7 Symbolic skew product maps

In this chapter we start to study the second main topic of this work: symbolic blender-horseshoes, in particular, we prove Theorem B.

Given a map $\Phi = \tau \ltimes \phi_{\xi} \in \mathcal{S}^{0,\alpha}_{k,\lambda,\beta}(D)$, with $0 < \lambda < \beta < 1$, we will study the maximal invariant set of Φ in $\Sigma_k \times \overline{D}$. For notational convenience, we denote \mathcal{S} in the place of $\mathcal{S}^{0,\alpha}_{k,\lambda,\beta}(D)$.

Throughout this work we use the following notations.

Given a bi-sequence $\xi = (\dots, \xi_{-1}; \xi_0, \xi_1, \dots) \in \Sigma_k$ the symbol at the right of ";" is the "0 coordinate" of ξ . In what follows the number $k \geq 2$ of symbols, the contractivity ratio $0 < \nu < 1$ of $\tau : \Sigma_k \to \Sigma_k$ (recall (1.5)), the Hölder exponent $\alpha > 0$, the non-empty bounded open set D and the locally Lipschitz constants λ and β remain fixed.

Given a skew product map $\Phi = \tau \ltimes \phi_{\xi}$, for every n > 0 and every $(\xi, x) \in \Sigma_k \times \overline{D}$ we set

 $\phi_{\xi}^{n}(x) \stackrel{\text{\tiny def}}{=} \phi_{\tau^{n-1}(\xi)} \circ \dots \circ \phi_{\xi}(x) \quad \text{and} \quad \phi_{\xi}^{-n}(x) \stackrel{\text{\tiny def}}{=} \phi_{\tau^{-(n-1)}(\xi)}^{-1} \circ \dots \circ \phi_{\xi}^{-1}(x).$ (7.1)

Note that $\Phi^n(\xi, x) = (\tau^n(\xi), \phi_{\xi}^n(x))$ and $\Phi^{-n}(\xi, x) = (\tau^{-n}(\xi), \phi_{\tau^{-1}(\xi)}^{-n}(x))$, for all $n \ge 0$.

7.1 Invariant graph

The invariant graph theorem is an important tool to understand symbolic blender-horseshoes. Next result claims the existence of a "unique invariant attracting graph" on $\Sigma_k \times \overline{D}$ for $\Phi \in \mathcal{S}$. Indeed these graphs depend continuously on Φ . The theorem below is a reformulation of the results in [15] (see also [24, Theorem 1.1]) (items (i-ii)) and [10, Section 6] (item (iii)).

Given a function $g: \Sigma_k \to \overline{D}$ its graph map is defined by

$$\operatorname{graph}[g] \colon \Sigma_k \to \Sigma_k \times G, \qquad \operatorname{graph}[g](\xi) = (\xi, g(\xi))$$

and its graph set by

$$\Gamma_g \stackrel{\text{def}}{=} \operatorname{image}\left(\operatorname{graph}[g]\right) = \{(\xi, g(\xi)) \colon \xi \in \Sigma_k\} \subset \Sigma_k \times \overline{D}.$$

Theorem 7.1 ([15, 24, 10]). Consider $\Phi = \tau \ltimes \phi_{\xi} \in S$ with $\beta < 1$. Then there exists a unique bounded continuous function $g_{\Phi} : \Sigma_k \to \overline{D}$ such that

i)
$$\Phi(\xi, g_{\Phi}(\xi)) = (\tau(\xi), g_{\Phi}(\tau(\xi)))$$
, for all $\xi \in \Sigma_k$, that is, $\Phi(\Gamma_{g_{\Phi}}) = \Gamma_{g_{\Phi}}$.

- *ii)* $\|\phi_{\xi}^{n}(x) g_{\Phi}(\tau^{n}(\xi))\| \leq \beta^{n} \|g_{\Phi}(\xi) x\|$, for all $(\xi, x) \in \Sigma_{k} \times \overline{D}$ and $n \geq 0$, and
- iii) The set $\Gamma_{q_{\Phi}}$ depends continuously on Φ .

For notational simplicity in what follows we just write Γ_{Φ} in then place of $\Gamma_{g_{\Phi}}$ to denote the unique contracting invariant graph set. The next proposition shows that Γ_{Φ} is the locally maximal invariant set in $\Sigma_k \times \overline{D}$ of Φ .

Proposition 7.2. Consider $\Phi = \tau \ltimes \phi_{\xi} \in S$, with $\beta < 1$. Then

- i) the restriction $\Phi|_{\Gamma_{\Phi}}$ of Φ to the set Γ_{Φ} is conjugate to τ , and
- ii) the invariant graph set is the (forward) maximal invariant set in $\Sigma_k \times \overline{D}$

$$\Gamma_{\Phi} = \bigcap_{n \in \mathbb{Z}} \Phi^n(\Sigma_k \times \overline{D}) = \bigcap_{n \in \mathbb{N}} \Phi^n(\Sigma_k \times \overline{D}).$$

Proof. By (i) in Theorem 7.1, one has that $\Phi \circ \operatorname{graph}[g_{\Phi}] = \operatorname{graph}[g_{\Phi}] \circ \tau$. Hence $\operatorname{graph}[g_{\Phi}]$ conjugates the maps $\Phi|_{\Gamma_{\Phi}}$ and τ . To get the continuity just note that $\operatorname{graph}[g_{\Phi}]$ is continuous and that $\operatorname{graph}[g_{\Phi}]^{-1} \colon \Sigma_k \times G \to \Sigma_k$ is the projection on the first coordinate, thus it is also continuous. Then we conclude item (i) of the proposition.

Recall that periodic points of the shift map τ are dense in Σ_k , that is, $\Sigma_k = \overline{\operatorname{Per}(\tau)}$. Conjugation in the first part of this proposition implies that $\Gamma_{\Phi} = \overline{\operatorname{Per}(\Phi|_{\Gamma_{\Phi}})}$. Let Γ be the local maximal invariant set of Φ in $\Sigma_k \times D$, that is, $\Gamma = \bigcap_{n \in \mathbb{Z}} \Phi^n(\Sigma_k \times \overline{D})$, and then $\Gamma_{\Phi} \subset \Gamma$.

To prove that $\Gamma \subset \Gamma_{\Phi}$, consider $(\xi, x) \in \Gamma$ then it is enough to see that $x = g_{\Phi}(\xi)$. As the set Γ_{Φ} is bounded, we have that $K = \sup\{d(\gamma, \Gamma_{\Phi}), \gamma \in \Gamma\} \in [0, +\infty)$. Since the maps ϕ_{ξ} are contractions with contraction constant $0 < \beta < 1$ we deduce that

$$\begin{aligned} \|x - g_{\Phi}(\xi)\| &= \|\phi_{\xi}^{n} \circ \phi_{\xi}^{-n}(x) - \phi_{\xi}^{n} \circ \phi_{\xi}^{-n}(g_{\Phi}(\xi))\| \\ &\leq \beta^{n} \|\phi_{\xi}^{-n}(x) - \phi_{\xi}^{-n}(g_{\Phi}(\xi))\| \\ &= \beta^{n} d \left(\Phi^{-n}(\xi, x), \Phi^{-n}(\xi, g_{\Phi}(\xi)) \right) \leq K \beta^{n} \end{aligned}$$

Taking $n \to \infty$ we get $x = g_{\Phi}(\xi)$ and thus $(\xi, x) \in \Gamma_{\Phi}$. Thus $\Gamma \subset \Gamma_{\Phi}$, proving the proposition.

7.2 Unstable sets

In this section we continue the study of the maximal invariant set Γ_{Φ} for $\Phi \in \mathcal{S}$. We analyse the relation between the set Γ_{Φ} and the unstable sets of points $(\xi, x) \in \Gamma_{\Phi}$. We first show the existence of a strong unstable lamination:

Proposition 7.3. Consider $\Phi = \tau \ltimes \phi_{\xi} \in S$, with $\beta < 1$, and let Γ_{Φ} be the maximal invariant set of $\Sigma_k \times \overline{D}$. Then, there exists a partition of Γ_{Φ}

$$\mathcal{W}^{u}_{\Gamma_{\Phi}} = \{ W^{uu}_{loc}((\xi, x); \Phi) : (\xi, x) \in \Gamma_{\Phi} \}$$

such that for every $(\xi, x) \in \Gamma_{\Phi}$ one has that

i) $W_{loc}^{uu}((\xi, x); \Phi)$ is the graph of an α -Hölder function $\gamma_{\xi}^{u}: W_{loc}^{u}(\xi; \tau) \to G$,

ii)
$$\gamma^u_{\varepsilon}(\xi) = g_{\Phi}(\xi) = x$$
,

iii)
$$\gamma^u_{\xi}(\xi'') = \gamma^u_{\xi'}(\xi'')$$
 for all $\xi', \xi'' \in W^u_{loc}(\xi; \tau)$,

iv)
$$\phi_{\tau^{-1}(\xi')}^{-1} \circ \gamma_{\xi}^{u}(\xi') = \gamma_{\tau^{-1}(\xi)}^{u} \circ \tau^{-1}(\xi')$$
 where $\xi' \in W_{loc}^{u}(\xi;\tau)$, and

v)
$$W^{uu}_{loc}((\xi, x); \Phi) \subset W^u((\xi, x); \Phi).$$

Proof. Let $(\xi, x) \in \Gamma_{\Phi}$. Note that $x = g_{\Phi}(\xi)$ and that $(\phi_{\tau^{-n}(\xi)}^n)^{-1} = \phi_{\tau^{-1}(\xi)}^{-n}$, indeed:

$$\underbrace{\phi_{\tau^{-n}(\xi)}^{-1} \circ \cdots \circ \phi_{\tau^{-1}(\xi)}^{-1}}_{\phi_{\tau^{-1}(\xi)}^{-n}} \circ \underbrace{\phi_{\tau^{-1}(\xi)}^{-1} \circ \cdots \circ \phi_{\tau^{-n}(\xi)}}_{\phi_{\tau^{-n}(\xi)}^{n}} = \mathrm{Id}.$$

We define a sequence of maps $\gamma^{u,n}_{\xi}: W^u_{loc}(\xi; \tau) \to G$ by

$$\gamma_{\xi}^{u,n}(\xi') = \phi_{\tau^{-n}(\xi')}^n \circ (\phi_{\tau^{-n}(\xi)}^n)^{-1}(x) = \phi_{\tau^{-n}(\xi')}^n \circ \phi_{\tau^{-1}(\xi)}^{-n} \circ g_{\Phi}(\xi).$$

Note that $\{\gamma_{\xi}^{u,n}\}$ is a sequence in the complete metric space $C^{0}(W_{loc}^{u}(\xi;\tau),G)$.

Lemma 7.4. The sequence $\{\gamma_{\xi}^{u,n}\}$ is Cauchy sequence and so it converges to some map γ_{ξ}^{u} .

Proof. Since $\beta, \nu < 1$, to prove the first part in the lemma it is enough to see that

$$\|\gamma_{\xi}^{u,n+1}(\xi') - \gamma_{\xi}^{u,n}(\xi')\| \le C_{\Phi}(\beta\nu^{\alpha})^{n+1} d_{\Sigma_{k}}(\xi,\xi')^{\alpha}.$$
(7.2)

To prove this inequality first recall notation in (7.1) and observe that item (i) of Theorem 7.1 implies that for every n > 0 and $\xi \in \Sigma_k$

$$\phi_{\xi}^{n} \circ g_{\Phi}(\xi) = g_{\Phi} \circ \tau^{n}(\xi) \text{ and } \phi_{\tau^{-1}(\xi)}^{-n} \circ g_{\Phi}(\xi) = g_{\Phi} \circ \tau^{-n}(\xi).$$
 (7.3)

Then, since $\phi_{\xi}(\overline{D}) \subset D$ for all $\xi \in \Sigma_k$, we have that

$$\phi_{\tau^{-n}(\xi')}^{n-i} \circ \phi_{\tau^{-1}(\xi)}^{-n} \circ g_{\Phi}(\xi) = \phi_{\tau^{-n}(\xi')}^{n-i} \circ g_{\Phi} \circ \tau^{-n}(\xi) \in \overline{D} \quad \text{for every } 0 < i \le n.$$

To prove the inequality in (7.2), we have $\|\gamma_{\xi}^{u,n+1}(\xi') - \gamma_{\xi}^{u,n}(\xi')\|$ equal to

$$\begin{split} \|\phi_{\tau^{-n-1}(\xi')}^{n+1} \circ \phi_{\tau^{-1}(\xi)}^{-n-1} \circ g_{\Phi}(\xi) - \phi_{\tau^{-n}(\xi')}^{n} \circ \phi_{\tau^{-1}(\xi)}^{-n} \circ g_{\Phi}(\xi)\| &= \\ &= \|\phi_{\tau^{-n}(\xi')}^{n} \circ \phi_{\tau^{-n-1}(\xi')} \circ \phi_{\tau^{-1}(\xi)}^{-n-1} \circ g_{\Phi}(\xi) - \phi_{\tau^{-n}(\xi')}^{n} \circ \phi_{\tau^{-1}(\xi)}^{-n} \circ g_{\Phi}(\xi)\| \\ &\leq \beta^{n} \|\phi_{\tau^{-n-1}(\xi')} \circ \phi_{\tau^{-1}(\xi)}^{-n-1} \circ g_{\Phi}(\xi) - \phi_{\tau^{-n-1}(\xi')}^{-n} \circ g_{\Phi}(\xi)\| \\ &= \beta^{n} \|\phi_{\tau^{-n-1}(\xi')} \circ \phi_{\tau^{-1}(\xi)}^{-n-1} \circ g_{\Phi}(\xi) - \phi_{\tau^{-n-1}(\xi')} \circ \phi_{\tau^{-1}(\xi)}^{-n} \circ g_{\Phi}(\xi)\| \\ &\leq \beta^{n+1} \|\phi_{\tau^{-1}(\xi)}^{-n} \circ g_{\Phi}(\xi) - \phi_{\tau^{-n-1}(\xi')}^{-n} \circ \phi_{\tau^{-1}(\xi)}^{-n} \circ g_{\Phi}(\xi)\| \\ &= \beta^{n+1} \|\phi_{\tau^{-n-1}(\xi)}^{-1} \circ \phi_{\tau^{-1}(\xi)}^{-n} \circ g_{\Phi}(\xi) - \phi_{\tau^{-n-1}(\xi')}^{-n} \circ \phi_{\tau^{-1}(\xi)}^{-n} \circ g_{\Phi}(\xi)\| \\ &\leq \beta^{n+1} C_{\Phi} d_{\Sigma_{k}} (\tau^{-n-1}(\xi), \tau^{-n-1}(\xi'))^{\alpha} \\ &\leq \beta^{n+1} C_{\Phi} \nu^{\alpha(n+2)} = C_{\Phi} (\beta \nu^{\alpha})^{n+1} d_{\Sigma_{k}} (\xi, \xi')^{\alpha}. \end{split}$$

The proof of the lemma is now completed.

To prove that $\mathcal{W}_{\Gamma_{\Phi}}^{u}$ is a partition of Γ_{Φ} we need to show that $W_{loc}^{uu}((\xi, x); \Phi)$ is contained in Γ_{Φ} for all $(\xi, x) \in \Gamma_{\Phi}$. To do this let $(\xi, x) \in \Gamma_{\Phi}$ and $(\xi', x') = (\xi', \gamma_{\xi}^{u}(\xi')) \in W_{loc}^{uu}((\xi, x); \Phi)$. We will prove that $x' = g_{\Phi}(\xi')$. From (7.3) and noting that $x = g_{\Phi}(\xi)$ we have the equalities:

$$\begin{split} \|g_{\Phi}(\xi') - \gamma_{\xi}^{u}(\xi')\| &= \\ &= \lim_{n \to \infty} \|\phi_{\tau^{-n}(\xi')}^{n} \circ \phi_{\tau^{-1}(\xi')}^{-n} \circ g_{\Phi}(\xi') - \phi_{\tau^{-n}(\xi')}^{n} \circ \phi_{\tau^{-1}(\xi)}^{-n} \circ g_{\Phi}(\xi)\| \\ &= \lim_{n \to \infty} \|\phi_{\tau^{-n}(\xi')}^{n} \circ g_{\Phi} \circ \tau^{-n}(\xi') - \phi_{\tau^{-n}(\xi')}^{n} \circ g_{\Phi} \circ \tau^{-n}(\xi)\|. \end{split}$$

Since the maps ϕ_{ξ} are β -contractions and for $g_{\Phi} : \Sigma_k \to \overline{D}$, if K is an upper bound of the diameter of \overline{D} we get that

$$\|g_{\Phi}(\xi') - \gamma_{\xi}^{u}(\xi')\| \leq \lim_{n \to \infty} \beta^{n} \|g_{\Phi} \circ \tau^{-n}(\xi') - g_{\Phi} \circ \tau^{-n}(\xi)\| \leq \lim_{n \to \infty} K\beta^{n} = 0.$$

Thus $g_{\Phi}(\xi') = \gamma_{\xi}^{u}(\xi') = x'$ and so $(\xi', x') \in \Gamma_{\Phi}$. That is, $W_{loc}^{uu}((\xi, x); \Phi) \subset \Gamma_{\Phi}$ for all $(\xi, x) \in \Gamma_{\Phi}$.

Indeed, we have proved that $\gamma_{\xi}^{u}(\xi') = g_{\Phi}(\xi')$ for all $\xi' \in W_{loc}^{u}(\xi;\tau)$, proving (ii). In particular, $\gamma_{\xi}^{u}(\xi'') = g_{\Phi}(\xi'') = \gamma_{\xi'}^{u}(\xi'')$ for all $\xi', \xi'' \in W_{loc}^{u}(\xi;\tau)$, that proves (iii).

To prove that γ^u_{ξ} is an α -Hölder map (item (i)) first note that by the triangle inequality we get

$$\|\gamma_{\xi}^{u,n}(\xi') - x\| = \|\gamma_{\xi}^{u,n}(\xi') - \gamma_{\xi}^{u,n}(\xi)\| \le \sum_{i=1}^{n} s_i(\xi')$$
(7.4)

where $x = g_{\Phi}(\xi)$ and $s_i(\xi')$ is given by

$$\begin{split} \|\phi_{\tau^{-n+i}(\xi')}^{n-i} \circ \phi_{\tau^{-n-1+i}(\xi')} \circ \phi_{\tau^{-n}(\xi)}^{i-1} \circ \phi_{\tau^{-1}(\xi)}^{-n}(x) - \\ \phi_{\tau^{-n+i}(\xi')}^{n-i} \circ \phi_{\tau^{-n-1+i}(\xi)} \circ \phi_{\tau^{-n}(\xi)}^{i-1} \circ \phi_{\tau^{-1}(\xi)}^{-n}(x) \|. \end{split}$$

Claim 7.5. $s_i(\xi') \leq C_{\Phi}(\beta \nu^{\alpha})^{n-i} d_{\Sigma_k}(\xi, \xi')^{\alpha}$, for every $i \in \{1, \ldots, n\}$.

We postpone the proof of this claim. Taking $n \to \infty$ in (7.4) we get

$$\|\gamma_{\xi}^{u}(\xi') - \gamma_{\xi}^{u}(\xi)\| \le C_{\gamma} d_{\Sigma_{k}}(\xi',\xi)^{\alpha} \quad \text{for all } \xi' \in W^{s}_{loc}(\xi;\tau) ,$$

where $C_{\gamma} = C_{\Phi}(1 - \beta \nu^{\alpha})^{-1}$. This shows that γ_{ξ}^{u} is α -Hölder. Indeed, for ξ' , $\xi'' \in W_{loc}^{u}(\xi; \tau)$, observe that $\gamma_{\xi}^{u}(\xi') = \gamma_{\xi'}^{u}(\xi')$ and $\gamma_{\xi}^{u}(\xi'') = \gamma_{\xi'}^{u}(\xi'')$. Thus

$$\|\gamma_{\xi}^{u}(\xi') - \gamma_{\xi}^{u}(\xi'')\| = \|\gamma_{\xi'}^{u}(\xi') - \gamma_{\xi'}^{u}(\xi'')\| \le C_{\gamma}d_{\Sigma_{k}}(\xi',\xi'')^{\alpha}.$$

Note that the Hölder constant obtained is uniform on ξ and $x = g_{\Phi}(\xi)$.

Proof of Claim 7.5. For every $i \in \{1, \ldots, n\}$, we have that

$$s_{i}(\xi') = \|\phi_{\tau^{-n+i}(\xi')}^{n-i} \circ \phi_{\tau^{-n-1+i}(\xi')}^{n-i} \circ \phi_{\tau^{-n}(\xi)}^{-n} \circ \phi_{\tau^{-1}(\xi)}^{-n}(x) - \phi_{\tau^{-n+i}(\xi')}^{n-i} \circ \phi_{\tau^{-n-1+i}(\xi)}^{n-i} \circ \phi_{\tau^{-n}(\xi)}^{-n} \circ \phi_{\tau^{-1}(\xi)}^{-n}(x)\|$$

$$\leq \beta^{n-i} \|\phi_{\tau^{-n-1+i}(\xi')} \circ \phi_{\tau^{-n}(\xi)}^{i-1} \circ \phi_{\tau^{-n}(\xi)}^{-n}(x) - \phi_{\tau^{-n-1+i}(\xi)} \circ \phi_{\tau^{-n}(\xi)}^{i-1} \circ \phi_{\tau^{-1}(\xi)}^{-n}(x)\|$$

$$\leq \beta^{n-i} C_{\Phi} d_{\Sigma_{k}} (\tau^{-n-1+i}(\xi'), \tau^{-n-1+i}(\xi))^{\alpha}$$

$$\leq \beta^{n-i} C_{\Phi} \nu^{(n-i)\alpha} \nu^{\alpha} = (\beta \nu^{\alpha})^{n-i} C_{\Phi} d_{\Sigma_{k}}(\xi',\xi)^{\alpha},$$

where first inequality follows from β -contraction of ϕ_{ξ} , and second one from α -Hölder continuity of ϕ_{ξ} .

This completes the proof of item (i).

To prove item (iv) observe that

$$\begin{split} \phi_{\tau^{-1}(\xi')}^{-1} \circ \gamma_{\xi}^{u}(\xi') &= \lim_{n \to \infty} \phi_{\tau^{-1}(\xi')}^{-1} \circ \phi_{\tau^{-n}(\xi')}^{n} \circ \phi_{\tau^{-1}(\xi)}^{-n} \circ g_{\Phi}(\xi) \\ &= \lim_{n \to \infty} \phi_{\tau^{-1}(\xi')}^{-1} \circ \phi_{\tau^{-1}(\xi')}^{-n} \circ \phi_{\tau^{-n}(\xi')}^{n-1} \circ g_{\Phi}(\xi) \\ &= \lim_{n \to \infty} \phi_{\tau^{-n}(\xi')}^{n-1} \circ \phi_{\tau^{-2}(\xi)}^{-n} \circ g_{\Phi}(\xi) \\ &= \lim_{n \to \infty} \phi_{\tau^{-n}(\xi')}^{n-1} \circ \phi_{\tau^{-2}(\xi)}^{-(n-1)} \circ g_{\Phi}(\xi) \\ &= \lim_{n \to \infty} \phi_{\tau^{-n}(\xi')}^{n-1} \circ \phi_{\tau^{-2}(\xi)}^{-(n-1)} \circ g_{\Phi} \circ \tau^{-1}(\xi) \\ &= \gamma_{\tau^{-1}(\xi)}^{u} \circ \tau^{-1}(\xi'), \end{split}$$
(7.5)

where equality (7.5) is consequence of (7.3): $\phi_{\tau^{-1}(\xi)}^{-1} \circ g_{\Phi}(\xi) = g_{\Phi} \circ \tau^{-1}(\xi).$

Now we prove item (v): $W_{loc}^{uu}((\xi, x); \Phi) \subset W^u((\xi, x); \Phi)$. Let $(\xi', x') \in W_{loc}^{uu}((\xi, x); \Phi)$, Then $\xi' \in W_{loc}^u(\xi; \tau)$ and $x' = \gamma_{\xi}^u(\xi')$. Thus,

$$d(\Phi^{-n}(\xi', x'), \Phi^{-n}(\xi, x)) = d_{\Sigma_k}(\tau^{-n}(\xi'), \tau^{-n}(\xi)) + + \|\phi_{\tau^{-1}(\xi')}^{-n}(x') - \phi_{\tau^{-1}(\xi)}^{-n}(x)\| \leq \nu^n d_{\Sigma_k}(\xi', \xi) + \|\phi_{\tau^{-1}(\xi')}^{-n} \circ \gamma_{\xi}^u(\xi') - \phi_{\tau^{-1}(\xi)}^{-n}(x)\|.$$
(7.6)

Since $(\xi, x) \in \Gamma_{\Phi}$ we have that $x = g_{\Phi}(\xi)$, and using that $\gamma_{\tau^{-n}(\xi)}^{u} \circ \tau^{-n}(\xi) = g_{\Phi} \circ \tau^{-n}(\xi) = \phi_{\tau^{-1}(\xi)}^{-n}(x)$ and $\phi_{\tau^{-1}(\xi')}^{-n} \circ \gamma_{\xi}^{u}(\xi') = \gamma_{\tau^{-n}(\xi)}^{u} \circ \tau^{-n}(\xi')$ we get

$$\begin{aligned} \|\phi_{\tau^{-1}(\xi')}^{-n} \circ \gamma_{\xi}^{u}(\xi') - \phi_{\tau^{-1}(\xi)}^{-n}(x)\| &= \|\gamma_{\tau^{-n}(\xi)}^{u} \circ \tau^{-n}(\xi') - \gamma_{\tau^{-n}(\xi)}^{u} \circ \tau^{-n}(\xi)\| \\ &\leq \nu^{\alpha n} d_{\Sigma_{k}}(\xi',\xi)^{\alpha}. \end{aligned}$$

This implies that (7.6) goes to zero as n goes to infinity and therefore (ξ', x') belongs to $W^u((\xi, x); \Phi)$. The proof of item (v), and of the proposition, is now complete.

By construction, the sets of the partition $\mathcal{W}_{\Gamma_{\Phi}}^{u}$ are the *local strong unstable* set $W_{loc}^{uu}((\xi, x); \Phi)$ throughout the point (ξ, x) in Γ_{Φ} . We define the (global) strong unstable set of $(\xi, x) \in \Gamma_{\Phi}$ as

$$W^{uu}((\xi, x); \Phi) \stackrel{\text{\tiny def}}{=} \bigcup_{n \ge 0} \Phi^n \big(W^{uu}_{loc}(\Phi^{-n}(\xi, x); \Phi) \big)$$

Before stating the next proposition let us recall that for each $\Phi = \tau \ltimes \phi_{\xi}$ we denote by $\operatorname{Per}(\Phi)$ the set of periodic points of Φ and that $\mathscr{P}: \Sigma_k \times G \to G$ is the projection on the fiber space.

Proposition 7.6. Consider $\Phi = \tau \ltimes \phi_{\xi} \in S$, with $\beta < 1$. Then

i)
$$W^{uu}((\xi, x); \Phi) = W^u((\xi, x); \Phi) \subset \Gamma_{\Phi}$$
 for all $(\xi, x) \in \Gamma_{\Phi}$, and

ii) for all periodic point (ϑ, p) of Φ in $\Sigma_k \times \overline{D}$

$$K_{\Phi} \stackrel{\text{def}}{=} \overline{\mathscr{P}(\operatorname{Per}(\Phi)) \cap D} = \overline{\mathscr{P}(W^{u}((\vartheta, p); \Phi))} = \mathscr{P}(\Gamma_{\Phi}) = g_{\Phi}(\Sigma_{k}).$$

Proof. To prove the inclusion $W^{uu}((\xi, x); \Phi) \subset W^u((\xi, x); \Phi)$ for all (ξ, x) in Γ_{Φ} , we take $(\xi', x') \in W^{uu}((\xi, x); \Phi)$ and show that

$$\lim_{n \to \infty} d(\Phi^{-n}(\xi', x'), \Phi^{-n}(\xi, x)) = 0.$$
(7.7)

Since $(\xi', x') \in W^{uu}((\xi, x); \Phi)$, by definition there are $m \in \mathbb{N}$ and $(\zeta, z) \in$ $W_{loc}^{uu}(\Phi^{-m}(\xi,x);\Phi)$ such that $(\xi',x')=\Phi^{m}(\zeta,z)$. Let $(\eta,y)=\Phi^{-m}(\xi,x)$. Note that $(\eta, y) \in \Gamma_{\Phi}, (\zeta, z) \in W^{uu}_{loc}((\eta, y); \Phi)$, and

$$d(\Phi^{-n}(\xi', x'), \Phi^{-n}(\xi, x)) = d(\Phi^{-(n-m)}(\zeta, z), \Phi^{-(n-m)}(\eta, y)).$$

By item (v) of Proposition 7.3, we have that $W^{uu}_{loc}((\eta, y); \Phi) \subset W^u((\eta, y); \Phi)$ and thus it follows (7.7).

To prove the converse inclusion, that is, if $(\xi, x) \in \Gamma_{\Phi}$ then $W^u((\xi, x); \Phi) \subset W^{uu}((\xi, x); \Phi)$, take $(\xi', x') \in W^u((\xi, x); \Phi)$. We have to show that there is $m \in \mathbb{N}$ such that $\Phi^{-m}(\xi', x') \in W^{uu}_{loc}(\Phi^{-m}(\xi, x); \Phi)$. By definition of unstable set,

$$\lim_{n \to \infty} d_{\Sigma_k} \left(\tau^{-n}(\xi'), \tau^{-n}(\xi) \right) = 0 \quad \text{and} \quad \lim_{n \to \infty} \|\phi_{\tau^{-1}(\xi')}^{-n}(x') - \phi_{\tau^{-1}(\xi)}^{-n}(x)\| = 0.$$
(7.8)
Since $(\xi, x) \in \Gamma_{\Phi}$ then $\phi_{\tau^{-1}(\xi)}^{-n}(x) \in D$ for all $n \ge 0$. Thus, there exists $m \in \mathbb{N}$ such that

$$\tau^{-m}(\xi') \in W^u_{loc}(\tau^{-m}(\xi);\tau) \quad \text{and} \quad \phi^{-(n+m)}_{\tau^{-1}(\xi')}(x') \in D, \quad \text{for every } n \ge m.$$

Write $(\eta, y) = \Phi^{-m}(\xi, x) \in \Gamma_{\Phi}$ and $(\eta', y') = \Phi^{-m}(\xi', x')$. Hence, one has that $y = g_{\Phi}(\eta)$ and that $\phi_{\tau^{-n}(\eta)}^{n-i} \circ \phi_{\tau^{-1}(\eta)}^{-n}(y)$ and $\phi_{\tau^{-n}(\eta')}^{n-i} \circ \phi_{\tau^{-1}(\eta')}^{-n}(y')$ belong to Dfor all $0 < i \leq n$. Recalling the definition of γ_{η}^{u} and $\gamma_{\eta}^{u,n}$ we have that

$$\begin{aligned} \|y' - \gamma_{\eta}^{u}(\eta')\| &= \lim_{n \to \infty} \|\phi_{\tau^{-n}(\eta')}^{n} \circ \phi_{\tau^{-1}(\eta')}^{-n}(y') - \phi_{\tau^{-n}(\eta')}^{n} \circ \phi_{\tau^{-1}(\eta)}^{-n}(y)\| \\ &\leq \lim_{n \to \infty} \beta^{n} \|\phi_{\tau^{-1}(\eta')}^{-n}(y') - \phi_{\tau^{-1}(\eta)}^{-n}(y)\|. \end{aligned}$$

From (7.8) and since $\beta < 1$, we get this limit is zero and hence $y' = \gamma_{\eta}^{u}(\eta')$. That is, $\Phi^{-m}(\xi', x') \in W^{uu}_{loc}(\Phi^{-m}(\xi, x); \Phi)$ and therefore $(\xi', x') \in W^{uu}((\xi, x); \Phi)$, concluding our assertion.

S

Note that we proved that $W^{uu}((\xi, x); \Phi) = W^u(\xi, x); \Phi)$ for all $(\xi, x) \in \Gamma_{\Phi}$. Then by Proposition 7.3 we have that $W^u(\xi, x); \Phi) \subset \Gamma_{\Phi}$, ending the first item of the proposition.

To prove item (ii), consider a periodic point $\vartheta \in \Sigma_k$ of τ and note that $W^u(\vartheta; \tau)$ and $\operatorname{Per}(\tau)$ are both dense in Σ_k . Using the conjugation in Proposition 7.2 and item (i), we get

$$\overline{\operatorname{Per}(\Phi|_{\Gamma_{\Phi}})} = \Gamma_{\Phi} = \overline{W^u((\vartheta, g_{\Phi}(\vartheta)); \Phi)} = \overline{W^{uu}((\vartheta, g_{\Phi}(\vartheta)); \Phi)}.$$
(7.9)

Note that if $(\vartheta, p) \in \Sigma_k \times \overline{D}$ is a periodic point of Φ , from the assumption $\phi_{\xi}(\overline{D}) \subset D$, we have that $\Phi^n(\vartheta, p) \in \Sigma_k \times D$ for all $n \in \mathbb{Z}$. Moreover, since g_{Φ} is the unique invariant graph of Φ restricted to $\Sigma_k \times \overline{D}$, by item (ii) in Theorem 7.1 we get $p = g_{\Phi}(\vartheta)$. From this, we have

$$\operatorname{Per}(\Phi|_{\Gamma_{\Phi}}) = \operatorname{Per}(\Phi|_{\Sigma_k \times \overline{D}}) = \operatorname{Per}(\Phi) \cap (\Sigma_k \times D).$$
(7.10)

Recalling that K_{Φ} is the closure of projection by \mathscr{P} of the periodic points of Φ in D and since the projection \mathscr{P} is a closed map and Σ_k is a compact set, Equations (7.9) and (7.10) imply that

$$\mathscr{P}(\Gamma_{\Phi}) = \overline{\mathscr{P}(W^u((\vartheta, p); \Phi))} = \overline{\mathscr{P}(\operatorname{Per}(\Phi|_{\Gamma_{\Phi}}))} = \overline{\mathscr{P}(\operatorname{Per}(\Phi)) \cap D} \stackrel{\text{def}}{=} K_{\Phi}.$$

Finally, note that by definition $\mathscr{P}(\Gamma_{\Phi}) = g_{\Phi}(\Sigma_k)$ and from the above equation, $K_{\Phi} = g_{\Phi}(\Sigma_k)$. Now, the proof of the proposition is now complete. \Box

7.3

Continuation of the reference cube

In this subsection we will conclude the proof of Theorem B. Note that Proposition 7.2 implies the first part of Theorem B and to conclude the proof of Theorem B, it remains to show item (v), that is, K_{Φ} depends continuously with respect to Φ .

Given two subsets A and B of \overline{D} we define

$$d_H(A,B) \stackrel{\text{\tiny def}}{=} \sup\{d(a,B), d(b,A) : a \in A, b \in B\}, \quad A, B \in \mathcal{K}(\overline{D}).$$

We have the following properties of d_H .

- (H1) $d_H(\overline{A}, \overline{B}) = d_H(A, B),$
- (H2) $d_H(T(A), T(B)) \leq \operatorname{Lip}(T) d_H(A, B)$ where $T : \overline{D} \to \overline{D}$ is a Lipschitz map,

(H3) if A_i and B_i are non-empty subsets for all i in a set of index I then

$$d_H\left(\bigcup_{i\in I}A_i,\bigcup_{i\in I}B_i\right)\leq \sup_{i\in I}d_H(A_i,B_i).$$

We consider the set $\mathcal{K}(\overline{D})$ whose elements are the compact subsets of \overline{D} endowed with the Hausdorff metric d_H obtaining a complete metric space. Define the map

$$\mathscr{L}: \mathcal{S} \to \mathcal{K}(\overline{D}), \qquad \mathscr{L}(\Phi) \stackrel{\text{def}}{=} K_{\Phi}.$$

Note that by Proposition 7.6 we have $K_{\Phi} \in \mathcal{K}(\overline{D})$ for all $\Phi \in \mathcal{S}$ and thus this map is well defined.

The next proposition claims that \mathscr{L} is continuous, completing the proof of Theorem B.

Proposition 7.7. Consider $\Phi = \tau \ltimes \phi_{\xi} \in S$ with $\beta < 1$. Then, for each $\varepsilon > 0$ there is $\delta > 0$ such that for every $\Psi = \tau \ltimes \psi_{\xi} \in S$ with

$$d_{C^0}(\phi_{\xi},\psi_{\xi}) < \delta$$
 it holds that $d_H(K_{\Phi},K_{\Psi}) = d_H(\mathscr{L}(\Phi),\mathscr{L}(\Psi)) < \varepsilon$.

Proof. Fixed small $\varepsilon > \epsilon > 0$, let $\delta = \epsilon(1-\beta)/2 > 0$. Take a fixed point $\vartheta \in \Sigma_k$ of τ . As $\phi_{\vartheta}(\overline{D}) \subset D$, by Brouwer's fixed point theorem, there is $p_{\Phi} \in D$ such that $\phi_{\vartheta}(p_{\Phi}) = p_{\Phi}$. As the map ϕ_{ϑ} is a contraction this fixed point is hyperbolic. Thus, (ϑ, p_{Φ}) is a fixed point of Φ in $\Sigma_k \times D$. If δ is small enough then for every $\Psi = \tau \ltimes \psi_{\xi}$ with $d_{C^0}(\phi_{\xi}, \psi_{\xi}) < \delta$ there is $p_{\Psi} \in D$ close to p_{Φ} which is a fixed point of ψ_{ϑ} . Thus $(\vartheta, p_{\Psi}) \in \Gamma_{\Psi}$ is a fixed point of Ψ , called the continuation of $(\vartheta, p_{\Phi}) \in \Gamma_{\Phi}$ for Ψ . Take $\Theta = \tau \ltimes \theta_{\xi} \in \{\Phi, \Psi\}$. By Proposition 7.6 the strong unstable set and the unstable set of (ϑ, p_{Θ}) are equal. Thus

$$\mathscr{P}\big(W^u((\vartheta, p_{\Theta}); \Theta)\big) = \bigcup_{n \ge 0} \mathscr{P} \circ \Theta^n\big(W^{uu}_{loc}((\vartheta, p_{\Theta}); \Theta)\big).$$

By item (i) of Proposition 7.3, the graph set of $\gamma^{u}_{\vartheta,p_{\Theta}}: W^{u}_{loc}(\vartheta; \tau) \to G$ is the local strong unstable set of (ϑ, p_{Θ}) for Θ . Thus, for each $n \geq 0$,

$$\mathscr{P}\Big(\Theta^n(W^{uu}_{loc}((\vartheta, p_\Theta); \Theta))\Big) = \big\{\theta^n_{\xi} \circ \gamma^u_{\vartheta, p_\Theta}(\xi) \colon \xi \in W^u_{loc}(\vartheta; \tau)\big\} \stackrel{\text{def}}{=} E_n(\Theta).$$

Hence, by Proposition 7.6

$$K_{\Theta} = \overline{\mathscr{P}(W^u((\vartheta, p_{\Theta}); \Theta))} = \overline{\bigcup_{n \ge 0} E_n(\Theta)}, \qquad \Theta = \Phi, \Psi.$$

By item (H3) of properties of d_H

$$d_H(K_{\Phi}, K_{\Psi}) \leq \sup_{n \geq 0} d_H(E_n(\Phi), E_n(\Psi)).$$

On the other hand, for each $n \ge 0$, we have that

$$d_H(E_n(\Phi), E_n(\Psi)) \le \sup_{\xi \in W^u_{loc}(\vartheta; \tau)} \|\phi^n_{\xi} \circ \gamma^u_{\vartheta, p_{\Phi}}(\xi) - \psi^n_{\xi} \circ \gamma^u_{\vartheta, p_{\Psi}}(\xi)\|.$$
(7.11)

Fix $\xi \in W^u_{loc}(\vartheta; \tau)$. First we will estimate (7.11) for n = 0.

Claim 7.8. For every $m \in \mathbb{N}$ it holds $\gamma^{u}_{\vartheta}(\xi) = \phi^{m}_{\tau^{-m}(\xi)} \circ \gamma^{u}_{\vartheta} \circ \tau^{-m}(\xi)$, for $\xi \in W^{u}(\vartheta, \tau)$.

Proof. Recall that $(\phi_{\tau^{-1}(\xi)}^m)^{-1} = \phi_{\tau^{-1}(\xi)}^{-m}$ and by notation in (7.1), and item (iv) in Proposition 7.3, we get:

$$\begin{split} \phi_{\tau^{-m}(\xi)}^{-m} \circ \gamma_{\vartheta}^{u}(\xi) &= \phi_{\tau^{-m}(\xi)}^{-1} \circ \cdots \circ \underbrace{\phi_{\tau^{-1}(\xi)}^{-1} \circ \gamma_{\vartheta}^{u}(\xi)}_{\tau^{-1}(\xi)} \circ \tau^{-1}(\xi) \\ &= \phi_{\tau^{-m}(\xi)}^{-1} \circ \cdots \circ \underbrace{\phi_{\tau^{-2}(\xi)}^{-1} \circ \gamma_{\tau^{-2}(\vartheta)}^{u} \circ \tau^{-1}(\xi)}_{\vdots} \\ &= \gamma_{\tau^{-m}(\vartheta)}^{u} \circ \tau^{-m}(\xi) = \gamma_{\vartheta}^{u} \circ \tau^{-m}(\xi). \end{split}$$

Using the claim above, the triangle inequality and the $\beta\text{-contraction}$ of ϕ_ξ we get

$$\begin{split} \|\gamma^{u}_{\vartheta,p\Phi}(\xi) - \gamma^{u}_{\vartheta,p\Psi}(\xi)\| &= \\ &= \|\phi^{m}_{\tau^{-m}(\xi)} \circ \gamma^{u}_{\vartheta,p\Phi} \circ \tau^{-m}(\xi) - \psi^{m}_{\tau^{-m}(\xi)} \circ \gamma^{u}_{\vartheta,p\Psi} \circ \tau^{-m}(\xi)\| \\ &\leq \|\phi^{m}_{\tau^{-m}(\xi)} \circ \gamma^{u}_{\vartheta,p\Phi} \circ \tau^{-m}(\xi) - \phi^{m}_{\tau^{-m}(\xi)} \circ \gamma^{u}_{\vartheta,p\Psi} \circ \tau^{-m}(\xi)\| + \\ &+ \|\phi^{m}_{\tau^{-m}(\xi)} \circ \gamma^{u}_{\vartheta,p\Psi} \circ \tau^{-m}(\xi) - \psi^{m}_{\tau^{-m}(\xi)} \circ \gamma^{u}_{\vartheta,p\Psi} \circ \tau^{-m}(\xi)\| \\ &\leq \beta^{m} \|\gamma^{u}_{\vartheta,p\Phi} \circ \tau^{-m}(\xi) - \gamma^{u}_{\vartheta,p\Psi} \circ \tau^{-m}(\xi)\| + \\ &+ \|\phi^{m}_{\tau^{-m}(\xi)} \circ \gamma^{u}_{\vartheta,p\Psi} \circ \tau^{-m}(\xi) - \psi^{m}_{\tau^{-m}(\xi)} \circ \gamma^{u}_{\vartheta,p\Psi} \circ \tau^{-m}(\xi)\|. \end{split}$$

Write the last inequality in the form $\beta^m(A) + (B)$. By continuity and since ξ is in the local unstable manifold of the fixed point ϑ for τ we get that

$$(A) = \|\gamma^u_{\vartheta, p_\Phi} \circ \tau^{-m}(\xi) - \gamma^u_{\vartheta, p_\Psi} \circ \tau^{-m}(\xi)\| \xrightarrow{m \to \infty} \|p_\Phi - p_\Psi\|.$$

Hence the first term in the sum goes to zero as $m \to \infty$. To estimate the term (B) recall that $d_{C^0}(\phi_{\xi}, \psi_{\xi}) < \delta$. Thus

$$\begin{split} \|\phi_{\tau^{-1}(\xi)} \circ \phi_{\tau^{-m}(\xi)}^{m-1} \circ \gamma_{\vartheta,p_{\Psi}}^{u} \circ \tau^{-m}(\xi) - \psi_{\tau^{-1}(\xi)} \circ \psi_{\tau^{-m}(\xi)}^{m-1} \circ \gamma_{\vartheta,p_{\Psi}}^{u} \circ \tau^{-m}(\xi) \| &\leq \\ &\leq \|\phi_{\tau^{-1}(\xi)} \circ \phi_{\tau^{-m}(\xi)}^{m-1} \circ \gamma_{\vartheta,p_{\Psi}}^{u} \circ \tau^{-m}(\xi) - \psi_{\tau^{-1}(\xi)} \circ \phi_{\tau^{-m}(\xi)}^{m-1} \circ \gamma_{\vartheta,p_{\Phi}}^{u} \circ \tau^{-m}(\xi) \| \\ &+ \|\psi_{\tau^{-1}(\xi)} \circ \phi_{\tau^{-m}(\xi)}^{m-1} \circ \gamma_{\vartheta,p_{\Phi}}^{u} \circ \tau^{-m}(\xi) - \psi_{\tau^{-1}(\xi)} \circ \psi_{\tau^{-m}(\xi)}^{m-1} \circ \gamma_{\vartheta,p_{\Psi}}^{u} \circ \tau^{-m}(\xi) \| \\ &\leq \delta + \beta \|\phi_{\tau^{-m}(\xi)}^{m-1} \circ \gamma_{\vartheta,p_{\Phi}}^{u} \circ \tau^{-m}(\xi) - \psi_{\tau^{-1}(\xi)} \circ \psi_{\tau^{-m}(\xi)}^{m-1} \circ \gamma_{\vartheta,p_{\Psi}}^{u} \circ \tau^{-m}(\xi) \|. \end{split}$$

Arguing inductively we get

$$\left\|\phi_{\tau^{-m}(\xi)}^{m}\circ\gamma_{\vartheta,p_{\Psi}}^{u}\circ\tau^{-m}(\xi)-\psi_{\tau^{-m}(\xi)}^{m}\circ\gamma_{\vartheta,p_{\Psi}}^{u}\circ\tau^{-m}(\xi)\right\|\leq\delta\sum_{k=0}^{m-1}\beta^{k}\leq\frac{\delta}{1-\beta}.$$

Putting together the estimates for (A) and (B) we get

$$\|\gamma^{u}_{\vartheta,p_{\Phi}}(\xi) - \gamma^{u}_{\vartheta,p_{\Psi}}(\xi)\| \le \delta(1-\beta)^{-1} < \epsilon,$$

proving (7.11) for n = 0.

Now, for each $n \ge 1$, with a similar calculation we obtain that

$$\begin{aligned} \|\phi_{\xi}^{n} \circ \gamma_{\vartheta, p_{\Phi}}^{u}(\xi) - \psi_{\xi}^{n} \circ \gamma_{\vartheta, p_{\Psi}}^{u}(\xi)\| &\leq \beta^{n} \|\gamma_{\vartheta, p_{\Phi}}^{u}(\xi) - \gamma_{\vartheta, p_{\Psi}}^{u}(\xi)\| + \\ &+ \|\phi_{\xi}^{n} \circ \gamma_{\vartheta, p_{\Psi}}^{u}(\xi) - \psi_{\xi}^{n} \circ \gamma_{\vartheta, p_{\Psi}}^{u}(\xi)\|. \end{aligned}$$

Arguing analogously (using the triangle inequality and $d_{C^0}(\phi_{\xi}, \psi_{\xi}) < \delta$), we get that $\|\phi_{\xi}^n \circ \gamma_{\vartheta, p_{\Psi}}^u(\xi) - \psi_{\xi}^n \circ \gamma_{\vartheta, p_{\Psi}}^u(\xi)\| \leq \delta(1-\beta)^{-1}$. Putting together these estimates and using that $\beta^n < 1$, we have that

$$\|\phi_{\xi}^{n} \circ \gamma_{\vartheta, p_{\Phi}}^{u}(\xi) - \psi_{\xi}^{n} \circ \gamma_{\vartheta, p_{\Psi}}^{u}(\xi)\| \le \beta^{n} \frac{\delta}{1-\beta} + \frac{\delta}{1-\beta} \le \frac{2\delta}{1-\beta} = \epsilon.$$

By (7.11) this implies that

$$d_H(K_{\Phi}, K_{\Psi}) \leq \sup_{n \in \mathbb{N}} d_H(E_n(\Phi), E_n(\Psi)) \leq \epsilon < \varepsilon,$$

ending the proof of the proposition.

The proof of Theorem B is now complete.