
6
Creating the Animation

Now that the animation can be represented, stored, and played back, all

that is left to do is understand how it is created. This is where we will use

genetic algorithms, and this chapter will describe how the various stages of

G.A. evolution were implemented.

6.1
Genotype

The solution we are trying to optimize is the animation program. In our

G.A., then, the chromosome needs to encode data that corresponds to the two

animation representations discussed in Chapter 4.

6.1.1
Sequence of Commands

An op-code can be represented by something as simple as a single integer

number. Let us imagine a character whose body is composed of 2 springs and

3 claws. As displayed in Figure 6.1, there are twelve valid op-codes for that

character. Generalizing for a character with NS springs and NC claws, there

will be 3NS + 2NC valid op-codes. (Naturally, this quantity will be different if

the character includes other active components, such as angular springs.) Any

integer number greater than the number of valid op-codes can be interpreted as

a “nothing” op-code — that is, a command that simply maintains the current

physical properties of springs, angular springs, motors, etc.

The “DNA” of the animation, then, is a variable-length list of integer

numbers.

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 35

1. Set spring #1 state: CONTRACTED

2. Set spring #1 state: RELAXED

3. Set spring #1 state: STRETCHED

4. Set spring #2 state: CONTRACTED

5. Set spring #2 state: RELAXED

6. Set spring #2 state: STRETCHED

7. Set claw #1 state: GRIPPING

8. Set claw #1 state: RELEASED

9. Set claw #2 state: GRIPPING

10. Set claw #2 state: RELEASED

11. Set claw #3 state: GRIPPING

12. Set claw #3 state: RELEASED

Figure 6.1: Valid op-codes for a character with two springs and three claws.

6.1.2
Expression Tree

As the name suggests, this representation is best suited to a tree-like

data structure. Our implementation was influenced by [Koza 1992] and the

guidelines established therein. Specifically:

– Programs are represented by expression trees ;

– Non-leaf nodes in the tree are unary, binary, or ternary operators (see

Figure 6.2);

– Leaf nodes in the tree are either constants or variables (see Figure 6.3);

– A “strict” structure is enforced, that is, the arity (number of children)

and type (Boolean or number) of all nodes is maintained consistent. The

tree will never have, for instance, a Boolean constant inserted as a child

of an arithmetic operator, or a subtraction with three arguments.

The “DNA” of the animation, then, is a fixed-size list of expression

trees — one for each active component (spring, motor, etc.) in the character’s

body.

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 36

Unary operators: These nodes have only one child.

Logical “not” (receives Boolean, returns Boolean): Inverts
the value returned by the evaluated subtree.

Math function (receives number, returns number): These
nodes are associated with a specific mathematical function
(cosine, sine, square root, natural logarithm, or exponential).
When evaluated, they take the value returned by the subtree,
apply that function to it, and then return the modified value.

Negation (receives number, returns number): Inverts the sign
(positive or negative) of the value returned by the evaluated
subtree.

Binary operators: These nodes must have two children.

Comparator (receives two numbers, returns Boolean):
These nodes are associated with a specific arithmetic comparison
operator (“greater”, “greater or equal”, “less”, or “less or equal”).
When evaluated, they take the values returned by their two
subtrees, compare them with the operator, and then return true
or false.

Logical operator (receives two Booleans, returns Boolean):
These nodes are associated with a specific Boolean operator
(“and”, “or”, or “exclusive or”). When evaluated, they take the
values returned by their two subtrees, combine them with the
operator, and then return the resulting value.

Math operator (receives two numbers, returns number):
As above, but with mathematical functions (sum, subtraction,
multiplication, division, exponentiation).

Ternary operators: These nodes represent “if-then-else” branches, and
take three children.

Boolean “if” (receives three Booleans): When evaluated, this
node takes the value returned by the first subtree. If it is true,
it evaluates the second subtree, otherwise, it evaluates the third
subtree. This node, then, always returns a Boolean value.

Arithmetic “if” (receives a Boolean and two numbers):
Similar to the above, but always returns a number value.

Figure 6.2: Non-leaf nodes, or operators, used in the expression trees.

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 37

Constants: Nodes that always return a fixed value.

Boolean constants: The values true and false.

Number constants: Any real number.

Variables: Nodes whose evaluation depends on the character’s current
state.

Bone-floor contact (Boolean): These nodes are associated with a
specific bone on the character. When evaluated, they return true
if the bone is touching the floor.

Joint angle (number): These nodes are associated with a specific
joint on the character. When evaluated, they return the angle, in
degrees, between the two bones connected to the joint.

Bone elevation angle (number): These nodes are associated with
a specific bone on the character. When evaluated, they return
the angle, in degrees, between the ground plane and the bone’s
current orientation.

Bone-bone azimuth angle (number): These nodes are associated
with a pair of bones on the character. When evaluated, they
return the angle, in degrees, between the two bones’ current
orientations along the ground plane. (Note that this variable does
not exist in the 2D case.)

Figure 6.3: Leaf nodes, or terminals, used in the expression trees.

6.2
Evaluation

The evaluation stage is where a genotype is analyzed and scored based

on how good a solution it is. This usually involves decoding the information

in the genotype to get a phenotype, and then measuring some property of it.

We chose to measure the distance traversed by the character during a

ten-second interval while the animation plays. We hoped this would direct the

evolution towards “walking” or “running” animations.

6.3
Crossover and Mutation

The crossover operator is responsible for exchanging data between two

solutions (parents) to create two new solutions (children). The mutation

operator is responsible for slightly modifying the solution in a random manner

to avoid stagnation in the evolution process. These operators are heavily

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 38

dependant on the genotype representation, so we had to devise two very

different strategies for our two representations.

6.3.1
Sequence of Commands

The crossover operator of choice is the one-point crossover (see Fi-

gure 6.4). This method is useful because it recombines the two animations

without completely destroying the parents’ sequencing of op-codes.

Figure 6.4: One-point crossover. Each of the parent chromosomes is “cut” at
a random point to create two sub-sequences; by swapping the sub-sequences,
two new chromosomes are created.

When applying the mutation operator, one of four methods is chosen at

random:

– Swap: Two op-codes in the sequence are selected and their positions are

swapped.

– Destroy: An op-code in the sequence is removed.

– Create: A position in the sequence is chosen to insert a new random

op-code, which may be valid or invalid (“nothing” op-code).

– Flip: An op-code in the sequence is selected and replaced with a new

random op-code. As above, the new op-code may or may not be valid.

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 39

6.3.2
Expression Trees

In this case, one chromosome actually consists of several trees (one tree

for each active body component). We reckoned that each tree should follow its

own evolutionary process, and it did not make sense to cross trees belonging

to different components. Thus, when breeding two chromosomes, we apply

the crossover operator to pairs of trees belonging to the same component (see

Algorithm 4).

Algorithm 4 The function CrossControllers breeds and returns two child
animations, nicknamed bro and sis. CrossTrees, whose implementation is not
shown here, is a function that receives two trees (parents) and returns two new
trees (children).

function CrossControllers(mom, dad)
bro← empty tree list
sis← empty tree list
for each component i in the character do
bro[i], sis[i]← CrossTrees(mom[i], dad[i])

end for
return bro, sis

end function

When performing the crossover of expression trees, we chose the one-point

crossover operator again (see Figure 6.5). However, care needs to be taken

when selecting the crossover point: Because we enforce a type-safe structure

in the tree, the crossover must avoid grafting a branch in an incompatible

point (e.g., exchanging a Boolean-type node with a number-type node). To

fulfill this requirement, we first select a random edge from the mom tree, then

perform a search in the dad tree and collect all edges that are compatible with

mom’s selected edge. From that subset, we select a random edge that will be

the crossover point in dad.

Mutation is is performed on a node-by-node basis, that is, if the algorithm

is run with a mutation probability of pmut then every node in the tree has pmut

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 40

Figure 6.5: One-point crossover for tree structures. Each of the parent trees is
“cut” at a random point, and their branches are swapped to create two new
chromosomes.

chance of mutation according to the following behaviors:

– Variable terminals mutate by pointing to a different component (e.g.,

a bone-floor contact node associated with the contact status of bone #2

will change to be associated with the contact status of bone #4).

– Constant terminals mutate by changing their value to some other

random value.

– If-then-else nodes mutate by swapping the edges then and else (and,

by extension, their subtrees). Since these two edges are always of the

same type, this operation is type-safe.

– Unary operators mutate by changing their function (e.g., a sine node

may change to perform a negation instead).

– Binary operators mutate by changing their function (e.g., an and node

may change to perform an exclusive or instead) and/or swapping their

two edges (e.g., a− b may become b− a).

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA




