8 Symbolic blenders in the one-step setting

In this section, we prove the existence of symbolic blender-horseshoes in the one-step setting, Definition 1.11. We begin studying the relation between one-step skew product maps and their associated iterated function systems (IFS). To construct symbolic blender-horseshoes we use the covering property and the Hutchinson attractor of the associated IFS.

8.1 One-step skew products and IFS's

Given a one-step map $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k)$ we denote by $\text{IFS}(\phi_1, \ldots, \phi_k)$, or shortly $\text{IFS}(\Phi)$, the set of all compositions of the maps ϕ_1, \ldots, ϕ_k and we will refer to this as the associated *iterated function system*, or shortly IFS, of Φ .

The orbit of a point $x \in G$ for IFS (ϕ_1, \ldots, ϕ_k) , shortly the \mathcal{G}_{Φ} -orbit of x, is the set

$$\operatorname{Orb}_{\Phi}(x) \stackrel{\text{\tiny def}}{=} \{\phi(x) : \phi \in \operatorname{IFS}(\phi_1, \dots, \phi_k)\}.$$

Next proposition shows that if (ϑ, p) is a fixed point of Φ then $\operatorname{Orb}_{\Phi}(p)$ is the projection into the fiber space of the strong unstable set of (ϑ, p) . This result was proved in [19], since the proof is short, for completeness we include it here. A consequence of this proposition is that the density property (1.9) of the strong unstable set in Definition 1.11 of one-step symbolic blender-horseshoes is reduced to the density of the orbit of the "fixed point" p for the associated iteration function system.

Proposition 8.1. [19, Proposition 2.16] Consider $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k)$ an one-step map and let (ϑ, p) be a fixed point of Φ . Then

$$\mathscr{P}(W^{uu}(\vartheta, p); \Phi)) = \operatorname{Orb}_{\Phi}(p).$$

Proof. Since (ϑ, p) is a fixed point of Φ then

$$W^{uu}(\vartheta, p); \Phi) = \bigcup_{n=0}^{\infty} \Phi^n \big(W^{uu}_{loc}((\vartheta, p); \Phi) \big).$$

On the other hand, we have that for each $n \ge 1$

$$\Phi^{n}(W^{uu}_{loc}(\vartheta, p); \Phi) = \{(\tau^{n}(\zeta), \phi_{\tau^{n-1}(\zeta)} \circ \ldots \circ \phi_{\zeta}(p)) : \zeta \in W^{u}_{loc}(\vartheta; \tau)\}.$$

Since Φ is one-step, we have that $\phi_{\tau^i(\zeta)} = \phi_{\zeta_i}$ for all $i \ge 0$. Note that since $\zeta \in W^u_{loc}(\vartheta; \tau)$ we have that $\phi_{\zeta}(p) = \phi_{\vartheta}(p) = p$, then

$$\mathscr{P}\left(\Phi^{n}(W_{loc}^{uu}(\vartheta, p); \Phi)\right) = \{\phi_{\tau^{n-1}(\zeta)} \circ \ldots \circ \phi_{\tau(\zeta)}(p) : \zeta \in W_{loc}^{u}(\vartheta; \tau)\}$$
$$= \{\phi_{i_{n-1}} \circ \cdots \circ \phi_{i_{1}}(p) : i_{j} \in \{1, \ldots, k\}, 1 \le j < n\}.$$

Hence the projection on the fiber space of the strong unstable set is $Orb_{\Phi}(p)$, concluding the proof of the proposition.

Recall that $\mathcal{Q}_{k,\lambda,\beta}^{0}(D)$ is the subset of $\mathcal{S} := \mathcal{S}_{k,\lambda,\beta}^{0,\alpha}$ (Definition 1.7) consisting of one-step skew product maps. In this section, for simplicity, we denote \mathcal{Q} in the place of $\mathcal{Q}_{k,\lambda,\beta}^{0}(D)$, with $\beta < 1$. A neighborhood \mathcal{V} of Φ in \mathcal{Q} is a neighborhood in the topology of \mathcal{S} intersected with \mathcal{Q} . As the topology of \mathcal{S} is induced by the distance in (1.6), noting that for every $\Psi \in \mathcal{Q}$ its Hölder constant is $C_{\Psi} = 0$, we have that if $\Psi = \tau \ltimes (\psi_1, \dots, \psi_k)$ and $\Phi = \tau \ltimes (\phi_1, \dots, \phi_k)$ are δ -close then

$$d_{\mathcal{Q}}(\Psi, \Phi) = \max_{i=1,\dots,k} d_{C^0}(\psi_i|_D, \phi_i|_D) < \delta.$$

A periodic point (ϑ, p) of a skew product map $\Phi = \tau \ltimes \phi_{\xi}$ is fiberhyperbolic for Φ if p is a hyperbolic point of ϕ_{ϑ}^n , where n is the period of (ϑ, p) . We analogously define fiber-attractors and fiber-repellors.

Proposition 8.2. Consider $\Phi \in Q$, a non-empty open set $B \subset D$, and a fiber-hyperbolic fixed point $(\vartheta, p) \in \Sigma_k \times D$ of Φ . The following properties are equivalent:

i) There is a neighborhood \mathcal{V} of Φ in \mathcal{Q} such that for every $\Psi \in \mathcal{V}$, one has that

$$W^{uu}((\vartheta, p_{\Psi}); \Psi) \cap (W^s_{loc}(\xi; \tau) \times U) \neq \emptyset,$$

for every $\xi \in \Sigma_k$ and every non-empty open subset U in B, where p_{Ψ} is the continuation of p.

ii) $B \subset \overline{\operatorname{Orb}_{\Psi}(p_{\Psi})}$ for every $\Psi \in \mathcal{Q}$ close to Φ .

Proof. From Proposition 8.1, for a fixed point (ϑ, p_{Ψ}) of Ψ , we have that $\mathscr{P}(W^{uu}((\vartheta, p_{\Psi}); \Psi)) = \operatorname{Orb}_{\Psi}(p_{\Psi})$. Therefore, item (i) implies that $B \subset \overline{\operatorname{Orb}_{\Psi}(p_{\Psi})}$ for every $\Psi \in \mathcal{Q}$ close to Φ .

For the converse take the fixed point (ϑ, p_{Ψ}) of $\Psi = \tau \ltimes (\psi_1, \ldots, \psi_k)$ close to $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k)$ and fix $U \subset B$ and $\xi \in \Sigma_k$. By item (ii), there is $\psi_{i_n} \circ \cdots \circ \psi_{i_1} \in \operatorname{IFS}(\psi_1, \ldots, \psi_k)$ such that the point $x = \psi_{i_n} \circ \cdots \circ \psi_{i_1}(p_{\Psi}) \in U$. Take

$$\zeta = (\dots \vartheta_{-1} \vartheta_0, i_1, \dots, i_n; \xi_0, \xi_1, \dots),$$

and note that $(\zeta, x) \in W^s_{loc}(\xi; \tau) \times U$. It is enough to see that $(\zeta, x) \in W^{uu}((\vartheta, p_{\Psi}); \Phi)$. Since (ϑ, p_{Ψ}) is a fixed point of Ψ , by the choice of x we have that

$$\Psi^{-n-1}(\zeta, x) = \left((\dots, \vartheta_{-1}; \vartheta_0, i_1, \dots, i_n, \xi_0, \xi_1, \dots), p_{\Psi} \right) \in W^u_{loc}(\vartheta; \tau) \times \{ p_{\Psi} \}.$$

Therefore

$$(\zeta, x) \in \Psi^{n+1}(W^u_{loc}(\vartheta; \tau) \times \{p_{\Psi}\}) = \Psi^{n+1}(W^{uu}_{loc}((\vartheta, p_{\Psi}); \Psi)) \subset W^{uu}((\vartheta, p_{\Psi}); \Psi).$$

Hence

$$(\zeta, x) \in W^{uu}((\vartheta, p_{\Psi}); \Psi) \cap (W^s_{loc}(\xi; \tau) \times U),$$

completing the proof of the proposition.

Remark 8.3. If (ϑ, p) in Proposition 8.2 is a fiber-attracting fixed point of $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k)$ with B contained in the attracting region of p for IFS (ϕ_1, \ldots, ϕ_k) , then item (ii) is equivalent to

$$B \subset \operatorname{Orb}_{\Psi}(x), \quad \text{for every } x \in B \text{ and every } \Psi \in \mathcal{Q} \text{ close to } \Phi.$$
 (8.1)

To see why this remark is so note first that Equation (8.1) implies item (ii) immediately (just take x = p). To see the converse take a perturbation $\Psi = \tau \ltimes (\psi_1, \ldots, \psi_k)$ of Φ in \mathcal{Q} , a non-empty open set U in B, and $x \in B$. By hypotheses, there is $\psi \in \operatorname{IFS}(\psi_1, \ldots, \psi_k)$ such that $\psi(p_\Psi) \in U$. As U is open there is a neighborhood V of p_Ψ such that $\psi(V) \subset U$. If Ψ is close enough to Φ then B is also in the attracting region of p_Ψ for $\psi_\vartheta = \psi_i$ where $i = \vartheta_0$. Thus there is $n \in \mathbb{N}$ such that $\psi_i^n(x) \in V$ and hence $\psi \circ \psi_i^n(x) \in U$, proving (8.1).

Motivated by (8.1), we give the following definition:

Definition 8.4 (Blending regions). Consider $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k) \in Q$. A non-empty open set $B \subset M$ is called a blending region for Φ (or for the IFS (ϕ_1, \ldots, ϕ_k)) if for every $\Psi = \tau \ltimes (\psi_1, \ldots, \psi_k)$ close to Φ it holds

$$B \subset \overline{\operatorname{Orb}_{\Psi}(x)} \quad for \ all \ x \in B.$$

Proposition 8.5. Let $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k) \in \mathcal{Q}$ and consider a blending region $B \subset D$ of Φ . Suppose that there are a hyperbolic fixed point $p \in D$ of some

 ϕ_i and a map $\phi \in IFS(\phi_1, \dots, \phi_k)$ with $\phi(p) \in B$. Then the maximal invariant set of Φ in $\Sigma_k \times \overline{D}$ is a one-step symbolic blender-horseshoe.

Proof. By Proposition 8.2, it is enough to see that $B \subset \operatorname{Orb}_{\Psi}(p_{\Psi})$, for every $\Psi = \tau \ltimes (\psi_1, \ldots, \psi_k)$ close to Φ , where p_{Ψ} the continuation of p for Ψ . By hypothesis, there are i_n, \ldots, i_1 such that $\phi_{i_n} \circ \cdots \circ \phi_{i_1}(p) \in B$. Since B is an open set, if $\Psi = \tau \ltimes (\psi_1, \ldots, \psi_k)$ is close enough to Φ then $\psi_{i_n} \circ \ldots \circ \psi_{i_1}(p_{\Psi}) \in B$. Since B is a blending region for IFS (ϕ_1, \ldots, ϕ_k) it follows that

$$B \subset \overline{\operatorname{Orb}_{\Psi}(\psi_{i_n} \circ \cdots \circ \psi_{i_1}(p_{\Psi}))} \subset \overline{\operatorname{Orb}_{\Psi}(p_{\Psi})}$$

This concludes the proof of the proposition.

8.2 Blending regions for contracting IFS: The Hutchinson attractor

In this section, we will prove that the covering property implies the existence of one-step symbolic blender-horseshoes. Associated to a one-step map $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k) \in \mathcal{Q} \subset \mathcal{S}^{0,\alpha}_{k,\lambda,\beta}$, with $\beta < 1$, or to the contracting IFS (ϕ_1, \ldots, ϕ_k) , the Hutchinson's operator is defined by

$$\mathcal{G}_{\Phi} \colon \mathcal{K}(\overline{D}) \to \mathcal{K}(\overline{D}), \qquad \mathcal{G}_{\Phi}(A) \stackrel{\text{def}}{=} \phi_1(A) \cup \ldots \cup \phi_k(A),$$
(8.2)

where $\mathcal{K}(\overline{D})$ denotes the set of compact subsets of \overline{D} and $A \in \mathcal{K}(\overline{D})$.

Given a one-step map $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k)$, we also define $Per(IFS(\Phi))$ as the projection of $\mathscr{P}(Per(\Phi))$ in the fiber space, that is, the set of fixed points of the maps in $IFS(\phi_1, \ldots, \phi_k)$.

Since the maps ϕ_i are contractions, the map \mathcal{G}_{Φ} is also a contraction. This fact leads to the following result:

Proposition 8.6 ([25, 16]). Let $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k) \in \mathcal{Q}$ Then there exists a unique compact set $K_{\mathcal{G}_{\Phi}} \in \mathcal{K}(\overline{D})$ such that

$$K_{\mathcal{G}_{\Phi}} = \mathcal{G}_{\Phi}(K_{\mathcal{G}_{\Phi}}) = \overline{\operatorname{Per}(\operatorname{IFS}(\Phi)) \cap D} = K_{\Phi}.$$

Moreover, the set $K_{\mathcal{G}_{\Phi}}$ depends continuously (in the set \mathcal{Q}) on the map Φ and is the global attractor of \mathcal{G}_{Φ} , that is, for every $A \in \mathcal{K}(\overline{D})$ it holds $\lim_{m \to \infty} d_H \left(\mathcal{G}_{\Phi}^m(A), K_{\mathcal{G}_{\Phi}} \right) = 0.$

We call the compact set $K_{\mathcal{G}_{\Phi}}$ (in the sequel denoted by K_{Φ}) the *Hutchinson's attractor* of the contracting one-step map Φ or of its associated IFS(Φ).

Let us recall that given $x \in D$ its orbit is defined by

$$Orb_{\Phi}(x) = \{\phi(x) : \phi \in IFS(\Phi)\} = \{\phi_{i_n} \circ \dots \circ \phi_{i_1}(x) : n \le 1, i_j \in \{1, \dots, k\}\}.$$

By Proposition 8.6, we have that $\mathcal{G}_{\Phi}^m(x) \stackrel{m \to \infty}{\longrightarrow} K_{\Phi}$ for all $x \in D$ and thus

$$K_{\Phi} \subset \overline{\operatorname{Orb}_{\Phi}(x)}.$$
 (8.3)

We now have the following consequences of Proposition 8.6:

Corollary 8.7. Consider $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k) \in \mathcal{Q}$ and let K_{Φ} be its Hutchinson's attractor.

- i) For every $A \in \mathcal{K}(\overline{D})$ with $A \subset \mathcal{G}_{\Phi}(A)$ one has that $A \subset K_{\Phi} \subset \operatorname{Orb}_{\Phi}(x)$ for all $x \in \overline{D}$.
- ii) For every $p \in K_{\Phi}$ there is a sequence $(\sigma_n)_{n \in \mathbb{N}} \in \{1, \ldots, k\}^{\mathbb{N}}$ such that

$$\phi_{\sigma_n}^{-1} \circ \cdots \circ \phi_{\sigma_1}^{-1}(p) \in K_{\Phi} \quad for \ all \ n \in \mathbb{N}.$$

iii) For each open set V such that $V \cap K_{\Phi} \neq \emptyset$ there exist $n \in \mathbb{N}$ and $(i_1, \ldots, i_n) \in \{1, \ldots, k\}^n$ such that $\phi_{i_n} \circ \cdots \circ \phi_{i_1}(K_{\Phi}) \subset V$.

Proof. To prove the first item note that, by hypothesis,

$$A \subset \mathcal{G}_{\Phi}(A) \subset \ldots \subset \mathcal{G}_{\Phi}^m(A),$$

for all $m \ge 1$. Since $\mathcal{G}_{\Phi}^m(A) \to K_{\Phi}$ this implies that $A \subset K_{\Phi}$. Since, by (8.3), one has that $K_{\Phi} \subset \overline{\operatorname{Orb}_{\Phi}(x)}$ for all $x \in \overline{D}$, this proves (i).

To prove item (ii) recall that by Proposition 8.6 one has that $K_{\Phi} = \phi_1(K_{\Phi}) \cup \ldots \cup \phi_k(K_{\Phi})$. Thus given any $p \in K_{\Phi}$ there exits $\sigma_1 \in \{1, \ldots, k\}$ such that $\phi_{\sigma_1}^{-1}(p) \in K_{\Phi}$. Arguing inductively, we get a sequence $(\sigma_n)_{n \in \mathbb{N}}$ such that $\phi_{\sigma_n}^{-1} \circ \cdots \circ \phi_{\sigma_1}^{-1}(p) \in K_{\Phi}$ for all $n \in \mathbb{N}$.

To prove item (iii), fix an open set V with $V \cap K_{\Phi} \neq \emptyset$. Consider $i \in \{1, \ldots, k\}$ and the fixed point s of ϕ_i . By the first item we have $K_{\Phi} \subset \overline{\operatorname{Orb}_{\Phi}(s)}$. Hence, there are $m \in \mathbb{N}$ and $(\sigma_1, \ldots, \sigma_m) \in \{1, \ldots, k\}^m$ such that $\phi_{\sigma_m} \circ \cdots \circ \phi_{\sigma_1}(s) \in V$ and thus $\phi_{\sigma_1}^{-1} \circ \cdots \circ \phi_{\sigma_m}^{-1}(V)$ is a neighborhood of s. Since ϕ_i^{-1} is an expansion, the set $\phi_{\sigma_1}^{-1} \circ \cdots \circ \phi_{\sigma_m}^{-1}(V)$ contains the repelling point s of ϕ_i^{-1} , and K_{Φ} is bounded, there exists $\ell \in \mathbb{N}$ such that

$$K_{\Phi} \subset \phi_i^{-\ell} \circ \phi_{\sigma_1}^{-1} \circ \cdots \circ \phi_{\sigma_m}^{-1}(V).$$

Now it is enough to take $n = \ell + m$ and the sequence $(i, ..., i, \sigma_1, ..., \sigma_m)$. This completes the proof of the corollary.

For next result, recall that an open set *B* has the covering property for $IFS(\phi_1, \ldots, \phi_k)$ or for $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k)$ if

$$\overline{B} \subset \phi_1(B) \cup \cdots \cup \phi_k(B).$$

Next result shows that an open set satisfying the covering property for a contractive IFS is a blending region.

Corollary 8.8. Consider $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k) \in \mathcal{Q}$. Let $B \subset \overline{D}$ be a nonempty bounded open set satisfying the covering property for Φ . Then for every $\Psi \in \mathcal{Q}$ close enough to Φ one has that $\overline{B} \subset K_{\Psi} \subset \overline{\operatorname{Orb}}_{\Psi}(x)$, for all $x \in \overline{D}$, where K_{Ψ} is the Hutchinson attractor of Ψ .

The corollary above and Proposition 8.5 imply that covering property generates one-step symbolic blender-horseshoes (Definition 1.11).

Corollary 8.9. Let $\Phi = \tau \ltimes (\phi_1, \ldots, \phi_k) \in \mathcal{Q} \subset \mathcal{S}^{0,\alpha}_{k,\lambda,\beta}$ with $\beta < 1$ and let $B \subset \overline{D}$ be a non-empty open set satisfying the covering property for Φ . Then the maximal invariant set of Φ is a one-step symbolic blender-horseshoe.

Proof of Corollary 8.8. Recalling (8.2), if the skew product map $\Psi \in \mathcal{Q}$ is close to Φ then $d_H(\mathcal{G}_{\Psi}(\overline{B}), \mathcal{G}_{\Phi}(\overline{B}))$ is small. From this proximity and since $\mathcal{G}_{\Phi}(B) = \phi_1(B) \cup \cdots \cup \phi_k(B)$ is open, one has that $\overline{B} \subset \mathcal{G}_{\Psi}(B) \subset \mathcal{G}_{\Psi}(\overline{B})$. Inductively, we get

$$\overline{B} \subset \mathcal{G}_{\Psi}^m(\overline{B}), \text{ for all } m \ge 0.$$

Since the Hutchinson attractor K_{Ψ} of Ψ is closed and $d_H(\mathcal{G}_{\Psi}^m(\overline{B}), K_{\Psi}) \to 0$ we get $\overline{B} \subset K_{\Psi} \subset \overline{\operatorname{Orb}_{\Psi}(x)}$ for all $x \in \overline{D}$.