$. More precisely, the following inclusions hold for all $x \in \mathbf{C}$ with $F^{ \pm 1}(x) \in \mathbf{C}$:

$$
\begin{aligned}
& D F_{F(x)}^{-1} \mathfrak{C}^{s}(F(x)) \subset \mathfrak{C}^{s}(x), \\
& D F_{x} \mathfrak{C}^{u}(x) \subset \mathfrak{C}^{u}(F(x)), \\
& D F_{x} \mathfrak{C}^{u u}(x) \subset \mathfrak{C}^{u u}(F(x)), \\
& D F_{F(x)}^{-1} \mathfrak{C}^{1}(F(x)) \subset \mathfrak{C}^{1}(x), \\
& D F_{x} \mathfrak{C}^{2}(x) \subset \mathfrak{C}^{2}(F(x)) .
\end{aligned}
$$

Similarly as in the previous section, using these cones we now define almost vertical disks, strips, and blocks to the right of $W^{s}(Q ; F)$. For simplicity we use the same notation as in the previous section for them. First, we define top and the base of the cube by:

$$
\mathbf{C}_{\text {top }} \stackrel{\text { def }}{=}[0,1]^{s} \times[-1,1]^{2} \times\left\{1^{u}\right\} \quad \text { and } \quad \mathbf{C}_{\text {base }} \xlongequal{\text { dof }}[0,1]^{s} \times[-1,1]^{2} \times\left\{0^{u}\right\}
$$

Analogously, the t and s-top, and the t and s-base of the cube are defined as follows:

$$
\begin{aligned}
& \mathbf{C}_{\text {top }}^{t} \stackrel{\text { def }}{=}[0,1]^{s} \times\{1\} \times[-1,1] \times[0,1]^{u}, \\
& \mathbf{C}_{\text {base }}^{t} \stackrel{\text { def }}{=}[0,1]^{s} \times\{-1\} \times[-1,1] \times[0,1]^{u}, \\
& \mathbf{C}_{\text {top }}^{s} \stackrel{\text { def }}{=} \\
& \mathbf{C}_{\text {base }}^{s} \stackrel{\text { def }}{=}[0,1]^{s} \times[-1,1] \times\{1\} \times[0,1]^{u},
\end{aligned}
$$

[^0]In what follows we consider disks and strips contained in \mathbf{C}.

- An almost vertical disk ς to the right of $W_{l o c}^{s}(Q ; F)$ is a disk (of dimension u) tangent to $\mathfrak{C}^{u u}$, that is, $T_{x} \varsigma \subset \mathfrak{C}^{u u}(x)$ for all $x \in \varsigma$, and such that ς intersects the top and the base of \mathbf{C} (note that by "transversality" these intersections consist of just a point).
- An almost t-vertical strip to the right of $W_{\text {loc }}^{s}(Q ; F)$ is a $(u+1)$-dimensional disk tangent to \mathfrak{C}^{1} and foliated by almost vertical segments.
- An almost s-vertical strip to the right of $W_{l o c}^{s}(Q ; F)$ is a $(u+1)$-dimensional disk tangent to \mathfrak{C}^{2} and foliated by almost vertical segments.
- An almost vertical block B to the right of $W_{l o c}^{s}(Q ; F)$ is a $(u+2)$-dimensional disk tangent to unstable cone field \mathfrak{C}^{u}, foliated by almost t-vertical strips and by almost s-vertical strips.

Given an almost t-vertical (resp. s-vertical) strip Δ^{t} (resp. Δ^{s}), we define the t-width of Δ^{t} (resp. s-width of Δ^{s}) as the infimum of the lengths of the curves α contained in Δ^{t} (resp. Δ^{s}) joining $\mathbf{C}_{\text {top }}^{t}$ and $\mathbf{C}_{\text {base }}^{t}$ (resp. $\mathbf{C}_{\text {top }}^{s}$ and $\mathrm{C}_{\text {base }}^{s}$) and tangent to \mathfrak{C}^{1} (resp. \mathfrak{C}^{2}).

Given an almost vertical block B (which is foliated by t-vertical and s vertical strips), we define the area of the base of a block as the product of the infimum of the t-width of t-vertical strips in B and the infimum of the s-width of s-vertical strips in B.

Next result is the version of Proposition 5.1 for almost vertical blocks:
Lemma 5.4. The stable manifold of Q intersects every almost vertical block B to the right of $W_{\text {loc }}^{s}(Q ; F)$.

Proof. To show this result we argue as in the proof of Proposition 5.1. Let B be an almost vertical block to the right of $W_{\text {loc }}^{s}(Q ; F)$. Due to the domination and the forward invariance of the unstable cones \mathfrak{C}^{u}, we have that the area of the base of B exponentially increases under forward iterations of F (in fact, this area is increasing in the rate $\lambda \beta>1$). Then arguing as in Proposition 5.1, we have that $W^{s}(Q ; F)$ intersects B. This ends the sketch of proof of the lemma.

5.2.2

Robustness
In previous section we got invariant cone fields under the derivative $D F^{ \pm 1}$ associated to the sum of the bundles of the dominated splitting

$$
\mathbb{X} \oplus \mathbb{T} \oplus \mathbb{S} \oplus \mathbb{Y}
$$

We note that this invariance is an open property, thus the cones are also $D G^{ \pm 1}$ invariant for every map G which is C^{1}-close to F.

Observe also that the maximal invariant set Γ of F is contained in the interior of the cube \mathbf{C}. Thus the same holds for the maximal invariant set of G in \mathbf{C} that we denote by Γ_{G} and call it the continuation of Γ. Note also that the continuation Q_{G} of the point Q for G is well defined. Thus we have analogous definitions for almost vertical disks, t-strips, s-strips and blocks to the right of $W_{\text {loc }}^{s}\left(Q_{G} ; G\right)$. We also have that every map G close to F are expansions in the central coordinate, then the expansion properties (for G) are satisfied for these sets. Therefore Lemma 5.4 holds for every map G sufficiently close to F. Thus we have proved the following:

Proposition 5.5. For every map $G C^{1}$-close enough to F there are defined the continuation Q_{G} of Q and almost vertical disks, t-strips, s-strips and blocks to the right of $W_{\text {loc }}^{s}\left(Q_{G} ; G\right)$. Then the stable manifold of Q_{G} intersects every almost vertical block B to the right of $W_{\text {loc }}^{s}\left(Q_{G} ; G\right)$.

[^0]: ${ }^{1}$ As in Section 2.1, the splitting with four bundles $\mathbb{X} \oplus \mathbb{T} \oplus \mathbb{S} \oplus \mathbb{Y}$ is dominated if the bundles $\mathbb{X} \oplus(\mathbb{T} \oplus \mathbb{S} \oplus \mathbb{Y})$, $(\mathbb{X} \oplus \mathbb{T}) \oplus(\mathbb{S} \oplus \mathbb{Y})$ and $(\mathbb{X} \oplus \mathbb{T} \oplus \mathbb{S}) \oplus \mathbb{Y}$ are all dominated.

