Bibliography

[1] BARRIENTOS, P. Blenders and non-hyperbolic dynamics arising in generic unfoldings of nilpotent singularities (ph.d. thesis), 2012.
[2] BONATTI, C. Survey: Towards a global view of dynamical systems, for the C^{1}-topology. Ergodic Theory Dynam. Systems, v.31, n.4, p. 959-993, 2011.
[3] BONATTI, C.; CROVISIER, S. Récurrence et généricité. Invent. Math., v.158, n.1, p. 33-104, 2004.
[4] BONATTI, C.; DÍAZ, L. J. Persistent nonhyperbolic transitive diffeomorphisms. Ann. of Math. (2), v.143, n.2, p. 357-396, 1996.
[5] BONATTI, C.; DÍAZ, L. J. Robust heterodimensional cycles and C1-generic dynamics. J. Inst. Math. Jussieu, v.7, n.3, p. 469-525, 2008.
[6] BONATTI, C.; DÍAZ, L. J. Abundance of C^{1}-robust homoclinic tangencies. Trans. Amer. Math. Soc., v.364, n.10, p. 5111-5148, 2012.
[7] BONATTI, C.; DÍAZ, L. J. Fragile cycles. J. Differential Equations, v.252, n.7, p. 4176-4199, 2012.
[8] BONATTI, C.; DÍAZ, L. J. ; KIRIKI, S. Stabilization of heterodimensional cycles. Nonlinearity, v.25, n.4, p. 931-960, 2012.
[9] BONATTI, C.; DÍAZ, L. J. ; VIANA, M. Discontinuity of the Hausdorff dimension of hyperbolic sets. C. R. Acad. Sci. Paris Sér. I Math., v.320, n.6, p. 713-718, 1995.
[10] BROOMHEAD, D.; HADJILOUCAS, D. ; NICOL, M. Random and deterministic perturbation of a class of skew-product systems. Dynam. Stability Systems, v.14, n.2, p. 115-128, 1999.
[11] CROVISIER, S.; PUJALS, E. R. Essential hyperbolicity and homoclinic bifurcations: a dichotomy phenomenon/mechanism for diffeomorphisms. ArXiv e-prints, Nov. 2010.
[12] DÍAZ, L. J.; URES, R. Persistent homoclinic tangencies and the unfolding of cycles. Ann. Inst. H. Poincaré Anal. Non Linéaire, v.11, n.6, p. 643-659, 1994.
[13] GORODETSKI, A. S. Regularity of central leaves of partially hyperbolic sets and applications. Izv. Ross. Akad. Nauk Ser. Mat., v.70, n.6, p. 19-44, 2006.
[14] GORODETSKI, A. S.; ILYASHENKO, Y. S. Some properties of skew products over a horseshoe and a solenoid. Tr. Mat. Inst. Steklova, v.231, n.Din. Sist., Avtom. i Beskon. Gruppy, p. 96-118, 2000.
[15] HIRSCH, M. W.; PUGH, C. C. ; SHUB, M. Invariant manifolds. Lecture Notes in Mathematics, Vol. 583. Berlin: Springer-Verlag, 1977. ii +149 p.
[16] HUTCHINSON, J. E. Fractals and self-similarity. Indiana Univ. Math. J., v.30, n.5, p. 713-747, 1981.
[17] ILYASHENKO, Y.; NEGUT, A. Hölder properties of perturbed skew products and fubini regained. Nonlinearity, v.25, n.8, p. 2377-2399, 2012.
[18] MOREIRA, C. G. There are no C^{1}-stable intersections of regular Cantor sets. Acta Math., v.206, n.2, p. 311-323, 2011.
[19] NASSIRI, M.; PUJALS, E. R. Robust transitivity in hamiltonian dynamics. Ann. Sci. Éc. Norm. Supér., v.45, n.2, 2012.
[20] NEWHOUSE, S. E. Nondensity of axiom A(a) on S2. In: global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), p. 191-202. Providence, R.I.: Amer. Math. Soc., 1970.
[21] PALIS, J. A global view of dynamics and a conjecture on the denseness of finitude of attractors. Astérisque, n.261, p. xiii-xiv, 335-347, 2000. Géométrie complexe et systèmes dynamiques (Orsay, 1995).
[22] PUJALS, E. R.; SAMBARINO, M. Homoclinic tangencies and hyperbolicity for surface diffeomorphisms. Ann. of Math. (2), v.151, n.3, p. 961-1023, 2000.
[23] RODRIGUEZ-HERTZ, F.; RODRIGUEZ-HERTZ, M. A.; TAHZIBI, A. ; URES, R. A criterion for ergodicity of non-uniformly hyperbolic diffeomorphisms. Electron. Res. Announc. Math. Sci., v.14, p. 74-81, 2007.
[24] STARK, J. Regularity of invariant graphs for forced systems. Ergodic Theory Dynam. Systems, v.19, n.1, p. 155-199, 1999.
[25] WILLIAMS, R. F. Composition of contractions. Bol. Soc. Brasil. Mat., v.2, n.2, p. 55-59, 1971.

A

In this appendix, recalling notation in Section 3.2, our goal is prove equation (3.6):

$$
\mathcal{Q}_{0, \hat{\alpha}, \hat{\beta}, t}^{\hat{\alpha}, \hat{i}, j}\left(0^{2}\right)=x_{Q}^{c} .
$$

More precisely, we want to prove that given a quotient family $\left(\mathcal{Q}_{m, \ell, t}^{\alpha, \beta, i, j}\right)$ there are natural numbers $k, m, \ell, \tilde{m}, \tilde{\ell}$, with $(m, \ell) \neq(\tilde{m}, \tilde{\ell})$, and numbers $\hat{\alpha}$ and $\hat{\beta}$ close to α and β, and small t such that x_{Q}^{c} is a common fixed point of $\mathcal{Q}_{m, \ell, t}^{\hat{\alpha}, \hat{\beta}, i, j}$ and $\mathcal{Q}_{\underset{m}{m}, \hat{\ell}, t}^{\hat{\alpha}, \hat{\beta}, j}$, and $\mathcal{Q}_{0, \bar{k}, \hat{t}}^{\hat{\alpha}, \hat{\beta}, i, j}\left(0^{2}\right)=x_{Q}^{c}$.

Here we consider the case $(i, j)=(+,+)$, the other cases follows similarly. Without lost of generality, we can assume that in the local coordinates $x_{P}^{c}=(1,0)$ and $x_{Q}^{c}=(1,0)$. Recall that $\alpha=\rho e^{2 \pi i \phi}$ and $\beta=\varrho e^{2 \pi i \varphi}$, where $0<\rho<1<\varrho$ and $\phi, \varphi \in[0,1)$.

Recall that for $t=\left(t_{1}, t_{2}\right)$ the bidimensional quotient map $\mathcal{Q}_{m, \ell, t}^{\alpha, \beta,+,+}(x, y)$ is of the form:

$$
\varrho^{\ell}\left(\begin{array}{cc}
\cos \ell 2 \pi \varphi & -\sin \ell 2 \pi \varphi \\
\sin \ell 2 \pi \varphi & \cos \ell 2 \pi \varphi
\end{array}\right)\left[\rho^{m}\left(\begin{array}{cc}
\cos m 2 \pi \phi & -\sin m 2 \pi \phi \\
\sin m 2 \pi \phi & \cos m 2 \pi \phi
\end{array}\right)\binom{x}{y}+\binom{t_{1}}{t_{2}}\right] .
$$

We choose $k>0$ (we will explain this choice later) and consider

$$
\tilde{t}=\left(\tilde{t}_{1}, \tilde{t}_{2}\right)=\left(\rho^{-k} \cos k 2 \pi \phi,-\rho^{-k} \sin k 2 \pi \phi\right) .
$$

We want to prove that

$$
\mathcal{Q}_{m, \ell, t, t}^{\alpha, \beta,+,+}\binom{1}{0}=\binom{1}{0} .
$$

Using trigonometric formulae and considering $x_{Q}^{c}=(1,0)$ and \tilde{t} above this equality can be read as follows
$\varrho^{\ell}\left(\begin{array}{cc}\cos \ell 2 \pi \varphi & -\sin \ell 2 \pi \varphi \\ \sin \ell 2 \pi \varphi & \cos \ell 2 \pi \varphi\end{array}\right)\left[\rho^{m}\left(\begin{array}{cc}\cos m 2 \pi \phi & -\sin m 2 \pi \phi \\ \sin m 2 \pi \phi & \cos m 2 \pi \phi\end{array}\right)\binom{1}{0}+\binom{\tilde{t}_{1}}{\tilde{t}_{2}}\right]=\binom{1}{0}$

$$
\begin{gathered}
\varrho^{\ell}\left(\begin{array}{cc}
\cos \ell 2 \pi \varphi & -\sin \ell 2 \pi \varphi \\
\sin \ell 2 \pi \varphi & \cos \ell 2 \pi \varphi
\end{array}\right)\binom{\rho^{m} \cos m 2 \pi \phi+\varrho^{-k} \cos k 2 \pi \varphi}{\rho^{m} \sin m 2 \pi \phi-\varrho^{-k} \sin k 2 \pi \varphi}=\binom{1}{0} \\
\varrho^{\ell}\binom{\rho^{m} \cos (\ell 2 \pi \varphi+m 2 \pi \phi)+\varrho^{-k} \cos (\ell 2 \pi \varphi-k 2 \pi \varphi}{\rho^{m} \sin (\ell 2 \pi \varphi+m 2 \pi \phi)+\varrho^{-k} \sin (\ell 2 \pi \varphi-k 2 \pi \varphi}=\binom{1}{0}
\end{gathered}
$$

Which is equivalent to the following system:

$$
\left\{\begin{array}{l}
\varrho^{\ell} \rho^{m} \cos (\ell 2 \pi \varphi+m 2 \pi \phi)+\varrho^{\ell-k} \cos (\ell 2 \pi \varphi-k 2 \pi \varphi)=1 \\
\varrho^{\ell} \rho^{m} \sin (\ell 2 \pi \varphi+m 2 \pi \phi)+\varrho^{\ell-k} \sin (\ell 2 \pi \varphi-k 2 \pi \varphi)=0
\end{array}\right.
$$

Multiplying second equation by i and adding first equation we get

$$
\begin{aligned}
& \rho^{m} \varrho^{\ell} e^{i(\ell 2 \pi \varphi+m 2 \pi \phi)}+\varrho^{\ell-k} e^{i(\ell 2 \pi \varphi-k 2 \pi \varphi)}=1 \\
& \varrho^{\ell} e^{i \ell 2 \pi \varphi}\left(\rho^{m} e^{i m 2 \pi \phi}+\varrho^{-k} e^{-i k 2 \pi \varphi}\right)=1 \\
& \left(\rho e^{i 2 \pi \phi}\right)^{m}+\left(\varrho e^{i 2 \pi \varphi}\right)^{-k}=\left(\varrho e^{i 2 \pi \varphi}\right)^{-\ell} \\
& (\underbrace{\rho e^{i 2 \pi \phi}}_{\alpha})^{m}=(\underbrace{\varrho e^{i 2 \pi \varphi}}_{\beta})^{-\ell}-(\underbrace{\varrho e^{i 2 \pi \varphi}}_{\beta})^{-k} .
\end{aligned}
$$

Therefore we need to find a pair of natural numbers m and ℓ satisfying the previous equality. The rest of the proof follows exactly as in the proof of Proposition 3.5.

B

In the appendix we see that Lema 3.10 also holds for (\mathbb{C}, \mathbb{R})-cycle, see Remark 3.13.

We want to prove that given a quotient family $\left(\mathcal{Q}_{m, \ell, t}^{\alpha, \beta_{s+1}, \beta_{s+2}, i, j}\right)$ as Definition 4.5 for the case (\mathbb{C}, \mathbb{R})-cycle, there are natural numbers $k, m, \ell, \tilde{m}, \tilde{\ell}$, with $(m, \ell) \neq(\tilde{m}, \tilde{\ell})$, and numbers $\hat{\alpha}$ and $\hat{\beta}_{s+1}$ close to α and β_{s+1}, repectively, and small t such that x_{Q}^{c} is a common fixed point of $\mathcal{Q}_{m, \ell, t}^{\hat{\alpha}, \hat{\beta}_{s+1}, \beta_{s+2}, i, j}$ and $\mathcal{Q}_{\tilde{m}, \hat{\ell}, t}^{\hat{\alpha}, \hat{\beta}_{s+1}, \beta_{s+2}, i, j}$, and $\mathcal{Q}_{0, \hat{k}, \hat{t}}^{\hat{\alpha}, \hat{\beta}_{s+1}, \beta_{s+2}, i, j}\left(0^{2}\right)=x_{Q}^{c}$.

The proof follows as Proposition 4.6. Let us remark the main differences.
Without lost of generality, we can assume that in local coordinates $x_{P}^{c}=(1,0)$ and $x_{Q}^{c}=(1,0)$. After an arbitrarily small perturbation we can assume that α has a rational argument ϕ. Fix $n>0$ such that the map $C_{\alpha}^{n}=\rho^{n} R_{\phi}^{n}=\rho^{n}$ Id, where R_{ϕ} denotes the rotation of angle ϕ.

We consider the case $(i, j)=(+,+)$. Recalling Equations (4.5) and (4.4), for the case $(+,+)$ we have

$$
\mathcal{Q}_{n, \ell,\left(t_{1}, t_{2}\right)}^{\alpha, \beta_{s+2},+,+}(x, y)=\left(\left(\beta_{s+1}\right)^{\ell}\left[\rho^{n} x+t_{1}\right],\left(\beta_{s+2}\right)^{\ell}\left(\rho^{n} M_{1} M_{2} y+t_{2}\right]\right) .
$$

Let $t=\left(t_{1}, t_{2}\right)=\left(t_{1}, 0\right)$ and consider a point $(x, 0)$. Then

$$
\begin{equation*}
\mathcal{Q}_{n, \ell,\left(t_{1}, 0\right)}^{\alpha, \beta_{s+1}, \beta_{s+2},+,+}(x, 0)=\left(\left(\beta_{s+1}\right)^{\ell}\left[\rho^{n} x+t_{1}\right], 0\right) . \tag{B.1}
\end{equation*}
$$

We will choose pairs $(m, \ell j)$ and $(\tilde{m}, \ell(j+1))$ and a parameter t_{1} such that (after a small perturbation) the point $x_{Q}^{c}=(1,0)$ is a fixed point for these compositions.

After an arbitrarily small perturbation of β_{s+1} we can assume that there are arbitrarily large (even) ℓ, j and (multiple of n) m such that

$$
\rho^{m}=\left(\beta_{s+1}\right)^{-\ell j}-\left(\beta_{s+1}\right)^{-\ell(j+1)} .
$$

Consider a $\tilde{m} \gg m$ such that $\tilde{\rho}^{\tilde{m}}$ is close to zero for all $\tilde{\rho}$ close to ρ. Take
$k>0($ close to $\ell(j+1)), \hat{\beta}_{s+1}$ close to β_{s+1} and $\hat{\rho}$ close to ρ such that

$$
\begin{align*}
(\hat{\rho})^{m}-(\hat{\rho})^{\tilde{m}} & =\left(\hat{\beta}_{s+1}\right)^{-\ell j}-\left(\hat{\beta}_{s+1}\right)^{-\ell(j+1)}, \tag{B.2}\\
\left(\hat{\beta}_{s+1}\right)^{-k} & =-(\hat{\rho})^{m}+\left(\hat{\beta}_{s+1}\right)^{-\ell j} . \tag{B.3}
\end{align*}
$$

Let

$$
\begin{equation*}
t_{1}=\left(\hat{\beta}_{s+1}\right)^{-k} \quad \text { and } \quad t_{2}=0 \tag{B.4}
\end{equation*}
$$

With these choices we have the following claims that prove our assertion:
Claim B.1. The point $(1,0)$ is fixed for $\mathcal{Q}_{m, \mathcal{Q}_{j},\left(\ell_{1}, 0\right)}^{\hat{\alpha}, \hat{s}_{s+1}, \beta_{s+2},+,+}$ and $\mathcal{Q}_{\hat{m}, \ell(j+1),\left(t_{1}, 0\right)}^{\hat{\alpha}, \hat{\beta}_{s+1}, \beta_{s+2},+,+}$.
Proof. Note that by (B.1), we have that

$$
\mathcal{Q}_{m, \ell j,\left(t_{1}, 0\right)}^{\hat{\alpha}, \hat{\beta}_{s+1}, \beta_{s+2},+,+}(1,0)=\left(\left(\hat{\beta}_{s+1}\right)^{\ell j}\left[(\hat{\rho})^{m}+t_{1}\right], 0\right)
$$

and the choice of t_{1} in (B.4) proves the first assertion of the claim.
Similarly, for the second assertion it is enough to see that

$$
\left(\hat{\beta}_{s+1}\right)^{\ell(j+1)}\left[(\hat{\rho})^{\tilde{m}}+t_{1}\right]=1 .
$$

Indeed, by the definition of t_{1} in (B.4), (B.3) and (B.2), respectively, we have

$$
\begin{aligned}
\left(\hat{\beta}_{s+1}\right)^{\ell(j+1)}\left[(\hat{\rho})^{\tilde{m}}+t_{1}\right] & =\left(\hat{\beta}_{s+1}\right)^{\ell(j+1)}\left[(\hat{\rho})^{\tilde{m}}+\left(\hat{\beta}_{s+1}\right)^{-k}\right] \\
& =\left(\hat{\beta}_{s+1}\right)^{\ell(j+1)}\left[(\hat{\rho})^{\tilde{m}}-(\hat{\rho})^{m}+\left(\hat{\beta}_{s+1}\right)^{-\ell j}\right] \\
& =\left(\hat{\beta}_{s+1}\right)^{\ell(j+1)}\left[(\hat{\rho})^{\tilde{m}}-(\hat{\rho})^{\tilde{m}}+\left(\hat{\beta}_{s+1}\right)^{-\ell(j+1)}\right]=1,
\end{aligned}
$$

proving the claim.
Claim B.2. $\mathcal{Q}_{0, k, k,\left(t_{1}, 0\right)}^{\hat{\alpha}, \hat{\beta}_{s+1}, \beta_{s+2},+,+}(0,0)=(1,0)$.
Proof. By the choice of t_{1} and Equation (B.2) we have that

$$
t_{1}=-(\hat{\rho})^{m}+\left(\hat{\beta}_{s+1}\right)^{-\ell j}=-(\hat{\rho})^{\tilde{m}}+\left(\hat{\beta}_{s+1}\right)^{-\ell(j+1)} .
$$

Using Equation (B.1), note that by (B.3) and the choice of t_{1} above we get

$$
\left(\hat{\beta}_{s+1}\right)^{k}\left[\hat{\rho}^{0}+t_{1}\right]=\left(\hat{\beta}_{s+1}\right)^{k}\left[\left(\hat{\beta}_{s+1}\right)^{-k}\right]=1
$$

ending the proof of the claim.

