
3

The Problem

3.1

Some basic geometry

We present an abstract setup for a global Lyapunov-Schmidt decompo-

sition for the nonlinear operator to be defined in the next section.

Let X and Y be Banach spaces which are split as direct sums of horizontal

and vertical subspaces, X = WX ⊕VX and Y = WY ⊕VY . Here WX and WY are

closed subspaces and k = dim VX = dim VY < ∞. There are unique projections

PX : X → WX and PY : Y → WY with kernels VX and VY respectively,

and complementary projections QX : X → VX and QY = Y → VY given by

QX = I − PY and QY = I − PX. Sets of the form x + WX (resp. y + WY ) or

x+VX (resp. y+VY ) will be denoted by horizontal and vertical affine subspaces.

The height of a horizontal affine subspace v + WX (resp. v + WY ) is v ∈ VX

(resp. v ∈ VY ). In the definitions below, F is a C1 operator from X to Y , not

necessarily linear.

Definition 1. A fiber through a point x ∈ X is the set F−1(y + VY ), where

y = F (x).

That is, a fiber is the inverse image of a vertical line. Fibers were used

in [4] and [18] to provide very geometric proofs of results of Ambrosetti-Prodi

type. They were also considered in the study of first order periodic differential

equations in [14].

Definition 2. Given an arbitrary v ∈ VX, we define the projected restriction

operator Fv : WX → WY by Fv(w) = PF (v + w).

The working hypothesis on F is very stringent: we assume that F is a C1

map for which Fv : WX → WY is a diffeomorphism for any v. Thus, horizontal

affine subspaces are sent injectively by F to their images, which are graphs of

functions from WY to VY . For brevity, we then say that F is flat. Clearly, the

definition depends on the decompositions of X and Y , but we will not mention

them in order to simplify notation. There is a global form of operators for which

Fv is as above.
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Proposition 2. Let F : X → Y be flat. Then the function

Φ : X̃ = WY ⊕ VX → WX ⊕ VX, Φ(z, v) = ((Fv)
−1(z), v)

is a C1 diffeomorphism such that F̃ = F ◦ Φ : X̃ → Y becomes F̃ (z, v) =

(z, φ(z, v)) for a C1 function φ : Ỹ → VY .

Proof. We denote by ∂wFv, ∂vFv the partial derivatives of the map (w, v) 7→

PF (w, v). Analyzing the diagram below,

(w,v)
F

7−→ (Fv(w),QY F (w,v))

ξ ↘↖ Φ ↗ Fξ−1=:F̃

(Fv(w),v)

we see that Φ = ξ−1, φ = QY Fξ−1. The function ξ is one-to-one and onto and

its derivative, in block-matrix notation, is

ξ′(w, v) =

[

∂wFv(w) ∂vFv(w)

0 I

]

=

[

F ′
v(w) ∂vFv(w)

0 I

]

.

Applying the inverse function theorem (F ′
v is invertible and thus also ξ′), we

see that ξ is a global diffeomorphism.

Not only do fibers stretch out indefinitely, but they do so in a smooth

way.

Proposition 3. Let F : X → Y be flat. Then each fiber α is a C1 surface of

dimension k = dim VX, which intersects each horizontal affine subspace exactly

once, always transversally. The height map x 7→ QXx is a diffeomorphism

between α and VX.

The fact that α and a horizontal affine subspace x+WX meet transversally

at a point x means that X is a direct sum of the tangent space of α at x

and WX. According to the proposition, the horizontal subspace parametrizes

(bijectively) the set of fibers, and the vertical subspace is a parametrization of

each fiber. Also, horizontal affine subspaces are sent injectively by F to their

images, which are graphs of functions from WY to VY . On the other hand, fibers

are not taken injectively (nor subjectively!) to vertical subspaces necessarily.

In particular, the given hypothesis are not enough to imply the properness of

the map F : X → Y .

Proof. We use the change of variables Φ(z, v) = (F−1
v (z), v) defined in the

previous proposition. This map, from the domain of F̃ to the domain of F ,
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clearly takes each vertical affine subspace in X̃ to a fiber of F diffeomorphically

and so that that heights are preserved. Every statement about fibers now

follows from its analogous counterpart for vertical affine subspaces in X̃.

We now consider the effect of flatness on the linearizations.

Corollary 1. Let F : X → Y be flat. The Jacobian F ′(x) : X → Y is a

Fredholm operator of index zero at x ∈ X. The restriction of F ′(x) to WX is

an isomorphism between WX and its (closed) range, which is transversal to VY .

If xc is a critical point of F contained in the fiber α, then Ker(F ′(xc)) ⊂ Txc
α.

Again, transversality here means that Y = F ′(x)WX ⊕ VY .

Proof. By flatness, the derivative PY F ′(x) : WX → WY is a linear isomorphism,

hence a Fredholm operator of index 0. Thus the map T : WX ⊕VX → WY ⊕VY

given by T (w, v) = (PY F ′(x), 0) is also Fredholm of index zero. The same is

true for F ′(x) : X → H−1(Ω), since F ′(x) − T is the finite range operator

w + v 7→ QDF (x)w + F ′(x)V .

Transversality of F ′(x)WX and VY follows from the fact that F ′(x) :

WX → F ′(x)WX must be injective, with closed range.

At a critical point xc ∈ α, use the transversality of the intersection of α

and (xc+WX) proved in the previous proposition to split X = WX⊕Txc
α. Now

combine Y = F ′(x)WX ⊕ VY with the fact that F ′(x) : WX → F ′(x)WX is an

isomorphism and F ′(x)Txc
α ⊂ VY to conclude that Ker(F ′(xc)) ⊂ Txc

α.

3.2

The Nonlinear Operator

For this section we set X = H1
0 (Ω), Y = H−1(Ω). The corresponding

projections will be denoted P1, Q1, P
−1, Q

−1. The norm used in H1
0 (Ω) will

be ||u|| = |u|1 = 〈u, u〉1

1

2 . Notice that this is equivalent to the full H1 norm,

by Friedrich’s inequality. We will use often this result. For the expansion of

u ∈ H1
0 (Ω) we use the notation u(x) =

∑

uiϕi(x), with ui = 〈u, ϕi〉1/〈ϕi, ϕi〉1.

We have H1
0 (Ω) ' H−1(Ω) via 〈ũ, ·〉 = 〈u, ·〉1, where we denote with a tilde

the functional induced by an element of H1
0 (Ω). From Hilbert space theory we

also know that

||ũ||
−1 = ||u||1 and ũn

H−1

→ ũ ⇔ un

H1

0→ u.

For a C1 function f of bounded derivative, we define F : X → Y by

F (u) = −∆u − f(u). (3-1)
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The Laplacian above is understood as the weak Laplacian, acting as u
−∆
7→ 〈u, ·〉1

and f(u) is the functional associated to the L2(Ω) function

f(u) : z
f(u)
7−→ 〈f(u), z〉0.

We wish now to split our spaces in direct sums of a certain finite-dimensional

space and its orthogonal complement. Denote the eigenvalues of −∆ :

H1
0 (Ω) → H−1(Ω) by 0 < λ1 < λ2 ≤ . . . with corresponding eigenvectors

ϕi. The eigenvectors may be taken to be orthogonal functions (in the occa-

sional situation of multiplicity) and orthogonality holds simultaneously for all

considered Sobolev spaces.

Definition 3. A set J of indices is said to be complete if j ∈ J whenever

λi = λj and i ∈ J .

That is, if a complete set includes an index of a multiple eigenvalue, then

it contains all indices associated with it.

For J a given finite complete set of indices, define the spaces V1 =

Span{ϕj, j ∈ J} and V
−1 = Span{ϕ̃j, j ∈ J}. Since each space is closed

(they are finite-dimensional), we can split the whole spaces as

X = W1 ⊕ V1, Y = W
−1 ⊕ V

−1, where W1 = V ⊥
1

, W
−1 = V ⊥

−1
.

Recall that the inner product in Y is 〈ũ, ṽ〉
−1 = 〈u, v〉1.

Proposition 4. The correspondence ũ ↔ u is also a bijection between W1 and

W
−1. Moreover, W1 = {w ∈ X : ∀ṽ ∈ V

−1, 〈ṽ, w〉 = 0} and ∆W1 = W
−1.

Proof. This follows directly from 〈ṽ, w〉 = 〈v, w〉1 = 〈ṽ, w̃〉
−1. and the fact that

〈∆w, ṽ〉
−1 = 〈w, v〉1

Definition 4. Given a complete set J , a C1 function f : R → R interacts

with J if

1. the only eigenvalues λi in the image of f ′ are labeled by indices in J ,

2. there are no eigenvalues in the boundary of the image of f ′.

As in the abstract case, we define the orthogonal projection P
−1 : Y →

W
−1, defined by 〈P

−1ũ, w̃〉
−1 = 〈ũ, w̃〉

−1 = 〈u,w〉1 for each w̃ ∈ W
−1. For a given

v ∈ V1, we define the restricted projection Fv : W1 → W
−1 by

Fv(w) = P
−1F (v + w), (3-2)
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Our next goal is to prove that if f interacts with a complete set J , then the

function F is flat with respect to the decompositions induced by J . The first

step is the local version of this property.

Proposition 5. Let J = {l + 1 ≤ . . . ≤ r − 1} be a complete set and

f : R → R a C1 function interacting with J , then the derivatives of the

restricted projection Fv are uniformly bounded below.More precisely, there

exists C > 0 such that

∀v ∈ V1 ∀w ∈ W1 ∀h ∈ W1, ||F ′
v(w)h||

−1 ≥ C||h||1. (3-3)

Also, all derivatives of Fv are invertible.

This estimate, for the case J = {1}, i.e., when the nonlinearity f interacts

only with the first eigenvalue λ1, has been extensively used ([1], [4]). It is also

used in [9] in the case J = {1, . . . , r}.

Proof. From Proposition 1, each restricted projection Fv : W1 → W
−1 is C1

with derivative F ′
v(w) : W1 → W

−1 given by F ′
v(w)h = −∆h − f ′(w)h. Let

Ran f ′ = [a, b], so that λl < a < λl+1 and λr−1 < b < λr. Let h ∈ W1 be of unit

norm and let h̃0 be the functional 〈h̃0, ·〉 = 〈h, ·〉0 and γ = (a + b)/2. Adding

and subtracting γh̃0 and setting u = w + v we have

||F ′
v(w)h||

−1 = ||P
−1(−∆h − γh̃0) − P

−1(f
′(u)h − γh̃0)||

−1

≥ ||P
−1(−∆h − γh̃0)||

−1 − ||P
−1(f

′(u)h − γh̃0)||
−1

≥ ||Ã||
−1 − ||B̃||

−1. (3-4)

In what follows, we will write z for an arbitrary element of H1
0 (Ω), and w for

one in W1. Let us start with a bound for ||B̃||
−1.

||B̃||
−1 = sup

||z||=1

〈P
−1(f

′(u)h − γh̃0), z〉 = sup
||w||=1

〈f ′(u)h − γh̃0, w〉

= sup
||w||=1

〈(f ′(u) − γ)h,w〉0 ≤ ||f ′ − γ||
∞

sup
||w||=1

〈|h|, |w|〉0.

By Cauchy-Schwartz, the supremum above is realized when |w| is a scalar

multiple of |h|, which is achieved by w = ρh. Since h is assumed unitary, ρ = 1

and, defining c = ||f ′ − γ||
∞

,

||B̃||
−1 ≤ c 〈|h|, |h|〉0 = c ||h||2

0
=

∑

i6∈J

c h2
i ||ϕi||

2
0

=
∑

i6∈J

(c/λi)h
2
i |ϕi|

2
1
. (3-5)

We will use now the decomposition W1 = W+ ⊕ W−. The spaces are given by

W− = {u : u =
∑

i≤l uiϕi}, W+ = {u : u =
∑

i≥r uiϕi} and are orthogonal

both in 〈, 〉0 and 〈, 〉1.
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To estimate ||Ã||
−1, start with

||Ã||
−1 = sup

||z||=1

〈P
−1(−∆h − γh̃0), z〉 = sup

||w||=1

〈−∆h − γh̃0, w〉

= sup
||w||=1

(〈h, w〉1 − γ〈h, w〉0) .

Now we choose w = h+ − h− above, noting that it also has unit norm.

||Ã||
−1 ≥ 〈h, h+ − h−〉1 − γ〈h, h+ − h−〉0

= (|h+|
2
1
− γ||h+||

2
0
) + (γ||h−||

2
0
− |h−|

2
1
)

=
∑

i≥r

h2
i (|ϕi|

2
1
− γ||ϕi||

2
0
) +

∑

i≤l

h2
i (γ||ϕi||

2
0
− |ϕi|

2
1
)

=
∑

i≥r

(1 − γ/λi)h
2
i |ϕi|

2
1
+

∑

i≤l

(γ/λi − 1)h2
i |ϕi|

2
1
.

That the coefficients above are all positive follows from the completeness of

the set J . We have then

||Ã||
−1 ≥

∑

i6∈J

|1 − γ/λi|h
2
i |ϕi|

2
1

=
∑

i6∈J

(Ci/λi)h
2
i |ϕi|

2
1
. (3-6)

Combining equations (3-4), (3-5) and (3-6) we get

||F ′
v(w)h||

−1 ≥
∑

i6∈J

(Ci − c)/λi h
2
i |ϕi|

2
1

≥

(

inf
i 6∈J

(Ci − c)/λi

)

∑

i 6∈J

h2
i |ϕi|

2
1

=

(

inf
i6∈J

(Ci − c)/λi

)

|h|2
1

= C|h|2
1

= C,

which establishes (3-3), since C ≥ min{1 − b/λr+1, a/λl−1 − 1} > 0. In

particular, the derivative of Fv(w) is always injective. To prove invertibility,

we write

F ′
v(w)h = P

−1 ◦ F ′(v + w) ◦ ι h,

where ι denotes the inclusion from W1 into H1
0 (Ω) and notice that the

composition of these three Fredholm operators is also Fredholm, with index

given by the sum of the individual indices, namely, zero.

The following result is a global inversion theorem, first obtained by

Hadamard in the finite-dimensional case [3].
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Lemma 1. Let Φ : X → Y be a C1 map between Banach spaces X and Y

such that Φ′(u) is invertible for each u. Suppose there exists C > 0 such that

∀u, h, ||Φ′(u)h|| ≥ C||h||. (3-7)

Then Φ is a global C1-diffeomorphism.

Theorem 1. Let J be a complete set and f : R → R be a C1 function

interacting with J . Then each restricted projection Fv : W1 → W
−1 is a C1

diffeomorphism. Thus F : H1
0 (Ω) → H−1(Ω) is flat.

Proof. Simply combine Proposition 5 and the lemma above.

In the case where f does not interact with the spectrum, the full operator

is a diffeomorphism. This result was fully obtained by [11], after an initial

version of it by [12], and follows from a simple adaptation of the proof of the

above theorem.

When f interacts with a set J containing a single element j, then only

the j-th eigenvalue of the Jacobian F ′ may become zero.

Proposition 6. If f ∈ C1, f ′(R) = [a, b], with λk−1 < a < λk < b < λk+1 and

uc is a critical point of F , then the only zero eigenvalue of F ′(uc) is the k-th

one. In particular, it is simple.

An analogous result holds for a general complete set J : the only zero

eigenvalues of F ′ are labelled by indices in J .

Proof. By the Fredholm property, we must have a nonzero ξ with F ′(uc)ξ =

−∆ξ−f ′(uc)ξ = 0. In other words, 1 is an eigenvalue of the generalized problem

−∆u = µf ′(uc)u, which we write as µj(f
′(uc)) = 1 for some j. An application

of a comparison theorem yields then

λk−1 < f ′(uc) < λk+1 ⇒ µj(λk−1) > µj(f
′(uc)) > µj(λk+1), (3-8)

or, since µj(λ) = λj/λ for constant λ,

λj/λk−1 > 1 > λj/λk+1 ⇒ λk−1 < λj < λk+1 ⇒ j = k. (3-9)

The bound in Proposition 5 allows to make precise the idea that fibers

are uniformly steep and images under F of horizontal affine subspaces are

uniformly flat.

Proposition 7. Let J be a complete set of indices with |J | = k and f :

R → R a C1 function interacting with J . Let u(t) = w(t) +
∑

j∈J tj ϕj be a
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parametrization of a fiber α, where t = (t1, . . . , tk) ∈ R
k and w(t) ∈ W1. Then

there exists a positive constant C, independent of t, such that

||∇tw(t)||1 ≤ C
∑

j∈J

||ϕj||1.

In particular, there exist positive constants A, B, independent of t, such that

||w(t)||1 ≤ A + B||t||.

Let Wu ⊂ H−1(Ω) be the image under F of an horizontal affine subspace

u + W1, passing by u ∈ H1
0 (Ω). Then the angle between a vector in the tangent

space TF (u)Wu at a point F (u) ∈ Wu and its orthogonal projection in W
−1 is

uniformly bounded above by a constant less then π/2 for all u ∈ H1
0 (Ω).

Proof. Fibers are inverses under F of vertical affine subspaces in H−1(Ω). Thus

PF (u(t)) = const. and, taking derivatives,

(PF )′(u(t)) ∂tju(t) = PF ′(u(t)) ∂tju(t) = 0. (3-10)

Write u(t) = w(t) + v(t) and expand v(t) =
∑

j∈J tj ϕj, so that ∂tju(t) =

∂tjw(t)+ϕj. For h ∈ W1, we have PF ′(u(t))h = F ′
v(t)(w(t))h and thus, setting

h = ∂tjw(t),

F ′
v(w(t))∂tjw(t) = PF ′(u(t))∂tjw(t) = −PF ′(u(t))ϕj.

Using first the lower bound (3-3) and then the boundedness of F ′,

C1||∂tjw(t)||1 ≤ ||F ′
v(w(t))∂tjw(t)||

−1 = ||PF ′(u(t))ϕj||−1 ≤ C2||ϕj||1,

for some positive constant C2. Thus ||∇tw(t)||1 ≤ C
∑

j∈J ||ϕj||1. A bound of

the form ||w(t)||1 ≤ A + B||t|| is now immediate.

To see that the tangent space TF (u)Wu is bounded away from the vertical

subspace, consider the sequence of simple estimates

C1||h||1 ≤ ||PF ′(u)h||
−1 ≤ ||F ′(u)h||

−1 ≤ C3||h||1

The cosine between a vector F ′(u)h ∈ TF (u)Wu and the horizontal subspace

W
−1 is given by the quotient ||PF ′(u)h||

−1/||F
′(u)h||

−1, which is bounded from

below by C1/C3.

The result may be interpreted as a source of stability for the numerics

described in the next sections. We indicate a first application immediately.

From Theorem 1, the function F : V1 ⊕ W1 → V
−1 ⊕ W

−1 admits a global
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Lyapunov-Schmidt decomposition, where V1 is generated by the eigenvectors

ϕj, j ∈ J .

When performing numerics, however, we do not work with ϕj — indeed,

a general domain Ω does not allow for a formula for the eigenvectors. Even

when this happens, as for rectangles, we must still consider the fact that the

computations are performed on a finite dimensional subspace. In our case (see

Section 4.2), we are using finite elements of the standard type P1, generating

an approximation Xh to the domain H1
0 (Ω) and counter-domain H−1(Ω). Since

ϕj 6∈ Xh, we have to consider approximations ϕj
h ∈ Xh.

An ε-tilted Lyapunov-Schmidt decomposition of F is a pair of splittings

F : ṼX ⊕ W̃X → ṼY ⊕ W̃Y , for which F admits a global Lyapunov-Schmidt

decomposition and the four subspaces ṼX , W̃X , ṼY and W̃Y are ε-close to their

untilted counterparts. Here, one may take the distance between two subspaces

as the maximal angle between them.

Corollary 2. For ε sufficiently small and subspaces ṼX , W̃X , ṼY and W̃Y

ε-close to their untilted counterparts, the splittings F : ṼX ⊕ W̃X → ṼY ⊕ W̃Y

induce a tilted Lyapunov-Schmidt decomposition of F .

Proof. This is an immediate consequence of the above proposition.

The results in this section considered the nonlinear operator F as ac-

ting between H1
0 (Ω) and H−1(Ω). Analogous results (stable global Lyapunov-

Schmidt decomposition, boundedness and coercivity estimates, uniform flat-

ness and steepness) also hold for F : H2
0 → L2.

DBD
PUC-Rio - Certificação Digital Nº 0812261/CA




