## 2

Basic Theory

## 2.1 <br> Notation

Throughout this text, $\Omega$ denotes an open, simply connected, bounded set of $\mathbb{R}^{n}$ (mostly $n=1$ or $n=2$ ). The boundary of our domain is denoted by $\partial \Omega$ and is assumed to be smooth, except at finitely many points, where it is at least Lipschitz. For technical results for this class of boundaries we refer to [16]. We define the bilinear forms

$$
\langle u, v\rangle_{0}=\int_{\Omega} u v, \quad\langle u, v\rangle_{1}=\int_{\Omega} \nabla u \cdot \nabla v,
$$

which give rise to the norms resp. seminorms

$$
\|u\|_{0}=\langle u, u\rangle_{0}^{1 / 2}, \quad|u|_{1}=\langle u, u\rangle_{1}^{1 / 2} .
$$

For more general exponents $1 \leq p<\infty$,

$$
|u|_{j, p}^{p}=\sum_{|\alpha|=j} \int_{\Omega}\left\|D^{\alpha} u\right\|^{p}, \quad\|u\|_{j, p}^{p}=\sum_{i \leq j}|u|_{i, p}^{p},
$$

and

$$
|u|_{j, \infty}=\sum_{|\alpha|=j} \operatorname{ess} \sup _{\Omega}\left\|D^{\alpha} u\right\|, \quad\|u\|_{j, \infty}=\sum_{i \leq j}|u|_{i, \infty},
$$

where for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ a multiindex, $D^{\alpha} u=\partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}} u$. Whenever an operator $F$ is said to be differentiable, it is understood to be in the Fréchet sense. The partial derivative of $F$ with respect to, say, $u$ is denoted as $\partial_{u} F$. A generic constant (not always the same one) will be denoted simply by $C$ and, unless otherwise stated, is assumed to depend only upon the dimension of the space and the domain $\Omega$.

## 2.2 <br> Differentiability of Nemytskii Operators

Recall that a function $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function if $s \mapsto f(x, s)$ is continuous for almost every $x$ and $x \mapsto f(x, s)$ is measurable for every $s$. An operator of the form $u(x) \mapsto f(x, u(x))$, where $f$ is Carathéodory, is referred to as a Nemytskii operator. For a discussion about their differentiability as maps from $L^{p}$ to $L^{p^{\prime}}\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$ see, e.g. [2]. We are interested in autonomous operators induced by $f$, i.e. $x \mapsto f(u(x))$, where $u$ lies in Sobolev spaces of higher order, and such that $f \in C^{1}$, with bounded derivative. Note that this assumption clearly implies the Carathéodory property and the inequality $|f(s)| \leq a+b|s|$ for some $a, b>0$. Given the stronger assumptions, the Nemytskii operators we consider have nicer properties.

Proposition 1. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a $C^{1}$-function with bounded derivative, then the Nemytskii operator $N_{f}: H^{1}(\Omega) \rightarrow L^{2}(\Omega)$ defined by $u \mapsto f(u)$ is continuously differentiable with derivative given by $N_{f}^{\prime}(u) z=f^{\prime}(u) z$. The operators $N_{f}: H^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ and $N_{f}: H^{2}(\Omega) \rightarrow L^{2}(\Omega)$ together with their restrictions to $H_{0}^{1}(\Omega)$ and $H_{0}^{2}(\Omega)$ are continuously differentiable, with compact derivatives.

Proof. The operator $N_{f}: H^{1}(\Omega) \rightarrow L^{2}(\Omega)$ is well defined: there exist $a, b>0$ so that

$$
\|f(u)\|_{0} \leq\|a\|_{0}+b\|u\|_{0} \leq a|\Omega|+b\|u\|_{1} .
$$

Write the superlinear remainder $e(h):=f(u+h)-f(u)-f^{\prime}(u) h$ as $e(h)=\delta h$, where

$$
\delta(x, h(x)):=\int_{0}^{1} f^{\prime}(u(x)+s h(x))-f^{\prime}(u(x)) d s
$$

We have then $\|e(h)\|_{0} \leq\|\delta\|_{\infty}\|h\|_{0} \leq\|\delta\|_{\infty}\|h\|_{1}$. To establish differentiability it suffices to show that $\|\delta\|_{\infty} \rightarrow 0$ as $\|h\|_{1} \rightarrow 0$, and that multiplication by $f^{\prime}(u)$ is a bounded operator. Since $\|h\|_{0} \leq\|h\|_{1}, h \rightarrow 0$ also in $L^{2}$. We assume then, switching to a subsequence if necessary, that $h \rightarrow 0$ pointwise a.e., so that the integrand in $\delta$ converges to zero pointwise a.e. $\left(f \in C^{1}\right.$ and $|s| \leq 1)$. From the bounded convergence theorem, $\|\delta\|_{\infty} \rightarrow 0$. Thus $N_{f}$ is Fréchet differentiable. The boundedness of $z \mapsto f^{\prime}(u) z$ follows from $\left\|f^{\prime}(u) z\right\|_{0} \leq\left\|f^{\prime}\right\|_{\infty}\|z\|_{0} \leq\left\|f^{\prime}\right\|_{\infty}\|z\|_{1}$.

We now show the continuity of the derivative. For an arbitrary $u \in$ $H^{1}(\Omega)$, we have to show that $\left\|N_{f}^{\prime}(u+h)-N_{f}^{\prime}(u)\right\| \rightarrow 0$ whenever $\|h\|_{1} \rightarrow 0$. Suppose $v \in H^{1}(\Omega)$. Defining $g(h)=f^{\prime}(u+h)-f^{\prime}(u)$ and using Hölder's inequality with exponents $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ we obtain

$$
\begin{equation*}
\left\|\left(f^{\prime}(u+h)-f^{\prime}(u)\right) v\right\|_{0,2}=\|g(h) v\|_{0,2} \leq\|g(h)\|_{0,2 p^{\prime}}\|v\|_{0,2 p} . \tag{2-1}
\end{equation*}
$$

To estimate $\|v\|_{0,2 p}$ we divide in cases.
If $n=1$, we can choose $p=\infty\left(p^{\prime}=1\right)$, since by Morrey's inequality we have

$$
\|v\|_{0,2_{p}}=\|v\|_{\bar{\Omega}, 0, \infty} \leq C\|v\|_{1,2} .
$$

If $n \geq 3$, we set $2 p=q^{*}=\frac{2 n}{n-2}>2\left(p^{\prime}=n / 2\right)$, the Sobolev conjugate of $q=2$. Gagliardo-Nirenberg-Sobolev inequality yields then

$$
\|v\|_{0,2 p}=\|v\|_{0, q^{*}} \leq C\|v\|_{1, q}=C\|v\|_{1,2} .
$$

Finally, for $n=2$, we apply again Gagliardo-Nirenberg-Sobolev, this time with $2 p=q^{*}=4\left(p^{\prime}=2\right)$, the Sobolev conjugate of $q=4 / 3<2$. Since $\Omega$ is bounded, we can then write

$$
\|v\|_{0,2^{p}}=\|v\|_{0, q^{*}} \leq C\|v\|_{1, q} \leq C(1+2|\Omega|)^{\frac{1}{q}}\|v\|_{1,2}
$$

where we split $\Omega=\{|v|<1\} \cup\{|v| \geq 1\}$ in the integrals and used a scaling argument. In all cases, after taking the supremum over all unitary $v \in H^{1}(\Omega)$, equation (2-1) becomes

$$
\left\|N_{f}(u+h)-N_{f}(u)\right\| \leq C\|g(h)\|_{o, 2 p^{\prime}} .
$$

The argument used previously allows us to assume $h \rightarrow 0$ (and also $g(h) \rightarrow 0$ ) pointwise a.e. Since in each case we have $1 \leq p^{\prime}<\infty$, the bounded convergence theorem guarantees that $\|g(h)\|_{0,2 p^{\prime}} \rightarrow 0$.

The analogous statements for the other Nemytskii operators in the statement of the proposition follow from the natural compact inclusions among Sobolev spaces.

