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A
Ricatti equations

In this Appendix we show how to obtain equations (2-20). The purpose
here is not to give a thorough demonstration of the algebra, but rather provide
the reader with a sketch of how to proceed. We will be using and adapting
Appendix A in Joyce, Lildholdt and Sorensen (2009) to our notation and
particular form of movement laws for the discount factors.

Starting from the fundamental asset pricing equation for real bonds as
given by our equation (2-7) and taking the natural logarithms of both sides,
we have

pRt,τ = Et
(
mR
t+1 + pRt+1,τ−1

)
+

1

2
V art

(
mR
t+1 + pRt+1,τ−1

)
With the movement law (2-18) for the SDF, we know the real bond price

is given by
pRt,τ = AR

τ + BR′

τ xt

with Bτ ∼ 4×1. Substituting for the next period’s SDF and for the bond
price, after some algebraic manipulation we obtain:

AR
τ = −r̄ + AR

τ−1 − λR
>
BR
τ−1 +

BR>
τ−1B

R
τ−1

2
BR
τ = −γR + ΦBR

τ−1

To obtain initial conditions, we need only remember that the price of a
bond maturing today is PR

t,0 = 1, so that

A0 = 0 and B0 = 0

This restricts yields of different maturities to the no-arbitrage condition.
Finally, to obtain our usual formula for yields, we must only see that real

yields in continuos time is given by

yRt,τ = −
pRt,τ
τ

= −Aτ

τ
− Bτ

τ
xt = Aτ +Bτxt
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and so replace the right maturities. For instance, the one period rate is
yRt,1 = −r̄ + γRxt.

Mutatis mutandi, applying the same method for nominal yields gives us
their Ricatti equations:

AN
τ = −

(
r̄ + θ̄

)
+ AN

τ−1 −
(
λR

>
+ λθ

>
)
BN
τ−1 +

BN>
τ−1B

N
τ−1

2
BN
τ = −

(
γR + γθ

)
+ ΦBN

τ−1
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