
7
Results

We developed two test applications, each combining a different set of

elements from the previous chapters.

Application title Creepy Crawlies CC3D

Physics engine
Custom particle-based

2D engine
PhysX

Bones
Bilateral constraints

between particles

Three-dimensional rigid

bodies

Muscles Linear springs Motors

Animation Op-code sequences Expression trees

Playback parameters

(see Chapter 5)

FIXED DT = 1
500

,

OPCODE DT = 1
128

FIXED DT = 1
30

7.1
Creepy Crawlies

This application opens with a “creature editor,” where the user can build

a virtual creature using particles, bone connectors, and springs (see Figure 7.1).

When finished, the user can click the “Generate animation” button to begin the

G.A. process that will generate an animation for that creature. The evolution

runs indefinitely, but the user may choose to interrupt it at any time and see

the best individual that has been discovered so far.

The algorithm takes about a dozen generations to produce an acceptable

animation, although these early specimens are very jittery and prone to

stumbling. The process usually stabilizes after the 30th generation with

realistic, plausible animations for the character. These numbers are affected

by the creature’s structure, though; it took 20 generations to animate a

simple M-shaped creature, while a more complex quadruped-like being took

60 generations. Nevertheless, an important point to remember is that genetic

algorithms are stochastic and unpredictable processes, and some creature

designs required 100 or more generations before the evolution stabilized.

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 42

Figure 7.1: The first test application, Creepy Crawlies, in “creature editor”
mode

Using a profiler [Abedi 2007] to measure the application’s performance,

we discovered that the bulk of computational effort is spent running the physics

simulation during the evaluation step (on average, 95% of the time was spent

in the physics simulation code). Therefore, it was to be expected that complex

creatures with many bones and joints would take a longer time to evaluate

(and, therefore, a longer time to advance one generation).

We expected “nothing” op-codes to be extremely important during the

evolution of an animation program, but this prediction turned out to be wrong.

To test it, we designed our application so that, every time a random op-

code had to be created (in the initialization of the first generation, in the

constructive mutator, and in the replacing mutator), Algorithm 5 would be

invoked. The parameter fNothing could tweak the generation of invalid op-codes;

fNothing = 0 would result in no invalid op-codes at all, while fNothing = 0.5

would result in one third of all op-codes to be invalid. To our surprise, the

animations generated by the application were very similar in both cases.

Algorithm 5 Here, NS is the number of springs, NC is the number of claws,
and rand is a function that returns a random number between zero and 1.

function MakeRandomOpCode()
return (1 + fNothing)× (3×NS + 2×NC)×rand()

end function

The next page shows two examples of creatures and their generated

animations.

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 43

Still frames of animation from the

creature’s movement

The animation has 33 op-codes:

Still frames of animation from the

creature’s movement

The animation has 23 op-codes:

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 44

7.2
CC3D

Unlike Creepy Crawlies, this application reads creature descriptions

stored in text files. (We did not develop a 3D creature editor because it is

an enormously complex task well beyond the scope of our limited time and

resources.) The creature description includes only bones and joints; motors

are automatically attached to all joints when the text file is loaded. The user

initially sees the creature as a “rag doll” and may press a key to begin the

evolution process, which runs for a fixed length of 100 generations.

As expected, the evaluation of individuals was significantly slower than

in the previous test (physics simulation of 3D rigid bodies being more

computationally expensive). However, even after 100 generations — which took

over twenty hours to complete —, the application failed to find an acceptable

animation for even the simplest of creature designs. It rarely moved from its

initial spot, and instead thrashed around aimlessly.

We suspect the difficulties were caused by the complexity of the search

space. Although this application was a failure, we decided to mention it in

the text because the underlying concepts may be of value for future research

works.

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA




