9
 Symbolic blenders in the Hölder setting

In this section we prove Theorem C. First, we introduce some notation and preliminary results.

Given a finite word $\bar{\omega}=\omega_{-m} \ldots \omega_{-1} \omega_{0} \omega_{1} \ldots \omega_{n}$, where $m, n \geq 0$ and $\omega_{i} \in\{1, \ldots, k\}$, we define the bi-lateral cylinder by

$$
\mathcal{C}_{\bar{\omega}} \stackrel{\text { def }}{=}\left\{\xi \in \Sigma_{k}: \xi_{j}=\omega_{j},-n \leq j \leq n\right\} .
$$

Given $\zeta \in \Sigma_{k}$ and a word $\bar{\omega}:=\bar{\omega}_{-n}=\omega_{-n} \ldots \omega_{-1}$, where $n \geq 1$ and $\omega_{i} \in\{1, \ldots, k\}$, we define the relative cylinder by

$$
\begin{equation*}
\mathcal{C}_{\bar{\omega}}(\zeta) \stackrel{\text { def }}{=}\left\{\xi \in W_{l o c}^{s}(\zeta ; \tau): \xi_{-i}=\omega_{i}, \text { for } i=1, \ldots, n\right\} \tag{9.1}
\end{equation*}
$$

Recall that $\mathcal{S}=\mathcal{S}_{k, \lambda, \beta}^{0, \alpha}$ is the set of symbolic skew product maps in Definition 1.7. Let us observe that in what follows $\nu^{\alpha}<\lambda<1, \alpha>0$, and there is no restriction on β. In the next lemma we estimate the distance between the backward orbits of a point x when iterated by different maps ψ_{ξ}^{-1}.

Lemma 9.1. Consider $\Psi=\tau \ltimes \psi_{\xi} \in \mathcal{S}$, a word $\bar{\omega}=\omega_{-n} \ldots \omega_{0} \ldots \omega_{n}$, and a point $x \in \bar{D}$ such that for every $\zeta \in \mathcal{C}_{\bar{\omega}}$ one has that $\psi_{\tau^{-1}(\zeta)}^{-j}(x) \in \bar{D}$ for every $1 \leq j \leq n$. Then it holds

$$
\left\|\psi_{\tau^{-1}(\xi)}^{-i}(x)-\psi_{\tau^{-1}(\zeta)}^{-i}(x)\right\|<C_{\Psi} \nu^{\alpha(n-i)} \sum_{j=0}^{i-1}\left(\lambda^{-1} \nu^{\alpha}\right)^{j}
$$

for all $1 \leq i \leq n$ and all $\xi, \zeta \in \mathcal{C}_{\bar{\omega}}$.
Proof. The proof is by induction. For $i=1$, the Hölder inequality (1.4) and $\xi, \zeta \in \mathcal{C}_{\bar{\omega}}$ imply that

$$
\left\|\psi_{\tau^{-1}(\xi)}^{-1}(x)-\psi_{\tau^{-1}(\zeta)}^{-1}(x)\right\| \leq C_{\Psi} d_{\Sigma_{k}}\left(\tau^{-1}(\xi), \tau^{-1}(\zeta)\right)^{\alpha} \leq C_{\Psi} \nu^{\alpha(n-1)}
$$

We argue inductively. Suppose that the lemma holds for $i-1, i<n$:

$$
\begin{equation*}
\left\|\psi_{\tau^{-1}(\xi)}^{-(i-1)}(x)-\psi_{\tau^{-1}(\zeta)}^{-(i-1)}(x)\right\|<C_{\Psi} \nu^{\alpha(n-i+1)} \sum_{j=0}^{i-2}\left(\lambda^{-1} \nu^{\alpha}\right)^{j} \tag{9.2}
\end{equation*}
$$

for every $\xi, \zeta \in \mathcal{C}_{\bar{\omega}}$. We will see that the estimate also holds for i. By the triangle inequality, one has that

$$
\begin{aligned}
\| \psi_{\tau^{-1}(\xi)}^{-i}(x) & -\psi_{\tau^{-1}(\zeta)}^{-i}(x)\|\leq\| \psi_{\tau^{-1}(\xi)}^{-i}(x)-\psi_{\tau^{-i}(\xi)}^{-1} \circ \psi_{\tau^{-1}(\zeta)}^{-(i-1)}(x) \|+ \\
& +\left\|\psi_{\tau^{-i}(\xi)}^{-1} \circ \psi_{\tau^{-1}(\zeta)}^{-(i-1)}(x)-\psi_{\tau^{-1}(\zeta)}^{-i}(x)\right\| .
\end{aligned}
$$

Since the inverse of these functions expand at most $1 / \lambda$, we get that the above equation is less than or equal to

$$
\frac{1}{\lambda}\left\|\psi_{\tau^{-1}(\xi)}^{-(i-1)}(x)-\psi_{\tau^{-1}(\zeta)}^{-(i-1)}(x)\right\|+\left\|\psi_{\tau^{-i}(\xi)}^{-1}(y)-\psi_{\tau^{-i}(\zeta)}^{-1}(y)\right\|
$$

where $y=\psi_{\tau^{-1}(\zeta)}^{-(i-1)}(x) \in \bar{D}$. By induction hypothesis (9.2) we obtain

$$
\frac{1}{\lambda}\left\|\psi_{\tau^{-1}(\xi)}^{-(i-1)}(x)-\psi_{\tau^{-1}(\zeta)}^{-(i-1)}(x)\right\| \leq C_{\Psi} \lambda^{-1}\left(\nu^{\alpha}\right)^{n-i+1} \sum_{j=0}^{i-2}\left(\lambda^{-1} \nu^{\alpha}\right)^{j}
$$

As $y \in \bar{D}$ applying the Hölder inequality (1.4) and since $\xi, \zeta \in \mathcal{C}_{\bar{\omega}}$ we get

$$
\left\|\psi_{\tau^{-i}(\xi)}^{-1}(y)-\psi_{\tau^{-i}(\zeta)}^{-1}(y)\right\| \leq C_{\Psi} \nu^{\alpha(n-i)} .
$$

Putting togheter the previous inequalities we get

$$
C_{\Psi} \lambda^{-1}\left(\nu^{\alpha}\right)^{n-i+1} \sum_{j=0}^{i-2}\left(\lambda^{-1} \nu^{\alpha}\right)^{j}+C_{\Psi} \nu^{\alpha(n-i)}=C_{\Psi} \nu^{\alpha(n-i)} \sum_{j=0}^{i-1}\left(\lambda^{-1} \nu^{\alpha}\right)^{j},
$$

ending the proof of the lemma.

9.1
 Proof of Theorem C

Consider a one-step map $\Phi=\tau \ltimes\left(\phi_{1}, \ldots, \phi_{k}\right) \in \mathcal{S}$ and an open subset B of D. Recall that we need to prove the following:
B has the covering property for $\mathcal{G}_{\phi_{1}, \ldots, \phi_{k}} \Longleftrightarrow$ there are $\delta>0$ and a neighborhood \mathcal{V} of Φ in \mathcal{S} such that $\Gamma_{\Psi}^{+}\left(\Sigma_{k} \times B\right) \cap H^{s} \neq \emptyset$ for every $\Psi \in \mathcal{V}$ and every δ-horizontal disk H^{s} in $\Sigma_{k} \times B$.
\Longleftarrow We see that if the covering property is not satisfied then intersection (1.10) is also not satisfied. If B does not satisfy the covering property then there is $x \in \bar{B}$ such that $x \notin \phi_{i}(B)$ for all $i=1, \ldots, k$. First note that we can assume that $x \in B$. Otherwise, we can take an arbitrarily small perturbation $\Psi=\tau \ltimes\left(\psi_{1}, \ldots, \psi_{k}\right)$ of Φ such that the covering property in B for
$\operatorname{IFS}\left(\psi_{1}, \ldots, \psi_{k}\right)$ is not satisfied for a point in B. The condition $x \notin \phi_{i}(B)$ for all $i=1, \ldots, k$ implies that $\Phi^{-1}(\xi, x) \notin \Sigma_{k} \times \bar{B}$ for all $\xi \in \Sigma_{k}$ and hence

$$
(\xi, x) \notin \bigcap_{n \geq 0} \Phi^{n}\left(\Sigma_{k} \times \bar{B}\right) \stackrel{\text { def }}{=} \Gamma_{\Phi}^{+}\left(\Sigma_{k} \times B\right) \quad \text { for all } \xi \in \Sigma_{k}
$$

Therefore $\Gamma_{\Phi}^{+}\left(\Sigma_{k} \times B\right)$ does not meet the horizontal disk $H^{s}=W_{\text {loc }}^{s}(\xi ; \tau) \times\{x\}$, and thus the intersection property (1.10) is not verified.
$\Longrightarrow \quad$ We split the proof of the fact that the covering property implies the intersection condition into two steps.
Choice of the neighborhood \mathcal{V} of Φ. First recall that given an open covering \mathcal{C} of a compact set X of a metric space there is a constant $L>0$, a Lebesgue number of \mathcal{C}, such that every subset of X with diameter less than L is contained in some member of \mathcal{C}.

Let $2 L>0$ be a Lebesgue number of the covering $\left\{\phi_{1}(B), \ldots, \phi_{k}(B)\right\}$ of the set \bar{B}. Note that there are C^{0}-neighborhoods \mathcal{U}_{i} of ϕ_{i} such that the family

$$
\begin{equation*}
B_{i}=\operatorname{int}\left(\bigcap_{\psi \in \mathcal{U}_{i}} \psi(B)\right), \quad i=1, \ldots, k, \tag{9.3}
\end{equation*}
$$

is an open covering of \bar{B}. By shrinking the size of the sets \mathcal{U}_{i} we can assume that L is a Lebesgue number of this covering. We can also assume that any $\psi \in \mathcal{U}_{i}$ is a $C^{0}-(\lambda, \beta)$-Lipschitz map on \bar{D} for all $i=1, \ldots, k$.

We take a neighborhood \mathcal{V} of Φ in \mathcal{S} such that if $\Psi=\tau \ltimes \psi_{\xi} \in \mathcal{V}$ then $\psi_{\xi} \in \mathcal{U}_{\xi_{0}}=\mathcal{U}_{i}$. In that case, by (9.3), we get that

$$
\begin{equation*}
\psi_{\tau^{-1}(\xi)}^{-1}\left(\bar{B}_{\xi_{0}}\right) \subset B \quad \text { for all } \xi \in \Sigma_{k} . \tag{9.4}
\end{equation*}
$$

Since Φ is a one-step map then $\phi_{\xi}=\phi_{\zeta}$ if $\xi_{0}=\zeta_{0}$, hence we can take the Hölder constant $C_{\Phi}=0$. The definition of the distance in (1.6) implies that C_{Ψ} is close to $C_{\Phi}=0$. Since, by hypothesis, $\nu^{\alpha}<\lambda$, by shrinking the neighborhood \mathcal{V} we can assume that for every $\Psi=\tau \ltimes \psi_{\xi} \in \mathcal{V}$ it holds

$$
\begin{equation*}
C_{\Psi} \sum_{i=0}^{\infty}\left(\lambda^{-1} \nu^{\alpha}\right)^{i}<L / 2 . \tag{9.5}
\end{equation*}
$$

This completes the choice of the neighborhood \mathcal{V} of Φ.
Existence of a point in $\Gamma_{\Psi}^{+}\left(\Sigma_{k} \times B\right) \cap H^{s}$. The main step is the following proposition.

Proposition 9.2. Let \mathcal{V} the neighborhood of Φ above. Consider small $\delta>0$ and a δ-horizontal disk H^{s} associated to $W_{\text {loc }}^{s}(\zeta ; \tau) \times\{z\}$ for some $(\zeta, z) \in \Sigma_{k} \times$ B. Then there are a sequence of nested compact subsets $\left\{V_{n}\right\}$ of B contained in $\mathscr{P}\left(H^{s}\right)$ and a sequence $\xi \in W_{\text {loc }}^{s}(\zeta ; \tau)$ such that for all $\Psi=\tau \ltimes \psi_{\xi} \in \mathcal{V}$ it
holds

$$
\psi_{\tau^{-1}(\xi)}^{-n}\left(V_{n}\right) \subset B \quad \text { and } \quad \operatorname{diam}\left(\psi_{\tau^{-1}(\xi)}^{-n}\left(V_{n}\right)\right) \rightarrow 0
$$

Let us see how the implication (\Longrightarrow) follows from this proposition. Let $\{x\}=\cap_{n} V_{n}$. By the first part of the proposition $\psi_{\tau^{-1}(\xi)}^{-n}(x) \in B$ for all $n \in \mathbb{N}$ and thus $\Psi^{-n}(\xi, x) \in \Sigma_{k} \times B$ for all $n \in \mathbb{N}$ and hence $(\xi, x) \in \Gamma_{\Psi}^{+}\left(\Sigma_{k} \times B\right)$. Note that since $\xi \in W_{\text {loc }}^{s}(\zeta ; \tau)$ and $x \in \mathscr{P}\left(H^{s}\right)$ then we also have $(\xi, x) \in H^{s}$. Thus $\Gamma_{\Psi}^{+}\left(\Sigma_{k} \times B\right) \cap H^{s} \neq \emptyset$.

To complete the proof of Theorem C it remains to prove the proposition. Proof of Proposition 9.2. Consider $\delta>0$ such that $\lambda^{-1} \delta<L / 2$ for the δ horizontal disk H^{s} associated to $W_{\text {loc }}^{s}(\zeta ; \tau) \times\{z\}$ and the (α, C)-Hölder graph map h (see Definition 1.9). The construction of the nested sequence of sets $\left\{V_{n}\right\}$ and the point $\xi \in W_{\text {loc }}^{s}(\zeta ; \tau)$ is done inductively. Let

$$
V:=\mathscr{P}\left(H^{s}\right) \subset B .
$$

Note that $\operatorname{diam}(V) \leq 2 \delta<L$. Thus, by the definiton of the Lebesgue number, $V \subset B_{i_{1}}$ for some $i_{1} \in\{1, \ldots, k\}$. Recall the definition of the relative cylinder in (9.1) associated to $\zeta \in \Sigma_{k}$ and the word $\bar{\omega}_{-1}=i_{1}$ and consider the set

$$
V_{1}:=\mathscr{P}\left(H^{s} \cap\left(\mathcal{C}_{\bar{\omega}_{-1}}(\zeta) \times V\right)\right) .
$$

By construction, $V_{1} \subset V \subset B_{i_{1}}$. Thus, by (9.4), for every $\Psi=\tau \ltimes \psi_{\xi} \in \mathcal{V}$ one has that

$$
\begin{equation*}
\psi_{\tau^{-1}(\xi)}^{-1}\left(V_{1}\right) \subset B . \tag{9.6}
\end{equation*}
$$

Claim 9.3. $\operatorname{diam}\left(V_{1}\right) \leq \delta_{1} \stackrel{\text { dof }}{=} C \nu^{2 \alpha}$.
Proof. Given x and y in V_{1} there are ξ and η in $\mathcal{C}_{\bar{\omega}_{-1}}(\zeta)$ such that $x=h(\xi)$ and $y=h(\eta)$. Since h is (α, C)-Hölder continuous we have

$$
\|x-y\|=\|h(\xi)-h(\eta)\| \leq C d_{\Sigma_{k}}(\xi, \eta)^{\alpha} \leq C \nu^{2 \alpha}=\delta_{1}
$$

proving the claim.
By Claim 9.3 and since for every $\Psi=\tau \ltimes \psi_{\xi} \in \mathcal{V}$ the maps ψ_{ξ} are (λ, β)-Lipschitz we have that

$$
\operatorname{diam}\left(\psi_{\tau^{-1}(\xi)}^{-1}\left(V_{1}\right)\right) \leq \lambda^{-1} \delta_{1} \quad \text { for all } \xi \in \mathcal{C}_{\bar{\omega}_{-1}}(\zeta)
$$

Recalling that $C \nu^{\alpha}<\delta$ (see Definition 1.9) we get

$$
\lambda^{-1} \delta_{1}=\lambda^{-1} C \nu^{2 \alpha} \leq \lambda^{-1} C \nu^{\alpha}<\lambda^{-1} \delta \leq L / 2 .
$$

Therefore

$$
\operatorname{diam}\left(\psi_{\tau^{-1}(\xi)}^{-1}\left(V_{1}\right)\right) \leq \lambda^{-1} \delta_{1} \leq L / 2
$$

Arguing inductively, suppose that we have constructed words $\bar{\omega}_{-n}:=$ $\omega_{-n} \ldots \omega_{-1}$ (the word $\bar{\omega}_{-i}$ is obtained adding the letter ω_{-i} to the word $\bar{\omega}_{-i+1}$) and closed sets $V_{n} \subset V_{n-1} \subset \cdots \subset V_{1}$ with

$$
\begin{equation*}
\operatorname{diam}\left(V_{n}\right) \leq C \nu^{(n+1) \alpha} \stackrel{\text { def }}{=} \delta_{n} \tag{9.7}
\end{equation*}
$$

and such that for every $\Psi=\tau \ltimes \psi_{\xi} \in \mathcal{V}$ one has that for all $\xi \in \mathcal{C}_{\bar{\omega}_{-n}}(\zeta)$ it holds

$$
\begin{equation*}
\psi_{\tau^{-1}(\xi)}^{-n}\left(V_{n}\right) \subset B \quad \text { and } \quad \operatorname{diam}\left(\psi_{\tau^{-1}(\xi)}^{-n}\left(V_{n}\right)\right) \leq \lambda^{-n} \delta_{n} \tag{9.8}
\end{equation*}
$$

We now construct the word $\bar{\omega}_{-(n+1)}$ and the closed set $V_{n+1} \subset V_{n}$ satisfying analogous inclusions and inequalities. By (9.8) we have that

$$
A_{n} \stackrel{\text { def }}{=} \bigcup_{\xi \in \mathcal{C}_{\bar{\omega}_{-n}}(\zeta)} \psi_{\tau^{-1}(\xi)}^{-n}\left(V_{n}\right) \subset B
$$

Claim 9.4. $\operatorname{diam}\left(A_{n}\right)<L$.
Proof. Given \bar{x} and \bar{y} in A_{n} there are $x, y \in V_{n}$ and $\xi, \eta \in \mathcal{C}_{\bar{\omega}_{-n}}(\zeta)$ such that $\bar{x}=\psi_{\tau^{-1}(\xi)}^{-n}(x)$ and $\bar{y}=\psi_{\tau^{-1}(\eta)}^{-n}(y)$. Then

$$
\begin{align*}
\|\bar{x}-\bar{y}\| & =\left\|\psi_{\tau^{-1}(\xi)}^{-n}(x)-\psi_{\tau^{-1}(\eta)}^{-n}(y)\right\| \\
& \leq\left\|\psi_{\tau^{-1}(\xi)}^{-n}(x)-\psi_{\tau^{-1}(\eta)}^{-n}(x)\right\|+\left\|\psi_{\tau^{-1}(\eta)}^{-n}(x)-\psi_{\tau^{-1}(\eta)}^{-n}(y)\right\| \\
& \leq C_{\Psi} \sum_{j=0}^{n-1}\left(\lambda^{-1} \nu^{\alpha}\right)^{j}+\lambda^{-n} \delta_{n} \tag{9.9}\\
& \leq L / 2+\lambda^{-n} \delta_{n}, \tag{9.10}
\end{align*}
$$

where (9.9) follows from Lemma 9.1 and induction hypothesis (9.8), and the last inequality (9.10) follows from (9.5). Note also that

$$
\lambda^{-n} \delta_{n}=\lambda^{-n} C\left(\nu^{\alpha}\right)^{n+1} \leq C\left(\lambda^{-1} \nu^{\alpha}\right)^{n} \leq C \lambda^{-1} \nu^{\alpha}<\lambda^{-1} \delta<L / 2 .
$$

Therefore for every pair of points $\bar{x}, \bar{y} \in A_{n}$ we have $\|\bar{x}-\bar{y}\|<L$ and thus $\operatorname{diam}\left(A_{n}\right)<L$, proving the claim.

As L is a Lebesgue number of the covering $\left\{B_{i}\right\}_{i=1}^{k}$, the claim implies that there is $i_{n+1} \in\{1, \ldots, k\}$ such that $A_{n} \subset B_{i_{n+1}}$. We let

$$
\bar{\omega}_{-(n+1)}=i_{n+1} \omega_{-n} \ldots \omega_{-1} \quad \text { and } \quad V_{n+1}=\mathscr{P}\left(H^{s} \cap\left(\mathcal{C}_{\bar{\omega}_{-(n+1)}}(\zeta) \times V_{n}\right)\right) .
$$

Note that by construction $V_{n+1} \subset V_{n}$.

Claim 9.5. $\operatorname{diam}\left(V_{n+1}\right) \leq C \nu^{(n+2) \alpha} \stackrel{\text { def }}{=} \delta_{n+1}$.
Proof. Just note that given $x, y \in V_{n+1}$ there are $\xi, \eta \in \mathcal{C}_{\bar{\omega}_{-(n+1)}}(\zeta)$ such that $x=h(\xi)$ and $y=h(\eta)$. From the (α, C)-Hölder continuity of h and since $\xi, \eta \in \mathcal{C}_{\bar{\omega}_{-(n+1)}}(\zeta)$ we get

$$
\|x-y\| \leq C d_{\Sigma_{k}}(\xi, \eta)^{\alpha} \leq C \nu^{(n+2) \alpha}
$$

Thus $\operatorname{diam}\left(V_{n}\right) \leq C \nu^{(n+2) \alpha}=\delta_{n+1}$.
Using $V_{n+1} \subset V_{n}, \operatorname{diam}\left(V_{n}\right) \leq \delta_{n+1}$, and Equations (9.4) and (9.8) we get that for all $\Psi=\tau \ltimes \psi_{\xi} \in \mathcal{V}$ it holds

$$
\begin{equation*}
\psi_{\tau^{-1}(\xi)}^{-(n+1)}\left(V_{n+1}\right) \subset B \quad \text { and } \quad \operatorname{diam}\left(\psi_{\tau^{-1}(\xi)}^{-(n+1)}\left(V_{n+1}\right)\right) \leq \lambda^{-(n+1)} \delta_{n+1}, \tag{9.11}
\end{equation*}
$$

for every $\xi \in \mathcal{C}_{\bar{\omega}_{-(n+1)}}(\zeta)$. Therefore (9.8) holds for $n+1$-step and we can continue arguing inductively. This completes the construction of the sequence of nested sets V_{n} in the proposition. Observe that the sequence ξ whose positive part is ζ and whose negative part satisfies $\xi_{-n}=\omega_{-n}$ belongs to $\mathcal{C}_{\bar{\omega}_{-(n+1)}}(\zeta) \subset W_{\text {loc }}^{s}(\zeta ; \tau)$. This completes the proof of the proposition.

The proof of Theorem C is now complete.

