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Introduction

In this work we consider autonomous semi-linear elliptic equations

F (u) = −∆u − f(u) = g, u|∂Ω = 0,

for different classes of nonlinearities f and domains Ω ∈ R
n, taken to be

bounded, open, connected subsets of R
n with Lipschitz boundary ∂Ω.

There are natural identifications between the theoretical tools and the

numerical methods used in the study of these equations. After appropriate

function spaces are chosen, local behavior at regular points concerns both

the inverse function theorem and Newton´s algorithm to invert a point given a

good initial approximation. For nonlocal issues, homotopy methods like degree

theory go along well with continuation methods. The celebrated mountain

pass lemma ([19], [10]) is the starting point of an algorithm presented in [7].

More recently, ideas used in computer assisted proofs were combined with the

topological toolbox with striking effect by Breuer, McKenna and Plum [6].

Surely there are difficulties: as one proceeds to obtain preimages of a path

γ by a continuation method, it may happen that γ trespasses the image of the

critical set of F , and one is faced with the possible creation or annihilation

of preimages. This leads to consider singularity/bifurcation theory and their

numerical counterparts. These are intrinsically nonlinear difficulties and hard

problems abound: how to count solutions or at least how to spot a few, how to

find reasonable starting points. As stated in [17], computer assisted arguments

require good approximations for the eventual validation of a solutions.

On the one hand, numerics develop our intuition of elliptic equations by

collecting expressive examples. On the other, the subject is sufficiently mature

that algorithms should stand side by side with theoretical information. The

situation may be compared to the simpler study of functions of one variable

in a basic calculus course. Some functions, like parabolas, may be handled

without substantial computational effort. But the range of our understanding

increases once we start drawing graphs, which are obtained by following

standard procedures.

The scope of the algorithm presented in this work is defined in terms of
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the allowed nonlinearities. For simplicity, we only treat the autonomous case.

Index the eigenvalues λi of the Dirichlet Laplacian in nondecreasing order,

0 < λ1 < λ2 ≤ λ3 ≤ . . .

We make two hypothesis on the nonlinearity f : R → R.

1. f ′(R) = (a, b), where the extreme points a, b are not eigenvalues (the

non-resonant case; here a may be −∞);

2. f ′(R) contains a finite set of ordered eigenvalues λi of the Dirichlet

Laplacian, indexed by a set J which is complete, in the sense that it

labels all the eigenvalues (including multiplicities) contained in f ′(R).

1.0.1

Global Lyapunov-Schmidt decompositions and fibers

The history of the theoretical (and some computational) aspects of semi-

linear elliptic theory is very well described in [6]. A good introduction to the

application of computer assisted proofs to nonlinear elliptic equations is [17].

Here we emphasize the techniques we intend to convert into algorithms.

In more geometric terms, we want to compute the preimages of a point g

for the nonlinear operator F : H1

0
(Ω) → H−1(Ω) between Sobolev spaces given

by F (u) = −∆u − f(u): in other words, we want to solve F (u) = g.

Hammerstein [12] showed that if f ′(R) lies below the smallest eigenvalue

λ1 and is nonnegative, then F is a diffeomorphism. Dolph [11] extended the

result for the case when f ′(R) does not contain any eigenvalue λi. This is clearly

a sound starting point for numerics: to solve F (u) = g, take any point u0 with

image F (u0) = g0 and proceed to invert points along the segment joining

g0 and g by, say, Newton´s method. The process will only require (standard)

algorithms for inverting v 7→ −∆v−f ′(u)v with Dirichlet boundary conditions.

The first example for which F admits a multiplicity of preimages was

identified by Ambrosetti and Prodi [1]. Their beautiful result, immediately

amplified by Manes and Micheletti [15], essentially states that if f is convex and

f ′(R) only contains the eigenvalue λ1, then g can only have 0, 1 or 2 preimages.

Their arguments made a subtle use of local theory (the fact that all critical

points of F are fold points) and global properties (mostly, the injectivity of F

restricted to its critical set), yielding the counting of preimages.

Later, Berger and Podolak [4] came up with a geometric description of

the Ambrosetti-Prodi operator F . Split domain and counter-domain as an

orthogonal sum of the vertical subspace V spanned by the first eigenfunction
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ϕ1 and its orthogonal complement V ⊥. Rather surprisingly, this gives rise to

a global Lyapunov-Schmidt decomposition. More precisely, the projection of

F on V ⊥ may be interpreted as a parameterized set of diffeomorphisms from

affine subspaces in H1

0
(Ω) parallel to V ⊥ to V ⊥ ∈ H−1(Ω) and the projection

on V leads to the bifurcation equation of the problem, PV F (u) = PV g.

Berger and Podolak went one step further: they considered the fibers,

which are the preimages of vertical lines. For the Ambrosetti-Prodi scenario,

they essentially showed that each fiber is a differentiable curve on which the

restriction of F becomes x 7→ −x2, after global changes of variable in domain

and target space. Moreover, fibers foliate the domain. Said differently, F is

a global fold: (global) changes of variables in domain and counter-domain

convert F into (x, y) 7→ (−x2, y), where y ∈ V ⊥ parameterizes the set of fibers

(or, equivalently, the set of vertical lines in the counter-domain) and x ∈ V

parameterizes each fiber. In a subsequent paper [18], Podolak considered fibers

in the case f is convex and f ′(R) only contains the eigenvalue λ2.

Fibers were used to show that the map G(u(t)) = u′(t)+u3(t)−u(t) is a

global cusp between C1([0, 1]) functions with periodic boundary conditions to

C([0, 1]) (see [14]). In other words, after global changes of variables, G becomes

(x, y) 7→ (x3−xy, y). In this case, the appropriate decomposition splits domain

and counter-domain as direct sums of constant functions and functions of zero

average. Restricted to each fibers, G looks like x 7→ x3 − ax for some real

number a which depends on the fiber. One is then left with showing that the

fibers stack together in the right fashion.

1.0.2

A sketch of the algorithm

Such decompositions are opportunities for numerics. Again, in the

Ambrosetti-Prodi case, let αg be the fiber given by the inverse under F of

the vertical line through g. Clearly, all the solutions of the equation F (u) = g

belong to αg. Thus, one might solve F (u) = g by first identifying αg, and then

searching for solutions along this well behaved curve. As we shall see (and is

clear already in [4]), the space decompositions do not require the convexity of

f . So, in principle, one might perform numerics for more general nonlinearities

already when interacting only with λ1.

The general procedure goes as follows. The hypotheses on the nonli-

nearity f : R → R allow for the required decompositions in domain and

counter-domain: the vertical subspace V is spanned by the eigenvectors of the

Dirichlet Laplacian labeled by indices in the complete set J , which describes

which eigenvalues interact with the nonlinearity. Fibers, which are the inverse
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images under F of the affine subspaces parallel to V , will have dimension k,

the cardinality of J . In order to solve F (u) = g, first move along fibers so as

to identify the fiber αg which contains all the solutions of the equation. As we

shall see, the equation obtained by projecting on V ⊥ essentially states that

there is a diffeomorphism between the set of fibers and the set of vertical affine

subspaces. One task of this work is to show how this converts the search for

αg into a (stable) Newton´s method which requires the inversion of an appro-

priate integro-differential operator in each iteration. Once αg ' R
k is found,

the problem reduces to the search for roots of a (computable, robust) function

from R
k to R

k, as we shall see.

The first step of the method is where the infinite dimensional computa-

tions are performed, or better, emulated by finite elements methods. This part

is robust and globally stable: errors self-correct in the spirit of Newton-type

iterations, and the linear operators which require inversion are both uniformly

bounded and uniformly coercive. The second step is subtler. When J consists of

one or two elements, we provide graphs representing the restriction of F to the

appropriate fiber, and the visual hints may help the numerics. We do not consi-

der here an algorithm for the general (finite dimensional) inversion problem.

For the general case, one might use any software for the general n-dimensional

root finder. At this point, we are considering extending the software available

for the two dimensional case [13] 1, but the subject is barely beginning.

Insight on the numerics may be obtained also from the understanding of

the discrete counterparts of such operators F . This is considered in [20], but

we give no details here.

Section 2.2 is dedicated to the basic estimates ensuring that F is indeed

a C1 map. Then in Section 3.1, a few basic geometric properties are obtained

from a general function F : X → Y , where the Banach spaces X and Y

are supposed to admit the decompositions which will be used in the global

Lyapunov-Schmidt decomposition of Section 3.2. The algorithm is described

first theoretically in Section 4.1, then in more technical terms (Section 4.2).

We conclude the work with a few numerical examples, in which we consider

nonlinearities interacting first with λ1, next with λ2 and finally with both

eigenvalues.

1For this program, see http://www.mat.puc-rio.br/ hjbortol/2x2/
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