6

Robust cycles from blenders

In this section, using blenders, we prove Theorem 1.4 (strong homoclinic intersections of partially hyperbolic periodic points yield robust cycles) and the stabilization of (\mathbb{C}, \mathbb{C})-cycles.

6.1
 Strong homoclinic intersections yield robust cycles

Let f be diffeomorphism with a (non-hyperbolic) periodic point Z of period $\pi(Z)$ which has bidimensional central direction and a strong homoclinic intersection point R, that is, $R \in W^{s s}(\mathcal{O}(Z) ; f) \cap W^{u u}(\mathcal{O}(Z) ; f)$ and $R \notin \mathcal{O}(Z)$.

The first part of the proof is make some small perturbations on the diffeomorphism f to have a linear dynamics in the neighborhood of the periodic point Z and its strong homoclinic intersection R. Let us go into the details.

After a small perturbation of f, we can assume that there are a large (even) number $n>0$ and a small neighborhood \mathcal{U}_{Z} of Z such that in local coordinates $[-1,1]^{s} \times[-1,1]^{2} \times[-1,1]^{u}$ around Z, the restriction of $\left(f^{\pi(Z)}\right)^{n} \stackrel{\text { def }}{=} f^{n_{0}}$ to the neighborhood \mathcal{U}_{Z} is a linear map preserving the splitting $E^{s s} \oplus E^{c} \oplus E^{u u}$ (this part is similar to Claim 2.3), say

$$
f^{n_{0}}=\left(f^{s}, \operatorname{Id}, f^{u}\right): \mathbb{R}^{s} \times \mathbb{R}^{2} \times \mathbb{R}^{u} \rightarrow \mathbb{R}^{s} \times \mathbb{R}^{2} \times \mathbb{R}^{u}
$$

where f^{s} and f^{u} are contracting and expanding linear maps and Id is the identity map.

Define $W_{l o c}^{s s}(Z ; f)$ and $W_{l o c}^{u u}(Z ; f)$ (the local strong stable and local strong unstable manifolds of Z) as the connected components of $W^{s s}(Z ; f) \cap \mathcal{U}_{Z}$ and $W^{u u}(Z ; f) \cap \mathcal{U}_{Z}$ containing P, respectively. In local coordinates we have

$$
W_{l o c}^{s s}(Z ; f)=[-1,1]^{s} \times\left\{\left(0^{2}, 0^{u}\right)\right\} \quad \text { and } \quad W_{l o c}^{u u}(Z ; f)=\left\{\left(0^{s}, 0^{2}\right)\right\} \times[-1,1]^{u}
$$

Consider the first $m_{1}, m_{2}>0$ such that

$$
B \stackrel{\text { def }}{=} f^{-m_{1}}(R) \in W_{l o c}^{u u}(Z ; f), \quad A \xlongequal{\text { def }} f^{m_{2}}(R) \in W_{l o c}^{s s}(Z ; f)
$$

Note that for $m=m_{1}+m_{2}$ we have $f^{m}(B)=A$. By shrinking the neighborhood \mathcal{U}_{Z}, we can assume that m is even and arbitrarily large. Using this fact we can perform a small perturbation of f along the segment of the orbit joining B and A such that the restriction of f^{m} to a small neighborhood \mathcal{U}_{B} of B is a linear contraction in the s-coordinate, a linear expansion in u-coordinate, and the identity in the central coordinate (this is identical to Equation (6.1)).

Note that the hyperplane $\Pi^{s u}=\mathbb{R}^{s} \times\left\{0^{2}\right\} \times \mathbb{R}^{u}$ is $f^{n_{0}}$-invariant in \mathcal{U}_{Z} and f^{m}-invariant in \mathcal{U}_{B}. Then there is $\bar{n}=m n_{0}$ such that $f^{\bar{n}}$ restricted to the hyperplane $\Pi^{s u}$ has a Smale linear horseshoe containing the points Z, A and B, see Figure 6.1.

Figure 6.1: Points Z, A and B

Since this horseshoe has many strong homoclinic intersections there are points ${ }^{1}$

$$
A_{1}, \ldots, A_{4} \in W_{l o c}^{s s}(Z ; f) \quad \text { and } \quad B_{1}, \ldots, B_{4} \in W_{l o c}^{u u}(Z ; f)
$$

such that $f^{n_{i}}\left(B_{i}\right)=A_{i}$, for some $n_{i}>\bar{n}, i=1, \ldots, 4$.

Figure 6.2: Points A_{1}, \ldots, A_{4} and B_{1}, \ldots, B_{4}
${ }^{1}$ Note that the points A_{1}, \ldots, A_{4} are in different orbits.

Consider the cube $\mathbf{C}=[-1,1]^{s} \times[-1,1]^{2} \times[-1,1]^{u}$ and pairwise disjoint u-disks C_{i}^{u} in $[0,1]^{u}$ as follows. Take five "horizontal" sub-cubes of the form

$$
C_{i}=[0,1]^{s} \times[-1,1]^{2} \times C_{i}^{u}, \quad i=0,1, \ldots, 4,
$$

such that

- C_{0} contains the point Z and the four points A_{i} 's;
- C_{i} contains B_{i}, for each $i=1, \ldots, 4$;
- $f^{n_{0}}\left(C_{0}\right)$ and $f^{n_{i}}\left(C_{i}\right)$ are "vertical" sub-cubes of the form $C_{i}^{s} \times[-1,1]^{2} \times$ $[0,1]^{u}$, where C_{i}^{s} are s-disks pairwise disjoint contained in $[0,1]^{s}$.

Figure 6.3: Sub-cubes
We now consider the local diffeomorphism $F: \cup_{i=0}^{4} C_{i} \rightarrow \mathbf{C}$ given by

$$
\left.F\right|_{C_{0}}=f^{n_{0}} \quad \text { and }\left.\quad F\right|_{C_{i}}=f^{n_{i}}, \quad i=1, \ldots, 4 .
$$

Note that using the coordinates above we have that $F=\left(F^{s}, \operatorname{Id}, F^{u}\right)$, where F^{s} is an affine contraction and F^{u} is an affine expansion.

Consider now a small perturbation F_{ϕ} of F of the form $F_{\phi}=\left(F^{s}, \phi, F^{u}\right)$, where $\phi:[-1,1]^{2} \rightarrow[-1,1]^{2}$ is a map close to the identity having a repellor $(0,0)$ and an attractor $\left(\delta_{1}, \delta_{2}\right)$, (small $\left.\delta_{1}, \delta_{2}>0\right)$ such that

$$
\begin{equation*}
W^{u}((0,0) ; \phi) \cap W^{s}\left(\left(\delta_{1}, \delta_{2}\right) ; \phi\right) \neq \emptyset . \tag{6.1}
\end{equation*}
$$

Note that the map F_{ϕ} has "two strong homoclinic intersections" (in this case associated to hyperbolic points). More precisely, we have the following:

- F_{ϕ} has two saddles Z and $Z_{\delta}=\left(0^{s}, \delta_{1}, \delta_{2}, 0^{u}\right)$ of s-indices s and $s+2$, respectively.
- $A_{i}=\left(a_{i}^{s}, 0^{2}, 0^{u}\right) \in W^{s s}\left(Z ; F_{\phi}\right)$ and $B_{i} \in W^{u u}\left(Z ; F_{\phi}\right)$ for $i=1, \ldots, 4$. Moreover, $F_{\phi}\left(B_{i}\right)=A_{i}$.
- There are points

$$
\tilde{A}_{i}=\left(a_{i}^{s}, \delta_{1}, \delta_{2}, 0^{u}\right) \in W^{s s}\left(Z_{\delta} ; F_{\phi}\right) \quad \text { and } \quad \tilde{B}_{i} \in W^{u u}\left(Z_{\delta} ; F_{\phi}\right),
$$

where $F_{\phi}\left(\tilde{B}_{i}\right)=\tilde{A}_{i}$, for $i=1, \ldots, 4$.
Note that by construction of the map F, to the perturbation F_{ϕ} of F is associated a perturbation f_{ϕ} of f such that $f_{\phi}^{n_{i}}\left(B_{i}\right)=A_{i}$ and $f_{\phi}^{n_{i}}\left(\tilde{B}_{i}\right)=\tilde{A}_{i}$.

Figure 6.4: A_{i} 's and \tilde{A}_{i} 's
We now consider a three-parameter perturbation $f_{t, s, r}$ of f_{ϕ} (small $t, s, r>0$) defined as follows. Outside small neighborhoods of the union of the sets $f^{n_{i}-1}\left(C_{i}\right)$ we have $f_{t, s, r}=f_{\phi}$. We modify f_{ϕ} in neighborhoods of $f^{n_{i}-1}\left(C_{i}\right)$ such that the restriction of $f_{t, s, r}^{n_{i}}$ to C_{i} is of the form:

- $f_{t, s, r}^{n_{0}}(x)=f_{\phi}^{n_{0}}(x)$, for $x \in C_{0}$;
- $f_{t, s, r}^{n_{1}}(x)=f_{\phi}^{n_{1}}(x)-\left(0^{s}, t, 0,0^{u}\right)$, for $x \in C_{1}$;
- $f_{t, s, r}^{n_{2}}(x)=f_{\phi}^{n_{2}}(x)-\left(0^{s}, 0, s, 0^{u}\right)$, for $x \in C_{2}$;
- $f_{t, s, r}^{n_{3}}(x)=f_{\phi}^{n_{3}}(x)-\left(0^{s}, t, s, 0^{u}\right)$, for $x \in C_{3}$;
- $f_{t, s, r}^{n_{4}}(x)=f_{\phi}^{n_{4}}(x)-\left(0^{s}, r, r, 0^{u}\right)$, for $x \in C_{4}$.

In this way, the map $F_{t, s, r}$ associated to $f_{t, s, r}$ and defined in $\cup_{i=0}^{4} C_{i}$ satisfies the following:

$$
F_{t, s, r}(x)=\left\{\begin{array}{lll}
F_{\phi}(x), & \text { if } & x \in C_{0}, \tag{6.2}\\
F_{\phi}(x)-\left(0^{s}, t, 0,0^{u}\right), & \text { if } & x \in C_{1}, \\
F_{\phi}(x)-\left(0^{s}, s, 0,0^{u}\right), & \text { if } & x \in C_{2}, \\
F_{\phi}(x)-\left(0^{s}, t, s, 0^{u}\right), & \text { if } & x \in C_{3}, \\
F_{\phi}(x)-\left(0^{s}, r, r, 0^{u}\right), & \text { if } & x \in C_{4} .
\end{array}\right.
$$

Fix small $\delta>0\left(\delta<\delta_{i}, i=1,2\right)$, consider the subset \mathbf{C}_{δ} of \mathbf{C} of the form

$$
\mathbf{C}_{\delta}=[0,1]^{s} \times[-\delta, \delta] \times[-\delta, \delta] \times[0,1]^{u},
$$

and let Γ be the maximal invariant set of $F_{t, s, r}$ in $\left(\cup_{i=0}^{3} C_{i}\right) \cap \mathbf{C}_{\delta}$,

$$
\Gamma \stackrel{\text { def }}{=} \bigcap_{k \in \mathbb{Z}} F_{t, s, r}^{k}\left(\cup_{i=0}^{3} C_{i} \cap \mathbf{C}_{\delta}\right) .
$$

Observe that Γ is a hyperbolic set of s-index s containing the saddle Z.
Note that the local stable manifold of Z for $F_{t, s, r}$ in local coordinates is:

$$
W_{\mathrm{loc}}^{s}\left(Z ; F_{t, s, r}\right)=[0,1]^{s} \times\left\{\left(0^{2}, 0^{u}\right)\right\} .
$$

As in previous section, we define a vertical disk to the right of $W_{\mathrm{loc}}^{s}\left(Z ; F_{t, s, r}\right)$ as u-disk (of dimension u) such that in local coordinates is of the form

$$
\left\{\left(x^{s}, t, s\right)\right\} \times[0,1]^{u}, \quad x^{s} \in[0,1]^{s}, 0<t \leq \delta, 0<s \leq \delta .
$$

Remark 6.1. For $\max \left\{\delta_{1}-\delta, \delta_{2}-\delta\right\}<r<\min \left\{\delta_{1}, \delta_{2}\right\}$, we have that the

$$
\left\{\left(a_{4}^{s}, \delta_{1}-r, \delta_{2}-r\right)\right\} \times[0,1]^{u}
$$

is a vertical disk to the right of $W_{\text {loc }}^{s}\left(Z ; F_{t, s, r}\right)$.
Similarly, we define a vertical $(u+2)$-block to the right of $W_{\text {loc }}^{s}\left(Z ; F_{t, s, r}\right)$ as a set of dimension $u+2$ such that in local coordinates is of the form $\left\{x^{s}\right\} \times\left[t_{1}, t_{2}\right] \times\left[s_{1}, s_{2}\right] \times[0,1]^{u}, \quad x^{s} \in[0,1]^{s}, 0<t_{1}<t_{2} \leq \delta, 0<s_{1}<s_{2} \leq \delta$.

Next result is Proposition 5.1 in this context. Note that the point Z corresponds to $Q=\left(x_{q}, 0,0, y_{q}\right)$ of Section 5.1, the map ϕ is a small perturbation of the identity, then the rate of expansion (in the central coordinate of $F_{t, s, r}$) is smaller than the rate of expansion of $\left(f^{s}\right)^{-1}$ and f^{u}, and the map $F_{t, s, r}$ corresponds to the map F in Equation (5.1).

Corollary 6.2. The stable manifold of Z intersects every vertical ($u+2$)-block to the right of $W_{\text {loc }}^{s}\left(Z ; F_{t, s, r}\right)$.

Fix small $r>0$ such that $\max \left\{\delta_{1}-\delta, \delta_{2}-\delta\right\}<r<\min \left\{\delta_{1}, \delta_{2}\right\}$ as in Remark 6.1. Now we are ready to prove that $F_{t, s, r}$ has a robust heterodimensional cycle associated to Z_{δ} and Γ.

Claim 6.3. $W^{s}\left(Z_{\delta} ; F_{t, s, r}\right) \cap W_{l o c}^{u}\left(\Gamma ; F_{t, s, r}\right) \neq \emptyset$.

Proof. From the intersection in Equation (6.1) one immediately gets that $W^{s}\left(Z_{\delta} ; F_{t, s, r}\right) \pitchfork W^{u}\left(Z ; F_{t, s, r}\right) \neq \emptyset$. The claim follows noting that $Z \in \Gamma$.

Claim 6.4. $W^{u}\left(Z_{\delta} ; F_{t, s, r}\right) \cap W_{l o c}^{s}\left(\Gamma ; F_{t, s, r}\right) \neq \emptyset$.
Proof. First, recall that in local coordinates we have that

$$
\tilde{B}_{4} \in W_{\mathrm{loc}}^{u}\left(Z_{\delta} ; F_{\phi}\right)=\left\{\left(0^{s}, \delta_{1}, \delta_{2}\right)\right\} \times[0,1]^{u}
$$

Recall also that $\tilde{B}_{4} \in C_{4}$ and $f_{\phi}^{n_{4}}\left(\tilde{B}_{4}\right)=\tilde{A}_{4}$. Also by construction of the map $F_{t, s, r}$ we have that

$$
\sigma \stackrel{\text { def }}{=}\left\{\left(a_{4}^{s}, \delta_{1}-r, \delta_{2}-r\right)\right\} \times[0,1]^{u} \subset W_{\mathrm{loc}}^{u}\left(Z_{\delta} ; F_{t, s, r}\right)
$$

By Remark 6.1, σ is a vertical disk to the right of $W_{\text {loc }}^{s}\left(Z ; F_{t, s, r}\right)$. Since vertical blocks are foliated by vertical disks, applying Corollary 6.2 for "smaller and smaller" (nested) vertical blocks containing σ, we have that

$$
\overline{W^{s}\left(Z ; F_{t, s, r}\right)} \cap \sigma \neq \emptyset \quad \text { then } \overline{W^{s}\left(Z ; F_{t, s, r}\right)} \cap W_{\mathrm{loc}}^{u}\left(Z_{\delta} ; F_{t, s, r}\right) \neq \emptyset .
$$

Since $Z \in \Gamma$ we have that $W_{\text {loc }}^{s}\left(\Gamma ; F_{t, s, r}\right) \cap W_{\text {loc }}^{u}\left(Z_{\delta} ; F_{t, s, r}\right) \neq \emptyset$, ending the proof of the claim.

Note that in Claim 6.3, the dimensions of $W^{s}\left(Z_{\delta} ; F_{t, s, r}\right)$ and $W^{u}\left(\Gamma ; F_{t, s, r}\right)$ are $s+2$ and $u+2$, respectively, where $(s+2)+(u+2)$ is bigger than the dimension of the ambient, then the intersection is transverse and moreover, robust. By robustness of blenders, Claim 6.4 holds for every map C^{1}-close to $F_{t, s, r}$, proving that the map $F_{t, s, r}$ has a robust cycle. Since $F_{t, s, r}$ is associated to $f_{t, s, r}$, we have that $f_{t, s, r}$ also must have a robust heterodimensional cycle. The proof of the theorem is now complete.

6.2
 Stabilization of (\mathbb{C}, \mathbb{C})-cycles

In this section we conclude the proof of Theorem A checking that a (\mathbb{C}, \mathbb{C})-cycles can be stabilized after arbitrarily small perturbations. This is a consequence of Proposition 3.9 and results in previous sections.

Let f be a diffeomorphism having a (\mathbb{C}, \mathbb{C})-cycle associated with the saddles P and Q. By Proposition 3.9 there is a small perturbation g_{1} of f having a cycle (associated with P and Q) with three heteroclinic points of type $\overrightarrow{P Q}$ (say X_{1}, X_{2}, X_{3}) with different orbits. We select one of these points, say X_{1}, and perform series of perturbations for constructing a diffeomorphism g_{2} having a blender $\Gamma_{g_{2}}$ involved in a robust cycle (see the proof of Proposition 3.1 and

Section 6.1). Note that the perturbation g_{2} of g_{1} does not involve the points X_{2} and X_{3} and therefore we can assume that besides the blender having a robust cycle this diffeomorphism also has a cycle associated to P and Q such that X_{2} and X_{3} are $\overrightarrow{P Q}$ heteroclinic points of it.

Recall that the blender persists after perturbations and it contains a saddle Z of s-index s. We now perform local perturbations of g_{2} at the heteroclinic points X_{2} and X_{3} to get the following two lemmas whose prove we postpone.

Lemma 6.5. There is a local perturbation of g_{3} of g_{2} at the point X_{2} such that the saddles Q and Z^{2} are homoclinically related ${ }^{3}$ for g_{3}.

Note that, since the perturbation is local, the diffeomorphism g_{3} has a cycle associated to P and Q (and X_{3} is a heteroclinic point of it).

Observe also that this implies that there is a transitive hyperbolic set $\tilde{\Gamma}_{g_{3}}$ containing the blender $\Gamma_{g_{3}}$ (the continuation of $\Gamma_{g_{2}}$ for g_{3}) and the saddle Q.

Let $\delta, \delta_{1}, \delta_{2}>0$ and \mathbf{C}_{δ} be a small cube such that the blender $\Gamma_{g_{3}}$ is the maximal invariant set of g_{3} in \mathbf{C}_{δ}. In the local coordinates around the saddle $Z=\left(0^{s}, 1,0,0^{u}\right)$ one has

$$
\begin{equation*}
\mathbf{C}_{\delta}=[0, \delta]^{s} \times\left[1-\delta_{1}, 1+\delta_{1}\right] \times\left[-\delta_{2}, \delta_{2}\right] \times[0, \delta]^{u} . \tag{6.3}
\end{equation*}
$$

In these local coodinates we also have $W_{l o c}^{s}(Z ; g)=[0, \delta]^{s} \times\left\{\left(1,0,0^{u}\right)\right\}$.
As in Section 5.2, we consider (small) invariant cone fields and define almost vertical disks, t-strips, s-strips, and blocks to the right of $W^{s}\left(Z ; g_{3}\right)$.

Lemma 6.6. There is a local perturbation g of g_{3} at the point X_{3} such that $W^{u}(P ; g)$ contains an almost vertical disk σ to the right of $W^{s}(Z ; g)$.

By Lemma 6.6 and by the intersection property of the blender in Proposition 5.5 we have that $W^{s}(Z ; g)$ intersects every almost vertical block containing σ. Since these blocks can taken arbitrarily small (i.e., their intersection is just the disk σ) it follows that $\overline{W^{s}(Z ; g)} \cap W^{u}(P ; g) \neq \emptyset$. Therefore

$$
W_{l o c}^{s}\left(\Gamma_{g} ; g\right) \cap W^{u}(P ; g) \neq \emptyset .
$$

As the blender $\Gamma_{g} \subset \tilde{\Gamma}_{g}$,

$$
W_{l o c}^{s}\left(\tilde{\Gamma}_{g} ; g\right) \cap W^{u}(P ; g) \neq \emptyset .
$$

[^0]As $W^{s}(P, g) \cap W^{u}(Q, g) \neq \emptyset$ and $Q \in \tilde{\Gamma}_{g}$ (recall that Q and Z are homoclinic related) we have that g has a (robust) heterodimensional cycle associated with the saddle P and the transitive hyperbolic set $\tilde{\Gamma}_{g} \ni Q$.

To complete the proof of the stabilization of the cycle it remains to prove the two lemmas above.

Proof of the Lemma 6.5. We need to prove that

$$
\begin{equation*}
W^{u}\left(Q ; g_{3}\right) \pitchfork W^{s}\left(Z ; g_{3}\right) \neq \emptyset . \quad \text { and } \quad W^{s}\left(Q ; g_{3}\right) \pitchfork W^{u}\left(Z ; g_{3}\right) \neq \emptyset \tag{6.4}
\end{equation*}
$$

Recall that by construction (Proposition 3.1),

$$
\begin{equation*}
W^{u}\left(Q ; g_{2}\right) \pitchfork W^{s}\left(Z ; g_{2}\right) \neq \emptyset \quad \text { and } \quad W^{s}\left(P ; g_{2}\right) \pitchfork W^{u}\left(Z ; g_{2}\right) \neq \emptyset \tag{6.5}
\end{equation*}
$$

Thus it remains to see that the second intersection holds (recall also that the first intersection in (6.4) persists after perturbations).

To get this intersection note that since $W^{u}\left(Z ; g_{2}\right) \pitchfork W^{s}\left(P ; g_{2}\right) \neq \emptyset$ by the λ-lemma we have that $W^{u}\left(Z ; g_{2}\right)$ accumulates to $X_{2} \in W^{s}\left(Q ; g_{2}\right)$. Thus there is a perturbation g_{3} of g_{2} such that $W^{u}\left(Z ; g_{2}\right) \pitchfork W^{s}\left(Q ; g_{2}\right) \neq \emptyset$.

Let us observe that in our setting this intersection can be obtained doing a small perturbation at X_{2} preserving the heteroclinic point X_{3}. This ends the proof of the lemma.

Proof of Lemma 6.6. To prove the lemma we consider a small perturbation unfolding the cycle in the heteroclinic point X_{3}.

Recall the Definition 3.4 of the quotient family $\left(\mathcal{Q}_{m, \ell, t=\left(t_{1}, t_{2}\right.}^{\alpha, \beta}\right)_{m, \ell, t}$ (we are omitting the superscripts $i, j=+,-, \pm$) in Section 3. Using this family to prove the assertion in the lemma it is enough to see that there are arbitrarily large $\ell \in \mathbb{N}$ and small $\left|t_{0}\right|$, and $\hat{\alpha}$ and $\hat{\beta}$ close to α and β such that

$$
\mathcal{Q}_{0, \ell, t_{0}}^{\hat{\alpha}, \hat{\beta}}\left(0^{2}\right) \in\left(1,1+\delta_{1}\right) \times\left(0, \delta_{2}\right),
$$

where δ_{1}, δ_{2} are the (fixed) central sizes in the definition of the cube in (6.3) associated to the blender above. This is done as in Proposition 3.5.

[^0]: ${ }^{2}$ Note that Z is the continuation of the saddle of g_{2}. For simplicity, we omit the dependence on g_{2} and just write Z.
 ${ }^{3}$ Recall Equation (3.5).

