8 Symbolic blenders in the one-step setting

In this section, we prove the existence of symbolic blender-horseshoes in the one-step setting, Definition 1.11. We begin studying the relation between one-step skew product maps and their associated iterated function systems (IFS). To construct symbolic blender-horseshoes we use the covering property and the Hutchinson attractor of the associated IFS.

8.1

One-step skew products and IFS's

Given a one-step map $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right)$ we denote by $\operatorname{IFS}\left(\phi_{1}, \ldots, \phi_{k}\right)$, or shortly $\operatorname{IFS}(\Phi)$, the set of all compositions of the maps $\phi_{1}, \ldots, \phi_{k}$ and we will refer to this as the associated iterated function system, or shortly IFS, of Φ.

The orbit of a point $x \in G$ for $\operatorname{IFS}\left(\phi_{1}, \ldots, \phi_{k}\right)$, shortly the \mathcal{G}_{Φ}-orbit of x, is the set

$$
\operatorname{Orb}_{\Phi}(x) \stackrel{\text { def }}{=}\left\{\phi(x): \phi \in \operatorname{IFS}\left(\phi_{1}, \ldots, \phi_{k}\right)\right\} .
$$

Next proposition shows that if (ϑ, p) is a fixed point of Φ then $\operatorname{Orb}_{\Phi}(p)$ is the projection into the fiber space of the strong unstable set of (ϑ, p). This result was proved in [19], since the proof is short, for completeness we include it here. A consequence of this proposition is that the density property (1.9) of the strong unstable set in Definition 1.11 of one-step symbolic blender-horseshoes is reduced to the density of the orbit of the "fixed point" p for the associated iteration function system.

Proposition 8.1. [19, Proposition 2.16] Consider $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right)$ an one-step map and let (ϑ, p) be a fixed point of Φ. Then

$$
\left.\mathscr{P}\left(W^{u u}(\vartheta, p) ; \Phi\right)\right)=\operatorname{Orb}_{\Phi}(p) .
$$

Proof. Since (ϑ, p) is a fixed point of Φ then

$$
\left.W^{u u}(\vartheta, p) ; \Phi\right)=\bigcup_{n=0}^{\infty} \Phi^{n}\left(W_{l o c}^{u u}((\vartheta, p) ; \Phi)\right) .
$$

On the other hand, we have that for each $n \geq 1$

$$
\Phi^{n}\left(W_{l o c}^{u u}((\vartheta, p) ; \Phi)=\left\{\left(\tau^{n}(\zeta), \phi_{\tau^{n-1}(\zeta)} \circ \ldots \circ \phi_{\zeta}(p)\right): \zeta \in W_{l o c}^{u}(\vartheta ; \tau)\right\} .\right.
$$

Since Φ is one-step, we have that $\phi_{\tau^{i}(\zeta)}=\phi_{\zeta_{i}}$ for all $i \geq 0$. Note that since $\zeta \in W_{\text {loc }}^{u}(\vartheta ; \tau)$ we have that $\phi_{\zeta}(p)=\phi_{\vartheta}(p)=p$, then

$$
\begin{aligned}
\mathscr{P}\left(\Phi^{n}\left(W_{l o c}^{u u}((\vartheta, p) ; \Phi)\right)\right. & =\left\{\phi_{\tau^{n-1}(\zeta)} \circ \ldots \circ \phi_{\tau(\zeta)}(p): \zeta \in W_{l o c}^{u}(\vartheta ; \tau)\right\} \\
& =\left\{\phi_{i_{n-1}} \circ \cdots \circ \phi_{i_{1}}(p): i_{j} \in\{1, \ldots, k\}, 1 \leq j<n\right\} .
\end{aligned}
$$

Hence the projection on the fiber space of the strong unstable set is $\operatorname{Orb}_{\Phi}(p)$, concluding the proof of the proposition.

Recall that $\mathcal{Q}_{k, \lambda, \beta}^{0}(D)$ is the subset of $\mathcal{S}:=\mathcal{S}_{k, \lambda, \beta}^{0, \alpha}$ (Definition 1.7) consisting of one-step skew product maps. In this section, for simplicity, we denote \mathcal{Q} in the place of $\mathcal{Q}_{k, \lambda, \beta}^{0}(D)$, with $\beta<1$. A neighborhood \mathcal{V} of Φ in \mathcal{Q} is a neighborhood in the topology of \mathcal{S} intersected with \mathcal{Q}. As the topology of \mathcal{S} is induced by the distance in (1.6), noting that for every $\Psi \in \mathcal{Q}$ its Hölder constant is $C_{\Psi}=0$, we have that if $\Psi=\tau \ltimes\left(\psi_{1}, \ldots, \psi_{k}\right)$ and $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right)$ are δ-close then

$$
d_{\mathcal{Q}}(\Psi, \Phi)=\max _{i=1, \ldots, k} d_{C^{0}}\left(\left.\psi_{i}\right|_{D},\left.\phi_{i}\right|_{D}\right)<\delta
$$

A periodic point (ϑ, p) of a skew product map $\Phi=\tau \ltimes \phi_{\xi}$ is fiberhyperbolic for Φ if p is a hyperbolic point of ϕ_{ϑ}^{n}, where n is the period of (ϑ, p). We analogously define fiber-attractors and fiber-repellors.

Proposition 8.2. Consider $\Phi \in \mathcal{Q}$, a non-empty open set $B \subset D$, and a fiber-hyperbolic fixed point $(\vartheta, p) \in \Sigma_{k} \times D$ of Φ. The following properties are equivalent:
i) There is a neighborhood \mathcal{V} of Φ in \mathcal{Q} such that for every $\Psi \in \mathcal{V}$, one has that

$$
W^{u u}\left(\left(\vartheta, p_{\Psi}\right) ; \Psi\right) \cap\left(W_{l o c}^{s}(\xi ; \tau) \times U\right) \neq \emptyset
$$

for every $\xi \in \Sigma_{k}$ and every non-empty open subset U in B, where p_{Ψ} is the continuation of p.
ii) $B \subset \overline{\operatorname{Orb}_{\Psi}\left(p_{\Psi}\right)}$ for every $\Psi \in \mathcal{Q}$ close to Φ.

Proof. From Proposition 8.1, for a fixed point $\left(\vartheta, p_{\Psi}\right)$ of Ψ, we have that $\mathscr{P}\left(W^{u u}\left(\left(\vartheta, p_{\Psi}\right) ; \Psi\right)\right)=\operatorname{Orb}_{\Psi}\left(p_{\Psi}\right)$. Therefore, item (i) implies that $B \subset$ $\overline{\operatorname{Orb}_{\Psi}\left(p_{\Psi}\right)}$ for every $\Psi \in \mathcal{Q}$ close to Φ.

For the converse take the fixed point $\left(\vartheta, p_{\Psi}\right)$ of $\Psi=\tau \ltimes\left(\psi_{1}, \ldots, \psi_{k}\right)$ close to $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right)$ and fix $U \subset B$ and $\xi \in \Sigma_{k}$. By item (ii), there is $\psi_{i_{n}} \circ \cdots \circ \psi_{i_{1}} \in \operatorname{IFS}\left(\psi_{1}, \ldots \psi_{k}\right)$ such that the point $x=\psi_{i_{n}} \circ \cdots \circ \psi_{i_{1}}\left(p_{\Psi}\right) \in U$. Take

$$
\zeta=\left(\ldots \vartheta_{-1} \vartheta_{0}, i_{1}, \ldots, i_{n} ; \xi_{0}, \xi_{1}, \ldots\right)
$$

and note that $(\zeta, x) \in W_{\text {loc }}^{s}(\xi ; \tau) \times U$. It is enough to see that $(\zeta, x) \in$ $W^{u u}\left(\left(\vartheta, p_{\Psi}\right) ; \Phi\right)$. Since $\left(\vartheta, p_{\Psi}\right)$ is a fixed point of Ψ, by the choice of x we have that

$$
\Psi^{-n-1}(\zeta, x)=\left(\left(\ldots, \vartheta_{-1} ; \vartheta_{0}, i_{1}, \ldots, i_{n}, \xi_{0}, \xi_{1}, \ldots\right), p_{\Psi}\right) \in W_{l o c}^{u}(\vartheta ; \tau) \times\left\{p_{\Psi}\right\} .
$$

Therefore
$(\zeta, x) \in \Psi^{n+1}\left(W_{\text {loc }}^{u}(\vartheta ; \tau) \times\left\{p_{\Psi}\right\}\right)=\Psi^{n+1}\left(W_{\text {loc }}^{u u}\left(\left(\vartheta, p_{\Psi}\right) ; \Psi\right)\right) \subset W^{u u}\left(\left(\vartheta, p_{\Psi}\right) ; \Psi\right)$.
Hence

$$
(\zeta, x) \in W^{u u}\left(\left(\vartheta, p_{\Psi}\right) ; \Psi\right) \cap\left(W_{l o c}^{s}(\xi ; \tau) \times U\right)
$$

completing the proof of the proposition.
Remark 8.3. If (ϑ, p) in Proposition 8.2 is a fiber-attracting fixed point of $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right)$ with B contained in the attracting region of p for $\operatorname{IFS}\left(\phi_{1}, \ldots, \phi_{k}\right)$, then item (ii) is equivalent to

$$
\begin{equation*}
B \subset \overline{\operatorname{Orb}_{\Psi}(x)}, \quad \text { for every } x \in B \text { and every } \Psi \in \mathcal{Q} \text { close to } \Phi . \tag{8.1}
\end{equation*}
$$

To see why this remark is so note first that Equation (8.1) implies item (ii) immediately (just take $x=p$). To see the converse take a perturbation $\Psi=\tau \ltimes\left(\psi_{1}, \ldots, \psi_{k}\right)$ of Φ in \mathcal{Q}, a non-empty open set U in B, and $x \in B$. By hypotheses, there is $\psi \in \operatorname{IFS}\left(\psi_{1}, \ldots, \psi_{k}\right)$ such that $\psi\left(p_{\Psi}\right) \in U$. As U is open there is a neighborhood V of p_{Ψ} such that $\psi(V) \subset U$. If Ψ is close enough to Φ then B is also in the attracting region of p_{Ψ} for $\psi_{\vartheta}=\psi_{i}$ where $i=\vartheta_{0}$. Thus there is $n \in \mathbb{N}$ such that $\psi_{i}^{n}(x) \in V$ and hence $\psi \circ \psi_{i}^{n}(x) \in U$, proving (8.1).

Motivated by (8.1), we give the following definition:
Definition 8.4 (Blending regions). Consider $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right) \in \mathcal{Q}$. A non-empty open set $B \subset M$ is called a blending region for Φ (or for the $\operatorname{IFS}\left(\phi_{1}, \ldots, \phi_{k}\right)$) if for every $\Psi=\tau \ltimes\left(\psi_{1}, \ldots, \psi_{k}\right)$ close to Φ it holds

$$
B \subset \overline{\operatorname{Orb}_{\Psi}(x)} \text { for all } x \in B
$$

Proposition 8.5. Let $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right) \in \mathcal{Q}$ and consider a blending region $B \subset D$ of Φ. Suppose that there are a hyperbolic fixed point $p \in D$ of some
ϕ_{i} and a map $\phi \in \operatorname{IFS}\left(\phi_{1}, \ldots, \phi_{k}\right)$ with $\phi(p) \in B$. Then the maximal invariant set of Φ in $\Sigma_{k} \times \bar{D}$ is a one-step symbolic blender-horseshoe.

Proof. By Proposition 8.2, it is enough to see that $B \subset \overline{\operatorname{Orb}_{\Psi}\left(p_{\Psi}\right)}$, for every $\Psi=\tau \ltimes\left(\psi_{1}, \ldots, \psi_{k}\right)$ close to Φ, where p_{Ψ} the continuation of p for Ψ. By hypothesis, there are i_{n}, \ldots, i_{1} such that $\phi_{i_{n}} \circ \cdots \circ \phi_{i_{1}}(p) \in B$. Since B is an open set, if $\Psi=\tau \ltimes\left(\psi_{1}, \ldots, \psi_{k}\right)$ is close enough to Φ then $\psi_{i_{n}} \circ \ldots \circ \psi_{i_{1}}\left(p_{\Psi}\right) \in B$. Since B is a blending region for $\operatorname{IFS}\left(\phi_{1}, \ldots, \phi_{k}\right)$ it follows that

$$
B \subset \overline{\operatorname{Orb}_{\Psi}\left(\psi_{i_{n}} \circ \cdots \circ \psi_{i_{1}}\left(p_{\Psi}\right)\right)} \subset \overline{\operatorname{Orb}_{\Psi}\left(p_{\Psi}\right)} .
$$

This concludes the proof of the proposition.

8.2

Blending regions for contracting IFS: The Hutchinson attractor

In this section, we will prove that the covering property implies the existence of one-step symbolic blender-horseshoes. Associated to a one-step map $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right) \in \mathcal{Q} \subset \mathcal{S}_{k, \lambda, \beta}^{0, \alpha}$, with $\beta<1$, or to the contracting $\operatorname{IFS}\left(\phi_{1}, \ldots, \phi_{k}\right)$, the Hutchinson's operator is defined by

$$
\begin{equation*}
\mathcal{G}_{\Phi}: \mathcal{K}(\bar{D}) \rightarrow \mathcal{K}(\bar{D}), \quad \mathcal{G}_{\Phi}(A) \stackrel{\text { def }}{=} \phi_{1}(A) \cup \ldots \cup \phi_{k}(A), \tag{8.2}
\end{equation*}
$$

where $\mathcal{K}(\bar{D})$ denotes the set of compact subsets of \bar{D} and $A \in \mathcal{K}(\bar{D})$.
Given a one-step map $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right)$, we also define $\operatorname{Per}(\operatorname{IFS}(\Phi))$ as the projection of $\mathscr{P}(\operatorname{Per}(\Phi))$ in the fiber space, that is, the set of fixed points of the maps in $\operatorname{IFS}\left(\phi_{1}, \ldots, \phi_{k}\right)$.

Since the maps ϕ_{i} are contractions, the map \mathcal{G}_{Φ} is also a contraction. This fact leads to the following result:

Proposition $8.6([25,16])$. Let $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right) \in \mathcal{Q}$ Then there exists a unique compact set $K_{\mathcal{G}_{\Phi}} \in \mathcal{K}(\bar{D})$ such that

$$
K_{\mathcal{G}_{\Phi}}=\mathcal{G}_{\Phi}\left(K_{\mathcal{G}_{\Phi}}\right)=\overline{\operatorname{Per}(\operatorname{IFS}(\Phi)) \cap D}=K_{\Phi} .
$$

Moreover, the set $K_{\mathcal{G}_{\boldsymbol{\Phi}}}$ depends continuously (in the set \mathcal{Q}) on the map Φ and is the global attractor of \mathcal{G}_{Φ}, that is, for every $A \in \mathcal{K}(\bar{D})$ it holds $\lim _{m \rightarrow \infty} d_{H}\left(\mathcal{G}_{\Phi}^{m}(A), K_{\mathcal{G}_{\Phi}}\right)=0$.

We call the compact set $K_{\mathcal{G}_{\Phi}}$ (in the sequel denoted by K_{Φ}) the Hutchinson's attractor of the contracting one-step map Φ or of its associated $\operatorname{IFS}(\Phi)$.

Let us recall that given $x \in D$ its orbit is defined by

$$
\operatorname{Orb}_{\Phi}(x)=\{\phi(x): \phi \in \operatorname{IFS}(\Phi)\}=\left\{\phi_{i_{n}} \circ \cdots \circ \phi_{i_{1}}(x): n \leq 1, i_{j} \in\{1, \ldots, k\}\right\} .
$$

By Proposition 8.6, we have that $\mathcal{G}_{\Phi}^{m}(x) \xrightarrow{m \rightarrow \infty} K_{\Phi}$ for all $x \in D$ and thus

$$
\begin{equation*}
K_{\Phi} \subset \overline{\operatorname{Orb}_{\Phi}(x)} \tag{8.3}
\end{equation*}
$$

We now have the following consequences of Proposition 8.6:
Corollary 8.7. Consider $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right) \in \mathcal{Q}$ and let K_{Φ} be its Hutchinson's attractor.
i) For every $A \in \mathcal{K}(\bar{D})$ with $A \subset \mathcal{G}_{\Phi}(A)$ one has that $A \subset K_{\Phi} \subset \overline{\operatorname{Orb}_{\Phi}(x)}$ for all $x \in \bar{D}$.
ii) For every $p \in K_{\Phi}$ there is a sequence $\left(\sigma_{n}\right)_{n \in \mathbb{N}} \in\{1, \ldots, k\}^{\mathbb{N}}$ such that

$$
\phi_{\sigma_{n}}^{-1} \circ \cdots \circ \phi_{\sigma_{1}}^{-1}(p) \in K_{\Phi} \quad \text { for all } n \in \mathbb{N}
$$

iii) For each open set V such that $V \cap K_{\Phi} \neq \emptyset$ there exist $n \in \mathbb{N}$ and $\left(i_{1}, \ldots, i_{n}\right) \in\{1, \ldots, k\}^{n}$ such that $\phi_{i_{n}} \circ \cdots \circ \phi_{i_{1}}\left(K_{\Phi}\right) \subset V$.

Proof. To prove the first item note that, by hypothesis,

$$
A \subset \mathcal{G}_{\Phi}(A) \subset \ldots \subset \mathcal{G}_{\Phi}^{m}(A)
$$

for all $m \geq 1$. Since $\mathcal{G}_{\Phi}^{m}(A) \rightarrow K_{\Phi}$ this implies that $A \subset K_{\Phi}$. Since, by (8.3), one has that $K_{\Phi} \subset \overline{\operatorname{Orb}_{\Phi}(x)}$ for all $x \in \bar{D}$, this proves (i).

To prove item (ii) recall that by Proposition 8.6 one has that $K_{\Phi}=$ $\phi_{1}\left(K_{\Phi}\right) \cup \ldots \cup \phi_{k}\left(K_{\Phi}\right)$. Thus given any $p \in K_{\Phi}$ there exits $\sigma_{1} \in\{1, \ldots, k\}$ such that $\phi_{\sigma_{1}}^{-1}(p) \in K_{\Phi}$. Arguing inductively, we get a sequence $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ such that $\phi_{\sigma_{n}}^{-1} \circ \cdots \circ \phi_{\sigma_{1}}^{-1}(p) \in K_{\Phi}$ for all $n \in \mathbb{N}$.

To prove item (iii), fix an open set V with $V \cap K_{\Phi} \neq \emptyset$. Consider $i \in\{1, \ldots, k\}$ and the fixed point s of ϕ_{i}. By the first item we have $K_{\Phi} \subset \overline{\operatorname{Orb}_{\Phi}(s)}$. Hence, there are $m \in \mathbb{N}$ and $\left(\sigma_{1}, \ldots, \sigma_{m}\right) \in\{1, \ldots, k\}^{m}$ such that $\phi_{\sigma_{m}} \circ \cdots \circ \phi_{\sigma_{1}}(s) \in V$ and thus $\phi_{\sigma_{1}}^{-1} \circ \cdots \circ \phi_{\sigma_{m}}^{-1}(V)$ is a neighborhood of s. Since ϕ_{i}^{-1} is an expansion, the set $\phi_{\sigma_{1}}^{-1} \circ \cdots \circ \phi_{\sigma_{m}}^{-1}(V)$ contains the repelling point s of ϕ_{i}^{-1}, and K_{Φ} is bounded, there exists $\ell \in \mathbb{N}$ such that

$$
K_{\Phi} \subset \phi_{i}^{-\ell} \circ \phi_{\sigma_{1}}^{-1} \circ \cdots \circ \phi_{\sigma_{m}}^{-1}(V) .
$$

Now it is enough to take $n=\ell+m$ and the sequence $\left(i, ., ., i, \sigma_{1}, \ldots, \sigma_{m}\right)$. This completes the proof of the corollary.

For next result, recall that an open set B has the covering property for $\operatorname{IFS}\left(\phi_{1}, \ldots, \phi_{k}\right)$ or for $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right)$ if

$$
\bar{B} \subset \phi_{1}(B) \cup \cdots \cup \phi_{k}(B) .
$$

Next result shows that an open set satisfying the covering property for a contractive IFS is a blending region.

Corollary 8.8. Consider $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right) \in \mathcal{Q}$. Let $B \subset \bar{D}$ be a nonempty bounded open set satisfying the covering property for Φ. Then for every $\Psi \in \mathcal{Q}$ close enough to Φ one has that $\bar{B} \subset K_{\Psi} \subset \overline{\operatorname{Orb}_{\Psi}(x)}$, for all $x \in \bar{D}$, where K_{Ψ} is the Hutchinson attractor of Ψ.

The corollary above and Proposition 8.5 imply that covering property generates one-step symbolic blender-horseshoes (Definition 1.11).

Corollary 8.9. Let $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right) \in \mathcal{Q} \subset \mathcal{S}_{k, \lambda, \beta}^{0, \alpha}$ with $\beta<1$ and let $B \subset \bar{D}$ be a non-empty open set satisfying the covering property for Φ. Then the maximal invariant set of Φ is a one-step symbolic blender-horseshoe.

Proof of Corollary 8.8. Recalling (8.2), if the skew product map $\Psi \in \mathcal{Q}$ is close to Φ then $d_{H}\left(\mathcal{G}_{\Psi}(\bar{B}), \mathcal{G}_{\Phi}(\bar{B})\right)$ is small. From this proximity and since $\mathcal{G}_{\Phi}(B)=\phi_{1}(B) \cup \cdots \cup \phi_{k}(B)$ is open, one has that $\bar{B} \subset \mathcal{G}_{\Psi}(B) \subset \mathcal{G}_{\Psi}(\bar{B})$. Inductively, we get

$$
\bar{B} \subset \mathcal{G}_{\Psi}^{m}(\bar{B}), \quad \text { for all } m \geq 0
$$

Since the Hutchinson attractor K_{Ψ} of Ψ is closed and $d_{H}\left(\mathcal{G}_{\Psi}^{m}(\bar{B}), K_{\Psi}\right) \rightarrow 0$ we get $\bar{B} \subset K_{\Psi} \subset \overline{\operatorname{Orb}_{\Psi}(x)}$ for all $x \in \bar{D}$.

