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6
Robust cycles from blenders

In this section, using blenders, we prove Theorem 1.4 (strong homoclinic
intersections of partially hyperbolic periodic points yield robust cycles) and
the stabilization of (C, C)-cycles.

6.1
Strong homoclinic intersections yield robust cycles

Let f be diffeomorphism with a (non-hyperbolic) periodic point Z of
period 7(Z) which has bidimensional central direction and a strong homoclinic
intersection point R, that is, R € W*(O(Z); f)NW"(O(Z); f) and R ¢ O(Z).

The first part of the proof is make some small perturbations on the
diffeomorphism f to have a linear dynamics in the neighborhood of the periodic
point Z and its strong homoclinic intersection R. Let us go into the details.

After a small perturbation of f, we can assume that there are a large
(even) number n > 0 and a small neighborhood Uz of Z such that in
local coordinates [—1,1]° x [—1,1]> x [=1,1]* around Z, the restriction of
(fT@)n = 70 to the neighborhood Uy is a linear map preserving the splitting
E** @ E°@® E"" (this part is similar to Claim 2.3), say

= (f1d, f*): R* x R x R* = R® x R* x R¥,

where f* and f*“ are contracting and expanding linear maps and Id is the
identity map.
Define W.(Z; f) and WX*(Z; f) (the local strong stable and local strong

unstable manifolds of Z) as the connected components of W*¥(Z; f) NUz and

W (Z; f) NUz containing P, respectively. In local coordinates we have
Win(Z; f) = [-L1]" x {(0%,0)} and Wie(Z; f) = {(0%,0%)} x [-1,1]".
Consider the first mq, mo > 0 such that

BY [M(R) € Wi(Z:f),  AY m(R) € Wi(Z; ).
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Note that for m = mj+mgy we have f™(B) = A. By shrinking the neighborhood
Uz, we can assume that m is even and arbitrarily large. Using this fact we can
perform a small perturbation of f along the segment of the orbit joining B
and A such that the restriction of f™ to a small neighborhood Up of B is a
linear contraction in the s-coordinate, a linear expansion in u-coordinate, and
the identity in the central coordinate (this is identical to Equation (6.1)).
Note that the hyperplane IT** = R® x {0?} x R* is f™-invariant in Uy
and f™-invariant in Upg. Then there is 7 = m ng such that f™ restricted to the
hyperplane ITI°* has a Smale linear horseshoe containing the points Z, A and

B, see Figure 6.1.
M
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Figure 6.1: Points Z, A and B

Since this horseshoe has many strong homoclinic intersections there are

points!

A177A4€VVZSOSC(Zaf) and Bla7B4€Wuu(Zaf>
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such that f™(B;) = A;, for some n; >n,i=1,... 4.
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Figure 6.2: Points Ay,..., Ay and By, ..., By

I'Note that the points A1, ..., A4 are in different orbits.
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Consider the cube C = [—1,1]* x [-1,1]* x [-1, 1]* and pairwise disjoint

u-disks C* in [0, 1]* as follows. Take five “horizontal” sub-cubes of the form
Ci=[0,1° x [-1,1*x C¥, i=0,1,...,4,

such that

e (y contains the point Z and the four points A;’s;
e (; contains B;, for each i =1,...,4;

e f10(Cy) and f(C;) are “vertical” sub-cubes of the form Cf x [—1,1]? x

0, 1]*, where C} are s-disks pairwise disjoint contained in [0, 1]*.

Co=—== F
=
—

Oy =

Fra(Cy)

F™(Co)

Figure 6.3: Sub-cubes

We now consider the local diffeomorphism F': U}, C; — C given by
Fle,=f" and Fle,= ", 1=1,...,4.

Note that using the coordinates above we have that F' = (F*,1d, F'*), where
F7 is an affine contraction and F* is an affine expansion.

Consider now a small perturbation F, of F' of the form F, = (F*, ¢, F'"),
where ¢: [—1,1]> — [—1,1]? is a map close to the identity having a repellor
(0,0) and an attractor (dy,02), (small 01,2 > 0) such that

W ((0,0); ) NW*((91,02); ) # 0. (6.1)

Note that the map Fj has “two strong homoclinic intersections” (in this case

associated to hyperbolic points). More precisely, we have the following:

e Fy has two saddles Z and Zs; = (07,01, d2,0") of s-indices s and s + 2,

respectively.
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o A = (a3,0%,0%) € W*(Z;Fy) and B, € W*(Z; Fy) for i = 1,...,4.
Moreover, Fy(B;) = A;.

e There are points
A; = (a3,601,05,0") € W*(Zs; Fy) and  B; € W"™(Zs; Fy),

where Fj(B;) = A;, fori=1,... 4.

Note that by construction of the map F', to the perturbation F} of F is
associated a perturbation f, of f such that fi*(B;) = A; and fg(él) = A,

Y

¥t

Figure 6.4: A;’s and Ai’s

We now consider a three-parameter perturbation f;,, of fs (small
t,s,r > 0) defined as follows. Outside small neighborhoods of the union of
the sets f™~(C;) we have fis, = fs. We modify f, in neighborhoods of
f71(C;) such that the restriction of f{'i, to C; is of the form:

o [0, (x) = f;°(x), for z € Cy;

o fli(w)= fi"(x)—(0°¢,0,0"), for v € Cy;
o fi2.(x) = fi*(x) —(0°,0,s,0"), for v € Cy;
o [iin(x) = f5*(x) = (0%t 5,0"), for x € Cy;
o fit (x) = fi*(z)—(0°r,r,0%), for z € Cj.

In this way, the map F,, associated to f s, and defined in U}_,C; satisfies
the following:

Fy(x), if xeCy,
Fy(z) — (0°,£,0,04), if z€Cy,
Fior(x) =3 Fy(x) —(0%,5,0,04), if x€ Oy, (6.2)
Fy(x) — (0°,t,5,0%), if xe€Cs,
Fy(z) — (0°,r,7,0%), if xe€Cy.
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Fix small 6 > 0 (0 < 0,7 = 1,2), consider the subset C; of C of the form
Cs = [0,1]° x [=6,0] x [-4,0] x [0,1]*,
and let I be the maximal invariant set of F} ,, in (U3_,C;) N Cs,

r=MN Ft’fw< Ui, Cin C(;).

kEZ

Observe that I' is a hyperbolic set of s-index s containing the saddle Z.

Note that the local stable manifold of Z for I}, in local coordinates is:
WE(Z; Fygy) = [0,1]° x {(0%,0%)}.

As in previous section, we define a vertical disk to the right of W (Z; F )

as u-disk (of dimension u) such that in local coordinates is of the form
{(z°t,s)} x [0,1]*, 2°€[0,1)°, 0<t <4, 0<s<o.
Remark 6.1. For max{d; — , 0o — 0} < r < min{dy, d2}, we have that the
{(a3,01 — 17,09 — 1)} x [0, 1]*

is a vertical disk to the right of W (Z; Fs.).

Similarly, we define a vertical (u + 2)-block to the right of W (Z; Fs,)

as a set of dimension u + 2 such that in local coordinates is of the form
{J}S} X [thtg] X [81, 82] X {07 1]“, z® € [07 1]S, O<ti <ty < (5, 0<s1 <8< 0.

Next result is Proposition 5.1 in this context. Note that the point Z cor-
responds to ) = (z,,0,0,y,) of Section 5.1, the map ¢ is a small perturbation
of the identity, then the rate of expansion (in the central coordinate of F} )
is smaller than the rate of expansion of (f*)~! and f“, and the map Fj,

corresponds to the map F' in Equation (5.1).

Corollary 6.2. The stable manifold of Z intersects every vertical (u+2)-block
to the right of Wi (Z; Fy5.).

Fix small » > 0 such that max{d; — 0, o2 — 0} < r < min{dy,ds}
as in Remark 6.1. Now we are ready to prove that F,,, has a robust

heterodimensional cycle associated to Zs and T'.

Claim 6.3. W*(Zs; Fy5,) N WE(T; Fyg,) # 0.
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Proof. From the intersection in Equation (6.1) one immediately gets that
W*(Zs; Fysr) MW*(Z; Fys,) # 0. The claim follows noting that Z € I'. [

Claim 6.4. W*(Zs; Fy5,) "N WE (T Fys,) # 0.

Proof. First, recall that in local coordinates we have that
34 S I/Vlzc(Zts;Ftﬁ) = {(03751,52)} x [07 1]u'

Recall also that B, € Cy and fg4(B4) = Ay. Also by construction of the map

F} s, we have that
o = {(a, 00— 1,0, = 1)} x [0, 1]" C Wike(Zs; Frsy).

By Remark 6.1, o is a vertical disk to the right of W}’ (Z; F} 5,). Since vertical
blocks are foliated by vertical disks, applying Corollary 6.2 for “smaller and

smaller” (nested) vertical blocks containing o, we have that
Ws(Z;Fisp)No # 0 then W3(Z; Fys,) N Wieo(Zs; Fis,) # 0.

Since Z € I" we have that Wi (I'; F 5 ,) "W (Zs; Fsr) # 0, ending the proof
of the claim. ]

Note that in Claim 6.3, the dimensions of W*(Zs; Fy 5,) and W*(L'; Fy )
are s + 2 and u + 2, respectively, where (s + 2) + (u + 2) is bigger than the
dimension of the ambient, then the intersection is transverse and moreover,
robust. By robustness of blenders, Claim 6.4 holds for every map C*-close to
F, 5, proving that the map F, 5, has a robust cycle. Since F, ;, is associated
to fisr, we have that f; s, also must have a robust heterodimensional cycle.

The proof of the theorem is now complete. O

6.2
Stabilization of (C, C)-cycles

In this section we conclude the proof of Theorem A checking that a
(C,C)-cycles can be stabilized after arbitrarily small perturbations. This is a

consequence of Proposition 3.9 and results in previous sections.

Let f be a diffcomorphism having a (C,C)-cycle associated with the
saddles P and (). By Proposition 3.9 there is a small perturbation g; of f having
a cycle (associated with P and ) with three heteroclinic points of type P@
(say X1, Xo, X3) with different orbits. We select one of these points, say X, and
perform series of perturbations for constructing a diffeomorphism gs having a

blender I'y, involved in a robust cycle (see the proof of Proposition 3.1 and
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Section 6.1). Note that the perturbation g, of g; does not involve the points
Xy and X3 and therefore we can assume that besides the blender having a
robust cycle this diffeomorphism also has a cycle associated to P and @) such
that Xy and X3 are P_Q heteroclinic points of it.

Recall that the blender persists after perturbations and it contains a
saddle Z of s-index s. We now perform local perturbations of g, at the
heteroclinic points X5 and X3 to get the following two lemmas whose prove

we postpone.

Lemma 6.5. There is a local perturbation of g3 of go at the point Xy such that
the saddles QQ and Z* are homoclinically related® for gs.

Note that, since the perturbation is local, the diffeomorphism g3 has a
cycle associated to P and @ (and X3 is a heteroclinic point of it).

Observe also that this implies that there is a transitive hyperbolic set T'y,
containing the blender I'y, (the continuation of Iy, for g3) and the saddle Q.

Let 0, 01,02 > 0 and Cs be a small cube such that the blender Iy, is the
maximal invariant set of g3 in Cs. In the local coordinates around the saddle
Z =(0%,1,0,0") one has

Cs = [0,0° x [1 — 01,1+ 8] x [~0s, 8] x [0, 5]“. (6.3)

In these local coodinates we also have W (Z; g) = [0,0]* x {(1,0,0%)}.
As in Section 5.2, we consider (small) invariant cone fields and define

almost vertical disks, t-strips, s-strips, and blocks to the right of W*(Z; g3).

Lemma 6.6. There is a local perturbation g of g3 at the point X3 such that
W (P;g) contains an almost vertical disk o to the right of W*(Z;g) .

By Lemma 6.6 and by the intersection property of the blender in Proposi-
tion 5.5 we have that W*(Z; g) intersects every almost vertical block containing
o. Since these blocks can taken arbitrarily small (i.e., their intersection is just

the disk o) it follows that Ws(Z; g) N W"(P; g) # (). Therefore
Wize(Lgs ) NWH(Ps g) # 0.
As the blender I'y C fg,
Wie(Lgs 9) "W (P; g) # 0.
2Note that Z is the continuation of the saddle of g». For simplicity, we omit the

dependence on g and just write Z.
3Recall Equation (3.5).
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As W5(P,g) NW*(Q,g) # 0 and Q € T, (recall that Q and Z are homoclinic
related) we have that g has a (robust) heterodimensional cycle associated with
the saddle P and the transitive hyperbolic set f‘g 5 Q.

To complete the proof of the stabilization of the cycle it remains to prove

the two lemmas above.
Proof of the Lemma 6.5. We need to prove that

W*(Q;gs) MW*(Z:gs) #0. and W*(Q;95) hW*"(Z395) 70 (6.4)
Recall that by construction (Proposition 3.1),

W*(Q;92) hW*(Z392) #0 and W*(P;g2) hW*(Z;g2) 0. (6.5)

Thus it remains to see that the second intersection holds (recall also that the
first intersection in (6.4) persists after perturbations).

To get this intersection note that since W*(Z; go) h W*(P;g2) # 0 by
the A-lemma we have that W*(Z; g2) accumulates to Xy € W*(Q; g2). Thus
there is a perturbation gz of g, such that W*(Z; go) h W*5(Q; g2) # 0.

Let us observe that in our setting this intersection can be obtained doing
a small perturbation at X, preserving the heteroclinic point X3. This ends the

proof of the lemma. O

Proof of Lemma 6.6. To prove the lemma we consider a small perturbation
unfolding the cycle in the heteroclinic point Xs.

Recall the Definition 3.4 of the quotient family (Q?r;,ﬁl,t:(tl, 1) )mitt (We are
omitting the superscripts i,7 = +,—, %) in Section 3. Using this family to
prove the assertion in the lemma it is enough to see that there are arbitrarily

large ¢ € N and small |¢y|, and & and # close to o and A such that
Q57),,(0%) € (1,14 61) x (0,4y),

where 01,y are the (fixed) central sizes in the definition of the cube in (6.3)

associated to the blender above. This is done as in Proposition 3.5. O
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