
2

Basic Theory

2.1

Notation

Throughout this text, Ω denotes an open, simply connected, bounded set

of R
n (mostly n = 1 or n = 2). The boundary of our domain is denoted by

∂Ω and is assumed to be smooth, except at finitely many points, where it is

at least Lipschitz . For technical results for this class of boundaries we refer to

[16]. We define the bilinear forms

〈u, v〉0 =

∫
Ω

uv, 〈u, v〉1 =

∫
Ω

∇u · ∇v,

which give rise to the norms resp. seminorms

||u||0 = 〈u, u〉1/2

0
, |u|1 = 〈u, u〉1/2

1
.

For more general exponents 1 ≤ p < ∞,

|u|p
j,p

=
∑
|α|=j

∫
Ω

||Dαu||p, ||u||p
j,p

=
∑
i≤j

|u|p
i,p

,

and

|u|j,∞ =
∑
|α|=j

ess supΩ ||Dαu||, ||u||j,∞ =
∑
i≤j

|u|i,∞,

where for α = (α1, . . . , αn) a multiindex, Dαu = ∂α1

1
· · · ∂αn

n u. Whenever an

operator F is said to be differentiable, it is understood to be in the Fréchet

sense. The partial derivative of F with respect to, say, u is denoted as ∂uF . A

generic constant (not always the same one) will be denoted simply by C and,

unless otherwise stated, is assumed to depend only upon the dimension of the

space and the domain Ω.
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2.2

Differentiability of Nemytskii Operators

Recall that a function f : Ω × R → R is a Carathéodory function if

s 7→ f(x, s) is continuous for almost every x and x 7→ f(x, s) is measurable for

every s. An operator of the form u(x) 7→ f(x, u(x)), where f is Carathéodory,

is referred to as a Nemytskii operator. For a discussion about their differen-

tiability as maps from Lp to Lp′ (1

p
+ 1

p′
= 1) see, e.g. [2]. We are interested

in autonomous operators induced by f , i.e. x 7→ f(u(x)), where u lies in So-

bolev spaces of higher order, and such that f ∈ C1, with bounded derivative.

Note that this assumption clearly implies the Carathéodory property and the

inequality |f(s)| ≤ a + b|s| for some a, b > 0. Given the stronger assumptions,

the Nemytskii operators we consider have nicer properties.

Proposition 1. If f : R → R is a C1-function with bounded derivative,

then the Nemytskii operator Nf : H1(Ω) → L2(Ω) defined by u 7→ f(u)

is continuously differentiable with derivative given by N ′
f (u)z = f ′(u)z. The

operators Nf : H1(Ω) → H−1(Ω) and Nf : H2(Ω) → L2(Ω) together with their

restrictions to H1

0
(Ω) and H2

0
(Ω) are continuously differentiable, with compact

derivatives.

Proof. The operator Nf : H1(Ω) → L2(Ω) is well defined: there exist a, b > 0

so that

||f(u)||0 ≤ ||a||0 + b||u||0 ≤ a|Ω| + b||u||1.

Write the superlinear remainder e(h) := f(u+h)−f(u)−f ′(u)h as e(h) = δ h,

where

δ(x, h(x)) :=

∫
1

0

f ′(u(x) + s h(x)) − f ′(u(x)) ds.

We have then ||e(h)||0 ≤ ||δ||
∞
||h||0 ≤ ||δ||

∞
||h||1. To establish differentiability

it suffices to show that ||δ||
∞

→ 0 as ||h||1 → 0, and that multiplication

by f ′(u) is a bounded operator. Since ||h||0 ≤ ||h||1, h → 0 also in L2. We

assume then, switching to a subsequence if necessary, that h → 0 pointwise

a.e., so that the integrand in δ converges to zero pointwise a.e. (f ∈ C1

and |s| ≤ 1). From the bounded convergence theorem, ||δ||
∞

→ 0. Thus

Nf is Fréchet differentiable. The boundedness of z 7→ f ′(u)z follows from

||f ′(u)z||0 ≤ ||f ′||
∞
||z||0 ≤ ||f ′||

∞
||z||1.

We now show the continuity of the derivative. For an arbitrary u ∈

H1(Ω), we have to show that ||N ′
f (u + h) − N ′

f (u)|| → 0 whenever ||h||1 → 0.

Suppose v ∈ H1(Ω). Defining g(h) = f ′(u + h) − f ′(u) and using Hölder’s

inequality with exponents 1

p
+ 1

p′
= 1 we obtain

||(f ′(u + h) − f ′(u)) v||0,2 = ||g(h)v||0,2 ≤ ||g(h)||0,2p′||v||0,2p. (2-1)
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To estimate ||v||0,2p we divide in cases.

If n = 1, we can choose p = ∞ (p′ = 1), since by Morrey’s inequality we

have

||v||0,2p = ||v||Ω̄,0,∞ ≤ C||v||1,2.

If n ≥ 3, we set 2p = q∗ = 2n
n−2

> 2 (p′ = n/2), the Sobolev conjugate of

q = 2. Gagliardo-Nirenberg-Sobolev inequality yields then

||v||0,2p = ||v||0,q∗ ≤ C||v||1,q = C||v||1,2.

Finally, for n = 2, we apply again Gagliardo-Nirenberg-Sobolev, this time

with 2p = q∗ = 4 (p′ = 2), the Sobolev conjugate of q = 4/3 < 2. Since Ω is

bounded, we can then write

||v||0,2p = ||v||0,q∗ ≤ C||v||1,q ≤ C (1 + 2|Ω|)
1

q ||v||1,2,

where we split Ω = {|v| < 1} ∪ {|v| ≥ 1} in the integrals and used a scaling

argument. In all cases, after taking the supremum over all unitary v ∈ H1(Ω),

equation (2-1) becomes

||Nf (u + h) − Nf (u)|| ≤ C||g(h)||0,2p′ .

The argument used previously allows us to assume h → 0 (and also g(h) → 0)

pointwise a.e. Since in each case we have 1 ≤ p′ < ∞ , the bounded convergence

theorem guarantees that ||g(h)||0,2p′ → 0.

The analogous statements for the other Nemytskii operators in the

statement of the proposition follow from the natural compact inclusions among

Sobolev spaces.
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