
2
Related Work

Our research spans two very different fields of computer science — real-

time physics simulation and artificial intelligence — and then attempts to

bring them together for a completely different purpose — virtual character

animation. We will first look at each of these fields separately, and then present

works on motion synthesis for virtual characters, which is the core subject of

the present work.

2.1
Real-time Physics Simulation

In the context of computer science, physics simulation (also known as

dynamical simulation) is the simulation of systems of objects that are free

to move and rotate in two or three dimensions according to Newton’s laws

of dynamics. For a complex system, accurately determining the position and

orientation of its objects involves a huge quantity of calculations, which usually

prevents the employment of physics simulation in real-time applications1.

Accuracy can be sacrificed, however, especially when it is not necessary for

the position and orientation of the objects to be known with exact precision.

Real-time physics simulation is possible when the problem is combined with

time integration methods, allowing the calculation of numerical solutions to

the problem. These calculations take place in small, discrete time steps, with

small inaccuracies that are imperceptible to the user.

Figure 2.1 illustrates this concept. The ball is initially static and under

the effect of gravity. After each step, the ball’s vertical velocity increases and its

position is updated accordingly. Between steps #3 and #4, the user interacts

with the simulation, applying an oblique impulse to the ball. The ball’s velocity

is modified, but its effects will only become visible when the next step of

the simulation is computed. If the time between steps is sufficiently small,

1The term real-time application or interactive application is used throughout this
document to describe computer programs that give their users the illusion of immediate
response to their actions. To achieve this illusion, the program must never spend more than
a fraction of a second in its computations, or the user will notice that the program has
“stalled” and the illusion of interactivity will be broken.

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 17

Figure 2.1: Example of real-time physics simulation.

however, the user will not realize this and will believe that his interaction had

an immediate effect on the simulated object.

Physics simulation is a hot topic of research in the electronic entertain-

ment industry. Ten years ago, it was enough for a video game to have great

graphics, even if its environments were not fully interactive. The turn of the

century, however, saw the release of two highly influential titles that raised the

bar in terms of interactivity and immersion.

2.2(a): The player picks up and throws a
barrel in Half-Life 2.

2.2(b): The main character in Hit-
man: Codename 47 can grab unconscious
people and drag them along the floor.

Figure 2.2: Examples of real-time interactive physics. It is difficult to convey
the life-like motion of the simulated objects with static screenshots such as
those above, but players and developers took notice.

Released in 2000 and developed by IO Interactive, Hitman: Codename 47

was programmed with an innovative physics simulation system that made

dead characters collapse on the floor in a realistic manner. The algorithm is

deceptively simple and hardly innovative, as it had been developed many years

prior to predict the motion of molecules, but Thomas Jakobsen was the first

to realize it could be used in the context of real-time interactive physics. His

paper [Jakobsen 2001] explains how to implement simple physics simulation

for objects where accuracy is not a major concern, and we chose to use this

technique in our research into 2D virtual characters.

Half-Life 2, produced by Valve Corporation and released in 2004, featured

a weapon called “the gravity gun” that allowed players to pick up and throw

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 18

loose objects in the virtual world. These objects would collide with the walls,

floors, and each other, causing them to tumble and roll realistically. The

technology behind the game was the Havok physics engine, which had been in

development since the year 2000 and had been fine-tuned to perform complex

mathematical computations without placing an excessive burden on the CPU.

The appearance of companies that specialize in physics simulation soft-

ware (and, sometimes, physics simulation hardware) highlights its importance

in modern electronic entertainment. When this project began, the PhysX SDK2

was freely available from Nvidia’s website [Nvidia 2008], and for that reason

we chose to use it in our research into 3D virtual characters. (Unfortunately,

as of this writing, Nvidia has restricted access to the SDK and only licensed

developers can download it.)

2.2
Genetic Algorithms

A genetic algorithm is a search technique used to find optimal (or

approximate) solutions to a problem based on a heuristic measure of the solu-

tion’s quality. This technique was devised by observing biological processes —

genetics, reproduction, and natural selection — and adapting them to work in

a computational context. Genetic algorithms can be thought of as a simulated

evolution of virtual species, in which each individual of the species is a possible

solution to the problem [Davis and Mitchell 1991].

The core of a genetic algorithm is the genetic representation of its

individuals, which consists of two parts:

– The genotype (or chromosome) is an abstract representation of the

solution. Genotypes are typically simple data structures, such as strings

or trees, that are not directly related to the solution being sought.

– The phenotype is a concrete representation of the solution, and is

created by interpreting the genotype. Phenotypes can be thought of

as the creatures whose characteristics are reflections of their genetic

material.

The phenotype is evaluated by an objective function, which attributes

a score to the individual. This score reflects the quality of the solution (as

represented by the individual’s phenotype), such that better solutions have a

higher score (unless the optimization problem is attempting to minimize some

value, in which case lower scores are better). Thinking of genetic algorithms as

2SDK: Software Development Kit

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 19

the simulated evolution of a species, the individual’s score is called its fitness,

and stands for its ability to survive in a harsh environment (see Figure 2.3).

Figure 2.3: The phenotype is constructed from decoding the genotype. The
objective function measures the desired characteristics of the phenotype, and
calculates a fitness score for the individual.

The algorithm proceeds to apply the principle of natural selection to

determine which individuals will be allowed to breed and pass their genetic

material to the next generation. Individuals with a high fitness score are

more likely to be selected, although this is a stochastic3 process and even

unfit individuals have a small chance of breeding. This ensures a certain

degree of genetic diversity in the population and prevents the algorithm’s early

convergence to suboptimal solutions.

Breeding is carried out by the algorithm’s crossover operator, where

the chromosomes of two individuals (parents) are combined. This results

in two new individuals (children) with genetic material that is related, but

not identical, to the originals’. The children are then inserted into a new

population of individuals, the “next generation” of solutions. The genetic

algorithm then repeats the cycle — evaluation of chromosomes, selection of fit

individuals, crossover of their genetic material, population of new generation —

several times until a stopping condition is met. Typically, this is either a pre-

determined fitness score or a pre-determined number of generations.

3We say that a process is stochastic if it is highly influenced by randomness.

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 20

Lastly, no discussion about genetic algorithms would be complete without

mentioning the mutation operator. This operator works on a single individual,

making random modifications to its genotype, and prevents the population

from becoming excessively homogeneous. It is often the case that, after several

generations, all individuals will have genotypes that are nearly equal to each

other; mutation becomes necessary as a means of maintaining genetic diversity

and exploring different areas of the fitness landscape.

Figure 2.4: The cycle of a genetic algorithm.

Genetic algorithms have been used by [Machado and Cardoso 2002]

and [Cope 2005] in the field of artificial creativity with remarkable success.

While their work is not directly relevant to ours, they have shown that the

pseudo-random nature of G.A.s can create aesthetically-pleasing works in a

manner that traditional algorithms cannot, with surprising results that often

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 21

startle the developers themselves.

2.3
Motion Synthesis for Virtual Characters

From the viewpoint of the optimal control theory [Kirk 2004], the

problem tackled by this MSc dissertation is known as “synthesis of controllers”,

which applies to many areas, from robot locomotion [Tedrake 2004] to human

movement synthesis problems [Pandy et al. 1992]. More specifically, in the

present work, we have a controller synthesis problem for articulated figure

movements. The control program proposed by this dissertation is a kind of

motion controller that makes articulated figures move in a way that satisfies

the animation goal, which is defined as an objective function of a genetic

algorithm (Figure 1.2).

Most of the work on motion synthesis for articulated figures is concen-

trated in the 90’s. We think that this concentration was motivated by the first

constrained optimization technique for character animation (named “spacetime

constraints”) presented by [Witkin and Klass 1988] at Schlumberger Palo Alto

Research in the late 80’s. From the viewpoint of expanding the spacetime

constraints paradigm or reacting against it, we can identify some lines of

research on articulated figure motion. In the rest of this section, we present the

research lines that are more aligned with the objectives of this dissertation.

The spacetime constraint formulation leads to a non-linear constrained

variational problem that requires the reduction of the space of possible

trajectories to those that can be represented by a linear combination of

basis functions, such as cubic B-splines. [Cohen 1992] proposes an interactive

method to use spacetime constraints through a spacetime window over cubic

B-spline curves that represent the figure’s DOF (degrees of freedom) functions.

[Liu et al. 1994] extend this idea to hierarchical basis functions using a wavelet

construction. These spacetime constraint approaches reflect the fact that full

articulated figures (typically with 60 DOF) lead to a non-linear problem with

no close form solution. In this case, only approximate methods that reduce

complexity can succeed in practice. Currently, two major spacetime constraints

research lines represent the forefront works on realistic articulated figures

animation, both of which consider such approximate methods.

The first line uses dimensionality reduction techniques. For example,

[Safonova et al. 2004] solve the optimization problem in a low-dimensional

space by representing each frame of the desired motion as a linear combination

of a few basis vector.

The other line proposes interactive techniques that explore how far we can

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 22

go using only optimizations that can be computed rapidly enough to be used in

place of traditional splines. This line of research is embodied by a new real-time

technique called Linear Spacetime Constraint Splines or simply wiggly splines

because of their predilection for oscillation. Wiggly splines are based on signal

processing theory and have a number of attractive features: They can have

unconditional stability, incorporate damping, and be computed in constant

time per frame. This second line became a patent [Kass and Anderson 2009]

assigned to Pixar, one of the most important animation studios nowadays.

Another problem with the spacetime constraints technique is that it

uses local optimization to refine initial figure trajectories, which can lead to a

local minimum that is undesirable and/or not reusable. If we are looking for

a more automated controller synthesis (in contrast with the above-mentioned

interactive spacetime constraints techniques), we should avoid techniques

that use some kind of perturbational analysis to refine an initial trajectory.

In other words, we should stay away from techniques that are local in

nature. This approach gives rise to a line of research based on global search

and optimization algorithms. The following works are representatives of

this line of research: [Gritz and Hahn 1997], [van de Panne and Fiume 1993],

[Ngo and Marks 1993], [Auslander et al. 1995], [Fukunaga et al. 1994], and

[Sims 1994]. Some of these works have their roots in the spacetime constraints

paradigm [Ngo and Marks 1993] [Auslander et al. 1995] and, consequently,

are criticized because the existing literature has not made clear that energy is

the best criterion to optimize.

Amongst the global search techniques, [Gritz and Hahn 1997] are the

first authors to propose a general Genetic Programming (GP) evolution of

controller synthesis. [Sims 1994] also describes the use of genetic programming

to design articulated figures, but his work is not targeted towards the animation

of predefined figures. Instead, his work deals with creatures whose topology

evolves in an arbitrary way — which is great for artificial life games, but

not for animation control. Some of the above-mentioned global techniques

also use GP, but this is done for optimization tasks of fixed complexity. For

example, [Ngo and Marks 1993] propose a search module that uses a genetic

algorithm to choose values for the stimulus-response parameters defined by

a table. Furthermore, these two authors work with walking gaits only and

instructions of low specificity (like “walk forward”, instead of “walk to position

X”).

The ideas underlying the present dissertation are drawn from the work

by [Gritz and Hahn 1997]. We think that their work is more appropriate for

automatic animation than the ones based on spacetime constraints or those

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 23

based on global search of fixed complexity. However, some differences are worth

to be noticed in relation to that work:

– We have games in mind and not animation for film and 3D cartoons.

In this aspect, we propose a system in which the game character

automatically performs an animation sequence after an event occurs.

For example, the character falls after being shot and then stands up in

a realistic way until a specific pose is reached. The learning process can

take a long time but the repetition of the action should be in real time.

– We would like to develop a system that allows a game designer to design

the creature (topology, geometry, masses, and springs) in a quick and

easy way, and define general tasks (such as “move as fast as you can” or

“stand up on your own”). In contrast, [Gritz and Hahn 1997] offers no

facility to model arbitrary creatures and, in fact, only present results for

a “jumping lamp” character.

– We would like to have a more flexible way of producing the control

program. Moreover we propose more general operators for the

expression trees. For instance, the expression trees proposed by

[Gritz and Hahn 1997] only have “if less than zero then” conditionals.

We believe that the technique by [Gritz and Hahn 1997] has the same

dependency drawback of the method proposed in this dissertation, that is:

The dependency on the environment where the creature has learned how to

move. However, they have not reported this particular issue.

Unfortunately, this dissertation work has not succeeded in evaluating all

the proposed features. However, the results obtained so far indicate that we

developed an efficient system and have started a promising research agenda.

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA




