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Robust cycles from blenders

In this section, using blenders, we prove Theorem 1.4 (strong homoclinic

intersections of partially hyperbolic periodic points yield robust cycles) and

the stabilization of (C�C)-cycles.

6.1

Strong homoclinic intersections yield robust cycles

Let f be diffeomorphism with a (non-hyperbolic) periodic point Z of

period π(Z) which has bidimensional central direction and a strong homoclinic

intersection point R, that is, R ∈ W ss(O(Z); f)∩W uu(O(Z); f) and R /∈ O(Z).

The first part of the proof is make some small perturbations on the

diffeomorphism f to have a linear dynamics in the neighborhood of the periodic

point Z and its strong homoclinic intersection R. Let us go into the details.

After a small perturbation of f , we can assume that there are a large

(even) number n > 0 and a small neighborhood UZ of Z such that in

local coordinates [−1� 1]s × [−1� 1]2 × [−1� 1]u around Z, the restriction of

(fπ�Z))n
def

= fn0 to the neighborhood UZ is a linear map preserving the splitting

Ess ⊕ Ec ⊕ Euu (this part is similar to Claim 2.3), say

fn0 = (f s� Id� fu) : Rs × R
2 × R

u → R
s × R

2 × R
u�

where f s and fu are contracting and expanding linear maps and Id is the

identity map.

DefineW ss
loc(Z; f) andW uu

loc (Z; f) (the local strong stable and local strong

unstable manifolds of Z) as the connected components of W ss(Z; f) ∩ UZ and

W uu(Z; f) ∩ UZ containing P , respectively. In local coordinates we have

W ss
loc(Z; f) = [−1� 1]s × {(02� 0u)} and W uu

loc (Z; f) = {(0s� 02)} × [−1� 1]u.

Consider the first m1�m2 > 0 such that

B
def

= f−m1(R) ∈ W uu
loc (Z; f)� A

def

= fm2(R) ∈ W ss
loc(Z; f).
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Note that form = m1+m2 we have f
m(B) = A. By shrinking the neighborhood

UZ , we can assume that m is even and arbitrarily large. Using this fact we can

perform a small perturbation of f along the segment of the orbit joining B

and A such that the restriction of fm to a small neighborhood UB of B is a

linear contraction in the s-coordinate, a linear expansion in u-coordinate, and

the identity in the central coordinate (this is identical to Equation (6.1)).

Note that the hyperplane Πsu = R
s × {02} × R

u is fn0-invariant in UZ

and fm-invariant in UB. Then there is n̄ = mn0 such that f
n̄ restricted to the

hyperplane Πsu has a Smale linear horseshoe containing the points Z�A and

B, see Figure 6.1.

Figure 6.1: Points Z�A and B

Since this horseshoe has many strong homoclinic intersections there are

points1

A1� . . . � A4 ∈ W ss
loc(Z; f) and B1� . . . � B4 ∈ W uu

loc (Z; f)

such that fni(Bi) = Ai, for some ni > n̄, i = 1� . . . � 4.

Figure 6.2: Points A1� . . . � A4 and B1� . . . � B4

�Note that the points A�� . . . � A4 are in different orbits.
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Consider the cube C = [−1� 1]s× [−1� 1]2× [−1� 1]u and pairwise disjoint

u-disks Cu
i in [0� 1]u as follows. Take five “horizontal” sub-cubes of the form

Ci = [0� 1]s × [−1� 1]2 × Cu
i � i = 0� 1� . . . � 4�

such that

• C0 contains the point Z and the four points Ai’s;

• Ci contains Bi, for each i = 1� . . . � 4;

• fn0(C0) and fni(Ci) are “vertical” sub-cubes of the form Cs
i × [−1� 1]2 ×

[0� 1]u, where Cs
i are s-disks pairwise disjoint contained in [0� 1]

s.

Figure 6.3: Sub-cubes

We now consider the local diffeomorphism F : ∪4
i=0 Ci → C given by

F |C0
= fn0 and F |Ci

= fni � i = 1� . . . � 4.

Note that using the coordinates above we have that F = (F s� Id� F u), where

F s is an affine contraction and F u is an affine expansion.

Consider now a small perturbation Fφ of F of the form Fφ = (F s� φ� F u),

where φ : [−1� 1]2 → [−1� 1]2 is a map close to the identity having a repellor

(0� 0) and an attractor (δ1� δ2), (small δ1� δ2 > 0) such that

W u
�
(0� 0);φ

�
∩W s

�
(δ1� δ2);φ

�
�= ∅. (6.1)

Note that the map Fφ has “two strong homoclinic intersections” (in this case

associated to hyperbolic points). More precisely, we have the following:

• Fφ has two saddles Z and Zδ = (0s� δ1� δ2� 0
u) of s-indices s and s + 2,

respectively.
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• Ai = (asi � 0
2� 0u) ∈ W ss(Z;Fφ) and Bi ∈ W uu(Z;Fφ) for i = 1� . . . � 4.

Moreover, Fφ(Bi) = Ai.

• There are points

Ãi = (asi � δ1� δ2� 0
u) ∈ W ss(Zδ;Fφ) and B̃i ∈ W uu(Zδ;Fφ)�

where Fφ(B̃i) = Ãi, for i = 1� . . . � 4.

Note that by construction of the map F , to the perturbation Fφ of F is

associated a perturbation fφ of f such that fni

φ (Bi) = Ai and fni

φ (B̃i) = Ãi.

Figure 6.4: Ai’s and Ãi’s

We now consider a three-parameter perturbation ft�s�r of fφ (small

t� s� r > 0) defined as follows. Outside small neighborhoods of the union of

the sets fni−1(Ci) we have ft�s�r = fφ. We modify fφ in neighborhoods of

fni−1(Ci) such that the restriction of f
ni

t�s�r to Ci is of the form:

• fn0

t�s�r(x) = fn0

φ (x), for x ∈ C0;

• fn1

t�s�r(x) = fn1

φ (x)− (0s� t� 0� 0u), for x ∈ C1;

• fn2

t�s�r(x) = fn2

φ (x)− (0s� 0� s� 0u), for x ∈ C2;

• fn3

t�s�r(x) = fn3

φ (x)− (0s� t� s� 0u), for x ∈ C3;

• fn4

t�s�r(x) = fn4

φ (x)− (0s� r� r� 0u), for x ∈ C4.

In this way, the map Ft�s�r associated to ft�s�r and defined in ∪4
i=0Ci satisfies

the following:

Ft�s�r(x) =

�




Fφ(x)� if x ∈ C0�

Fφ(x)− (0s� t� 0� 0u)� if x ∈ C1�

Fφ(x)− (0s� s� 0� 0u)� if x ∈ C2�

Fφ(x)− (0s� t� s� 0u)� if x ∈ C3�

Fφ(x)− (0s� r� r� 0u)� if x ∈ C4.

(6.2)
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Fix small δ > 0 (δ < δi, i = 1� 2), consider the subset Cδ of C of the form

Cδ = [0� 1]s × [−δ� δ]× [−δ� δ]× [0� 1]u�

and let Γ be the maximal invariant set of Ft�s�r in (∪
3
i=0Ci) ∩Cδ,

Γ
def

=
�

k∈Z

F k
t�s�r

�
∪3
i=0 Ci ∩Cδ

�
.

Observe that Γ is a hyperbolic set of s-index s containing the saddle Z.

Note that the local stable manifold of Z for Ft�s�r in local coordinates is:

W s
loc(Z;Ft�s�r) = [0� 1]s × {(02� 0u)}.

As in previous section, we define a vertical disk to the right of W s
loc(Z;Ft�s�r)

as u-disk (of dimension u) such that in local coordinates is of the form

{(xs� t� s)} × [0� 1]u� xs ∈ [0� 1]s� 0 < t ≤ δ� 0 < s ≤ δ.

Remark 6.1. For max{δ1 − δ� δ2 − δ} < r < min{δ1� δ2}, we have that the

{(as4� δ1 − r� δ2 − r)} × [0� 1]u

is a vertical disk to the right of W s
loc(Z;Ft�s�r).

Similarly, we define a vertical (u+ 2)-block to the right of W s
loc(Z;Ft�s�r)

as a set of dimension u+ 2 such that in local coordinates is of the form

{xs}× [t1� t2]× [s1� s2]× [0� 1]u� xs ∈ [0� 1]s� 0 < t1 < t2 ≤ δ� 0 < s1 < s2 ≤ δ.

Next result is Proposition 5.1 in this context. Note that the point Z cor-

responds to Q = (xq� 0� 0� yq) of Section 5.1, the map φ is a small perturbation

of the identity, then the rate of expansion (in the central coordinate of Ft�s�r)

is smaller than the rate of expansion of (f s)−1 and fu, and the map Ft�s�r

corresponds to the map F in Equation (5.1).

Corollary 6.2. The stable manifold of Z intersects every vertical (u+2)-block

to the right of W s
loc(Z;Ft�s�r).

Fix small r > 0 such that max{δ1 − δ� δ2 − δ} < r < min{δ1� δ2}

as in Remark 6.1. Now we are ready to prove that Ft�s�r has a robust

heterodimensional cycle associated to Zδ and Γ.

Claim 6.3. W s(Zδ;Ft�s�r) ∩W u
loc(Γ;Ft�s�r) �= ∅.
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Proof. From the intersection in Equation (6.1) one immediately gets that

W s(Zδ;Ft�s�r) � W u(Z;Ft�s�r) �= ∅. The claim follows noting that Z ∈ Γ.

Claim 6.4. W u(Zδ;Ft�s�r) ∩W s
loc(Γ;Ft�s�r) �= ∅.

Proof. First, recall that in local coordinates we have that

B̃4 ∈ W u
loc(Zδ;Fφ) = {(0s� δ1� δ2)} × [0� 1]u.

Recall also that B̃4 ∈ C4 and fn4

φ (B̃4) = Ã4. Also by construction of the map

Ft�s�r we have that

σ
def

= {(as4� δ1 − r� δ2 − r)} × [0� 1]u ⊂ W u
loc(Zδ;Ft�s�r).

By Remark 6.1, σ is a vertical disk to the right of W s
loc(Z;Ft�s�r). Since vertical

blocks are foliated by vertical disks, applying Corollary 6.2 for “smaller and

smaller” (nested) vertical blocks containing σ, we have that

W s(Z;Ft�s�r) ∩ σ �= ∅ then W s(Z;Ft�s�r) ∩W u
loc(Zδ;Ft�s�r) �= ∅.

Since Z ∈ Γ we have that W s
loc(Γ;Ft�s�r)∩W u

loc(Zδ;Ft�s�r) �= ∅, ending the proof

of the claim.

Note that in Claim 6.3, the dimensions ofW s(Zδ;Ft�s�r) andW u(Γ;Ft�s�r)

are s + 2 and u + 2, respectively, where (s + 2) + (u + 2) is bigger than the

dimension of the ambient, then the intersection is transverse and moreover,

robust. By robustness of blenders, Claim 6.4 holds for every map C1-close to

Ft�s�r, proving that the map Ft�s�r has a robust cycle. Since Ft�s�r is associated

to ft�s�r, we have that ft�s�r also must have a robust heterodimensional cycle.

The proof of the theorem is now complete.

6.2

Stabilization of (C�C)-cycles

In this section we conclude the proof of Theorem A checking that a

(C�C)-cycles can be stabilized after arbitrarily small perturbations. This is a

consequence of Proposition 3.9 and results in previous sections.

Let f be a diffeomorphism having a (C�C)-cycle associated with the

saddles P andQ. By Proposition 3.9 there is a small perturbation g1 of f having

a cycle (associated with P and Q) with three heteroclinic points of type �PQ

(sayX1� X2� X3) with different orbits. We select one of these points, sayX1, and

perform series of perturbations for constructing a diffeomorphism g2 having a

blender Γg2 involved in a robust cycle (see the proof of Proposition 3.1 and
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Section 6.1). Note that the perturbation g2 of g1 does not involve the points

X2 and X3 and therefore we can assume that besides the blender having a

robust cycle this diffeomorphism also has a cycle associated to P and Q such

that X2 and X3 are �PQ heteroclinic points of it.

Recall that the blender persists after perturbations and it contains a

saddle Z of s-index s. We now perform local perturbations of g2 at the

heteroclinic points X2 and X3 to get the following two lemmas whose prove

we postpone.

Lemma 6.5. There is a local perturbation of g3 of g2 at the point X2 such that

the saddles Q and Z2 are homoclinically related3 for g3.

Note that, since the perturbation is local, the diffeomorphism g3 has a

cycle associated to P and Q (and X3 is a heteroclinic point of it).

Observe also that this implies that there is a transitive hyperbolic set Γ̃g3

containing the blender Γg3 (the continuation of Γg2 for g3) and the saddle Q.

Let δ� δ1� δ2 > 0 and Cδ be a small cube such that the blender Γg3 is the

maximal invariant set of g3 in Cδ. In the local coordinates around the saddle

Z = (0s� 1� 0� 0u) one has

Cδ = [0� δ]s × [1− δ1� 1 + δ1]× [−δ2� δ2]× [0� δ]u. (6.3)

In these local coodinates we also have W s
loc(Z; g) = [0� δ]s × {(1� 0� 0u)}.

As in Section 5.2, we consider (small) invariant cone fields and define

almost vertical disks, t-strips, s-strips, and blocks to the right of W s(Z; g3).

Lemma 6.6. There is a local perturbation g of g3 at the point X3 such that

W u(P ; g) contains an almost vertical disk σ to the right of W s(Z; g) .

By Lemma 6.6 and by the intersection property of the blender in Proposi-

tion 5.5 we have thatW s(Z; g) intersects every almost vertical block containing

σ. Since these blocks can taken arbitrarily small (i.e., their intersection is just

the disk σ) it follows that W s(Z; g) ∩W u(P ; g) �= ∅. Therefore

W s
loc(Γg; g) ∩W u(P ; g) �= ∅.

As the blender Γg ⊂ Γ̃g,

W s
loc(Γ̃g; g) ∩W u(P ; g) �= ∅.

2Note that Z is the continuation of the saddle of g2. For simplicity, we omit the
dependence on g2 and just write Z.

3Recall Equation �3.5).
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As W s(P� g) ∩W u(Q� g) �= ∅ and Q ∈ Γ̃g (recall that Q and Z are homoclinic

related) we have that g has a (robust) heterodimensional cycle associated with

the saddle P and the transitive hyperbolic set Γ̃g � Q.

To complete the proof of the stabilization of the cycle it remains to prove

the two lemmas above.

Proof of the Lemma 6.5. We need to prove that

W u(Q; g3) � W s(Z; g3) �= ∅. and W s(Q; g3) � W u(Z; g3) �= ∅ (6.4)

Recall that by construction (Proposition 3.1),

W u(Q; g2) � W s(Z; g2) �= ∅ and W s(P ; g2) � W u(Z; g2) �= ∅. (6.5)

Thus it remains to see that the second intersection holds (recall also that the

first intersection in (6.4) persists after perturbations).

To get this intersection note that since W u(Z; g2) � W s(P ; g2) �= ∅ by

the λ-lemma we have that W u(Z; g2) accumulates to X2 ∈ W s(Q; g2). Thus

there is a perturbation g3 of g2 such that W
u(Z; g2) � W s(Q; g2) �= ∅.

Let us observe that in our setting this intersection can be obtained doing

a small perturbation at X2 preserving the heteroclinic point X3. This ends the

proof of the lemma.

Proof of Lemma 6.6. To prove the lemma we consider a small perturbation

unfolding the cycle in the heteroclinic point X3.

Recall the Definition 3.4 of the quotient family (Qα�β

m���t=�t1�t2)
)m���t (we are

omitting the superscripts i� j = +�−�±) in Section 3. Using this family to

prove the assertion in the lemma it is enough to see that there are arbitrarily

large � ∈ N and small |t0|, and α̂ and β̂ close to α and β such that

Qα̂�β̂
0���t0

(02) ∈ (1� 1 + δ1)× (0� δ2)�

where δ1� δ2 are the (fixed) central sizes in the definition of the cube in (6.3)

associated to the blender above. This is done as in Proposition 3.5.
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