
4

Numerical Analysis

4.1

An Inversion Algorithm

In this section, we begin to describe an algorithm to solve

−∆u − f(u) = g, u|∂Ω = 0.

This equation is interpreted as the computation of the preimages of g under

F : H1
0 (Ω) → H−1(Ω).

The discretizations will be performed by choosing appropriate finite

elements in H1
0 (Ω).

Our main hypothesis is on the nonlinearity: f : R → R is a C1 function

interacting with a complete set J . From the previous section, the function

F : H1
0 (Ω) → H−1(Ω) is essentially flat with respect to the orthogonal

decompositions W1 ⊕ V1 and W
−1 ⊕ V

−1.

In a nutshell, we follow the advantages of having a global Lyapunov-

Schmidt decomposition: split g = gW + gV = P
−1g + Q

−1g. The vertical affine

space gv+V
−1, when inverted under F , gives rise to a fiber αg which contains all

the solutions of the original equation. The algorithm first identifies a point in

αg — the search of solutions then boil down to a finite dimensional problem,

which correspond essentially to the bifurcation equations associated to the

decomposition.

4.1.1

Moving in The Space of Fibers

Starting from a point u0 ∈ X, our first goal is to reach a point uN in the

fiber αg, or more realistically in a fiber close to it.

From Proposition 3, identifying αg is equivalent to solving

Fv(w) = P
−1g, (4-1)

for an arbitrary v ∈ V1. Since F is essentially flat, it would seem natural

to use Newton’s method to advance horizontally until we reach the αg. This

DBD
PUC-Rio - Certificação Digital Nº 0812261/CA

Numerical Analysis of Ambrosetti-Prodi Type Operators 27

requires that we invert the operator F ′
v(w), defined in W , so that a suitable

finite element discretization of this space would need to be designed. What we

propose instead is to work in the full spaces X, Y , where a standard finite-

element space can be used. Let us point out that working with F ′ in its full

domain comes at a high cost near critical points.

We need an invertible extension of the derivative of Fv to the whole

space. This not only saves work but also ensures that the matrices arising in

the process remain sparse.

Definition 5. For u0 ∈ H1
0 (Ω) we define the linear operator L(u0) from H1

0 (Ω)

to H−1(Ω) by

L(u0) z = −∆z − P
−1f

′(u0)P1z.

Proposition 8. The operator L(u0) extends F ′
v0

(w0) to the whole space

isomorphically. In fact, its restriction to W1 (resp. V1) is an isomorphism to

W
−1 (resp. V

−1).

Proof. For zw = P1z, zv = Q1z, we have

L(u0) z = L(u0) (zw + zv) = L(u0) |W1
zw + L(u0) |V1

zv.

Next, for a given u0 = w0 + v0 ∈ W1 ⊕ V1, we note that L(u0) |W1
= F ′

v0
(w0),

which is an isomorphism from W1 to W
−1. To conclude the argument, we claim

that L(u0) |V1
is also an isomorphism between V1 and V

−1, since it is given by

v 7→ λkv.

In our search for αg, we update a given un ∈ H1
0 (Ω) by setting un+1 =

un + h, where h solves

L(un) h = P
−1(g − F (un)). (4-2)

According to Proposition 8, the function h above is the step obtained from

Newton’s method, since the right-hand side is in W
−1.

At this point we would like to add a remark concerning the actual

numerical work. We already took care of the difficulties of solving a system

in the horizontal spaces by extending F ′
v, but still face two small hurdles: the

need to project the right-hand side in (4-2) and the possibility of deviating

from the subspace W1 because of numerical errors introduced by solving the

linear system. One idea that proved useful is to replace h by its projection

h̃ = P1h. The gain is that, since we are projecting the solution h, it can be

chosen to solve
L(un) h = g − F (un) (4-2*)

DBD
PUC-Rio - Certificação Digital Nº 0812261/CA

Numerical Analysis of Ambrosetti-Prodi Type Operators 28

instead, eliminating the need for the projection in the dual space W
−1. This is

a direct consequence of Propostion 8.

As previously noted, moving within a horizontal plane amounts to

moving from one fiber to another, so we iterate u0 horizontally until uN is

close enough to αg. We can check this by computing the norm of the error

en = P
−1(g − F (un)).

There is still one technicality to consider. The algorithm indeed proceeds

like this, but not with respect to the Lyapunov-Schmidt decomposition F :

V1 ⊕ W1 → V
−1 ⊕ W

−1. For the reasons presented in the end of the previous

section, we use finite element subspaces Xh and Yh (same set, different inner

product), in which we choose ṼX = V h
1

, W̃X = W h
1

= V h
1

⊥
, ṼY = V h

−1
,

W̃Y = W h
−1

= V h
−1

⊥
, which are ε-close to the original subspaces. We then move

horizontally for the restriction of the tilted Lyapunov-Schmidt decomposition,

Fh : V h
1
⊕ W h

1
→ V h

−1
⊕ W h

−1
, which exists for small ε due to Corollary 2.

4.1.2

Moving Along a Fiber

Once αg is identified, the original problem reduces to a finite-dimensional

issue: set k = dim V1 = dim V
−1. In a nutshell, we need how to walk along a

fiber. This is accomplished by implementing the identification η : V1 → αg

defined in Proposition 3. More precisely, given a height v ∈ V1, we evolve along

the horizontal affine subspace v + W1 with Newton´s method until we reach

the point u = η(v) ∈ αg with height v.

Thus, we may think of solving the original equation as inverting the

point Qg under the function from V1 ' R
k to V

−1 ' R
k given by v 7→ η(v) 7→

QF (η(v)).

Despite of the finite dimensionality, the remaining problem is not a trivial

issue. In the examples below, we mostly consider the one dimensional case

k = 1, where moving along a fiber essentially means going up and down.

When k = 2, one might in principle make use of the algorithms presented in

[13]: we intend to consider the matter in a forthcoming paper. In this work,

instead, we show in Section 5.3 how simple arguments sometimes are enough

to still obtain a few solutions to a PDE.

As usual, the more we know about F , the more we can say about the

numerics. In the simplest case, when the nonlinearity f interacts with J = {1}

and f ′′ > 0, the Ambrosetti-Prodi case, fibers are taken by F to vertical lines in

a very simple fashion: as a point moves in the fiber so that its height goes from

−∞ to ∞, the height of its image goes monotonically from −∞ to a maximal

point and then decreases monotonically to −∞. Dropping convexity allows for

DBD
PUC-Rio - Certificação Digital Nº 0812261/CA

Numerical Analysis of Ambrosetti-Prodi Type Operators 29

the loss of monotonicity, and hence, variation in the number of solutions, but

not of asymptotic behavior.

There are theoretical results [18] that guarantee that under stringent

hypotheses the Ambrosetti-Prodi pattern along fibers carry through. The

numerics may be performed in more general conditions.

4.2

Finite Elements and Linear Algebra

In this section we describe in a detailed manner how we assemble and

solve the linear algebra systems arising from Newton’s steps in the algorithm

above. We consider a rectangular domain Ω, with sizes chosen so that the

resulting eigenvalues are all simple (concretely, we worked with a 1 by 2

rectangle). Our finite element Xh will be the standard P1 space (for definitions

and notations, see A) on Ω. We use a uniform triangulation, with vertices

νi, i = 1, . . . , N , and a nodal basis of functions ψi. All numerical work was

performed using Matlab. The routines that generate the relevant matrices were

written from scratch, but whenever possible were checked against the Matlab

analogues. We also used Matlab PDE Toolbox to generate our triangulation.

Expanding u ∈ Xh in the nodal basis we obtain a vector u of coordinates:

u(x) =
∑

j

ujψj(x).

We also introduce the notation û for the vector whose coordinates are the L2

inner products of the function u and the nodal basis:ûi = 〈ψi, u〉0. The mass

matrix M with entries Mij = 〈ψi, ψj〉0 changes coordinates:

M u = û.

With this notation, the (discrete) counterpart of Poisson’s equation −∆u = g

with Dirichlet boundary conditions in the space Xh amounts to solving the

linear system

K u = ĝ,

where the stiffness matrix K is given by Kij = 〈ψi, ψj〉1.

4.2.1

The Discrete Nonlinear Problem

We return to the nonlinear problem F (u) = −∆u−f(u) = g. In principle,

F (u) is an element of the dual space H−1(Ω), but we will restrict ourselves to

DBD
PUC-Rio - Certificação Digital Nº 0812261/CA

Numerical Analysis of Ambrosetti-Prodi Type Operators 30

right-hand sides g which are square integrable, so we have to solve

F̂i = 〈F (u), ψi〉 = 〈u, ψi〉1 − 〈f(u), ψi〉0

=
∑

j

〈ψj, ψi〉1uj − 〈f(u), ψi〉0 = Ki u − 〈f(u), ψi〉0 = ĝi.

At this point we replace f(u) by its linear interpolator
∑

j f(uj)ψj, so that the

algebraic nonlinear system becomes

K u − M f(u) = ĝ, (4-3)

where f(u) is the vector whose coordinates are f(uj).

4.2.2

Discretizing the Extended Projected Operator

We recall that to move horizontally towards a fiber αg, we solve a

continuous linear equation with the operator L(u0) : z 7→ −∆z−P
−1f

′(u0)P1z.

In this subsection, we introduce its discrete counterpart L0.

Denote by w = L(u0) z, so that, taking the L2-inner product with a nodal

function ψi, we obtain scalar equations

ŵi = Ki z −
∑

j

〈P
−1f

′(u0)P1ψj, ψi〉zj = Ki z − Ai z = (L0)i z. (4-4)

Here, Bi denotes the i-th row of matrix B. We now provide explicit formulae

for the entries Aij.

Using 〈P
−1f

′(u0)P1ψj, ψi〉 = 〈f ′(u0)P1ψj, P1ψi〉0 and P = I −Q, we have

Aij = 〈f ′(u0) (ψj − Q1ψj) , (ψi − Q1ψi)〉0. (4-5)

Consider now (H1-norm) normalized eigenfunctions ϕk of the Dirichlet Lapla-

cian and compute the vertical projections. For J a complete set,

Aij = 〈f ′(u0) (ψj − Q1ψj) , (ψi − Q1ψi)〉0

= 〈f ′(u0)(ψj −
∑

k

〈ψj, ϕk〉1ϕk), ψi −
∑

l

〈ψi, ϕl〉1ϕl〉0

= 〈f ′(u0)ψj, ψi〉0 −
∑

l

〈f ′(u0)ψj, ϕl〉0〈ψi, ϕl〉1 −
∑

k

〈f ′(u0)ψi, ϕk〉0〈ψj, ϕk〉1

+
∑

k,l

〈f ′(u0)ϕk, ϕl〉0〈ψj, ϕk〉1〈ψi, ϕl〉1,

DBD
PUC-Rio - Certificação Digital Nº 0812261/CA

Numerical Analysis of Ambrosetti-Prodi Type Operators 31

where the sums above are taken over J . Now, if we define

M0ij = 〈f ′(u0)ψj, ψi〉0

Uki = 〈ψi, ϕk〉1, i = 1, · · · , n, k ∈ J

V0kj = 〈f ′(u0)ψj, ϕk〉0, j = 1, · · · , n, k ∈ J

c0pq = 〈f ′(u0)ϕp, ϕq〉0, j = 1, · · · , n, p, q ∈ J,

we can write the matrix L0 in (4-4) in a more compact way as

L0 = K − M0 +
∑

k∈J

(

UkV
T
0k + V0kU

T
k

)

−
∑

k,l∈J

c0kl

(

UkU
T
l

)

. (4-6)

The subscript 0 should remind us that the given object depends on a function

u0.

We now say a few words on how we compute the matrices and vectors

defined above. We are using elements in P1, so we have to integrate constant

gradients to form the stiffness matrix K and any integration scheme will do

the job. To compute M0 we use the midpoint rule in each triangle. Pointers

to our function f ′ are used to compute the exact derivative at each midpoint.

Since 〈ψi, ϕk〉1 = λk〈ψi, ϕk〉0, to compute Uk we only need to perform an L2-

inner product (we stored the first three eigenvalues for our simple rectangular

domain).

4.2.3

The Horizontal Step

Now that we know the discrete counterpart of moving in a horizontal

plane, for a given function u0, which we store as a vector u, we update it by

u := u + h,

where the vector h is the solution of

L0h = (P
−1(g − F (u0)))̂ . (4-7)

Note that by Proposition 8 we can drop the projection above and project the

final answer instead. That is

L0η = ĝ − F̂ (u0), h = P1η. (4-8)

To compute the discrete version of the projection P1, recall that P1u = u−Q1u,

where Q1u =
∑

k〈u, ϕk〉1ϕk =
∑

k λk〈u, ϕk〉0ϕk. We can then choose between

DBD
PUC-Rio - Certificação Digital Nº 0812261/CA

Numerical Analysis of Ambrosetti-Prodi Type Operators 32

the expressions

P1u = u −
∑

k

〈u, Kϕk〉ϕk and P1u = u −
∑

k

λk〈u, ϕ̂k〉ϕk,

where we have used that 〈u, v〉0 = 〈Mu, v〉 and Mu = û, if u, v are finite

elements.

4.2.4

The Vertical Step

We now provide some detail about moving along a one-dimensional fiber

through a given point u0, i.e. the preimage of the vertical line F (u0)+V
−1, where

V
−1 is spanned by the simple eigenvector ϕk. We simply move up vertically

in the domain, adding a small multiple of ϕk and then apply our correcting

algorithm, which moves horizontally until reaching back the original fiber

through u0 (cf Figure 4.1).

u
0

 u
1

u
2

W
1

V
1

 F
2

 F
0

F
1

W
−1

V
−1

Figure 4.1: Mapping a 1-D fiber

When solving for F (u) = g, all me must then do is keep track of

the vertical projections of our points uj and that of their images F (uj) in

the vertical subspace. The vertical projections of the points uj are actually

redundant, since the algorithm leaves that component unchanged; we perform

it though in order to ensure that the computations are being properly done.

All we have to do is to find a point u for which F (u) and g have the same

vertical projection.

DBD
PUC-Rio - Certificação Digital Nº 0812261/CA

