
5

Numerical Examples

In this final chapter, we start by illustrating some known results in the

theory and then proceed to give a few novel examples.

All examples consider the equation

F (u) = −∆u − f(u) = g, (5-1)

with Dirichlet boundary conditions on the rectangle Ω = [0, 1] × [0, 2]. Here,

λ1 =
5

4
π2 ≈ 12.34, λ2 = 2π2 ≈ 19.74, λ3 =

17

4
π2 ≈ 41.95.

Recall that solving (5-1) boils down to performing two steps. First, we

move along the space of fibers to identify a point in the fiber αg. Then we move

along this fiber to obtain, in principle, all solutions of the equation.

In the first example, described in Section 5.1, we choose a right-hand side

g and compute an element in the fiber αg.

The subsequent examples, in Section 5.2, correspond to the second step

in the algorithm. We suppose that a fiber has been identified and move along

the fiber. We first consider scenarios where the fiber is one dimensional.

1. J = ∅, in the spirit of Hammerstein and Dolph.

2. A typical fiber in the Ambrosetti-Prodi case (J = {1} and f convex),

which is the αg obtained in the previous subsection. In particular, we

find the solutions of 5-1.

3. Non convex f with J = {1}.

4. J = {2}, with convex and non convex f .

In Section 5.3, we conclude with a case in which J = {1, 2}, for which

we present four solutions for a particular g.

The convex nonlinearities f(x) are constructed as follows. We choose

constants α and β so that f ′(x) = α arctan(x) + β has prescribed asymptotic

behavior.
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5.1

Moving Horizontally

The first example is a genuine Ambrosetti-Prodi situation:

Ran(f ′) =

(

3λ1 − λ2

2
,

λ1 + λ2

2

)

> 0.

The right-hand side is chosen to resemble a very negative multiple of the ground

state, g(x) = −100x(x−1)y(y−2) . We take as initial guess the zero function,

u0(x) ≡ 0.

Usually one or two iterations of the horizontal step lead to an error which

can only decrease by choosing a finer mesh. An m-triangulation Tm is the one

obtained by splitting [0, 1] and [0, 2] each in 2m equal intervals — on the right

of Figure A.1, we have a 2-triangulation.

We present the normalized projected errors for triangulations with m =

3, 4, 5 and 6: for an approximation un, we show en = ||P
−1ξn||

||Q
−1ξn||

, where ξn =

g − F (un) and the norms are in L2.

m e0 e1 e2

3 .03369 .01689 .01688

4 .01635 .00217 .00217

5 .00830 .00028 .00028

6 .00417 .00003 .00003

In Figure 5.1 we show g and the function u3.
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Figure 5.1: A right-hand side and a function on its fiber
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5.2

Moving along a fiber

Unless otherwise stated, we consider fibers through the point

u0(x) = −50 ϕ1(x) + 10 ϕ2(x),

and the vertical subspace is V1 = V
−1 = Span{ϕ1} (we use H1-normalized

eigenfunctions).

5.2.1

The Case J = ∅

Let us start with the simplest of cases, namely by considering linear

functions f , whose derivatives are not equal to eigenvalues of −∆Dir. In this

case, by the linear theory, there is exactly one solution for each right-hand

side g. Figure 5.2 is the graph of f ′: in this case, it lies always below the first
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Figure 5.2: f ′ < λ1 − ε
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Figure 5.3: λ1 + ε < f ′ < λ2 − ε

eigenvalue. The eigenvalues are marked as dotted lines. The line on the right is

DBD
PUC-Rio - Certificação Digital Nº 0812261/CA



Numerical Analysis of Ambrosetti-Prodi Type Operators 36

the graph of an increasing function, representing the fact that as we move up

along the fiber u1 = u0 + tϕ1, the corresponding point in the range F1 = F (u1)

also moves up. Similarly, in Figure 5.3, the derivative of f lies strictly between

λ1 and the second eigenvalue. In this case, moving up in the fiber, corresponds

to moving down in the range.

We now consider the height variation with respect to the second eigen-

vector. We set the vertical subspaces V1 = V
−1 = Span{ϕ2} and consider the

fiber through

u0(x) = −50 ϕ2(x) + 10 ϕ1(x).

There is a substantial difference between both cases: While on the left of Figure

5.4, we see the same picture as in Figure 5.3. Yet on its right we have an

increasing line. All is still well, since we are now projecting in ϕ2. What we

still see is the up-down behavior in the image as we go from being below λ2 to

being above it, as Figure 5.5 confirms.
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Figure 5.4: λ1 + ε < f ′ < λ2 − ε
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Figure 5.5: λ2 + ε < f ′ < λ3 − ε
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5.2.2

The Ambrosetti-Prodi Case

We now return to the example of Section 5.1. Here we are exactly in the

case considered by Ambrosetti and Prodi, of an increasing f ′ interacting only

with the first eigenvalue. A näıve analogy with Figures 5.2 and 5.3 suggests

that we start by going up in the range as we move up in the fiber, until we

reach a turning point, starting at which we only go downward. This is exactly
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Figure 5.6: Ran f ′ ∩ σ(−∆) = {λ1}

what we see in Figure 5.6.

As predicted by the theory, we see that the horizontal line corresponding

to the height of the right-hand side g := F (u0) is crossed twice, indicating that

g has two preimages in the fiber, which we present in Figure 5.7.
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Figure 5.7: Ambrosetti-Prodi Solutions

We combined the correcting algorithm described in Section 4.1.1 with

regula falsi.
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Figure 5.8: Non-convex f

5.2.3

A Non-convex Nonlinearity with J = {1}

Things get more interesting if we go beyond the Ambrosetti-Prodi case

and relax the condition that f be convex. In Figure 5.8 we analyze the

situation in which we still interact only with λ1, but alternating between the

behaviors seen in Figures 5.2 and 5.3. Now we have three distinct solutions,

η1 = −50 ϕ1 + 10 ϕ2, η2 and η3. We chose g = F (η1). These solutions are

displayed in Figure 5.9.
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Figure 5.9: Solutions of non-convex case

The sequence in Figure 5.10 shows that the action of F on fibers is not

homogeneous. The plots are for fibers αgi
with gi = F (−50ϕ1 + ciϕ2), where

c1 = 10 (same as Fig. 5.8), c2 = 45 and c3 = 100.
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Figure 5.10: Fibers Getting Mapped Non-uniformly
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5.2.4

The Case J = {2}, for both Convex and Non-convex f
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Figure 5.11: Ran f ′ ∩ σ(−∆) = {λ2}

For an example of a convex f interacting with λ2, we take f ′(x) =

α arctan(x)+β so that Ran f ′ =
(

λ2 −
λ2−λ1

2
, λ2 + λ2−λ1

2

)

. We have now three

preimages β1 = −50 ϕ2 + 10 ϕ1, β2 and β3 in the fiber. Again, g = F (β1).

Figure 5.11 shows the behavior of the projections along the fiber and Figure

5.12 the three solutions.
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Figure 5.12: Convex Nonlinearity, J = {2}

In Figure 5.13 we exchange ϕ1 and ϕ2 and present a sequence similar

to the one in Figure 5.10. This time, however, the action of F seems uniform
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Figure 5.13: Fibers Getting Mapped Uniformly in Convex Case

across fibers.
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Figure 5.14: Non-convex f

We now consider a non-convex nonlinearity given in Figure 5.14. Things

here are somewhat similar. There are again three solutions γ1 = β1, γ2 and

γ3 for the right-hand g = F (γ1), shown in Figure 5.15. In this case, there is
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Figure 5.15: Solutions of non-convex case

nonuniformity across fibers, as shown in Figure 5.16.
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Figure 5.16: Non-Uniform Behavior Across Fibers

5.3

Interacting With Two Eigenvalues

In this concluding section, we attempt to picture the action of F on a

two-dimensional fiber.

More specifically, we consider the fiber α0 through the zero function,

for which F (0) = 0. Consider the curve Cα ⊂ α0 which projects bijectively
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under Q1 to the unit circle C in the vertical plane spanned by the first two

eigenfunctions ϕ1 and ϕ2. Notice that, given a point in C, one may identify

the corresponding point in Cα by moving horizontally with the first step of the

algorithm.
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Figure 5.17: Solutions U and D on the circle C and images.

Next, we compute F (Cα), and project it by Q
−1 to the vertical plane

in the image. The result is the fish-shaped curve on the right of Figure 5.17.

Notice that seven points were labeled, to indicate their positions in the domain

and their image, giving an idea of how the curve is being traversed.

In particular, it is clear that there should be points U and V between

points 2 and 3 and 6 and 7, respectively, with a common image g marked with

a bullet on the right of Figure 5.17. Notice also that the origin is taken to

outside of F (Cα), to its right.

Now radial lines in the domain from the origin to points in C give rise to

lines from F (0) = 0 to points in F (Cα), as in 5.18. From this picture, we were

able to obtain two additional approximations L and R along the horizontal

axis for preimages of g.
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The four approximate preimages were then taken as initial guesses for

Newton’s Method and the four computed solutions are illustrated in Figure

5.19.
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Figure 5.18: Solutions L and R on the u1 axis
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5.19(a): U and D
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5.19(b): L and R

Figure 5.19: Computed Solutions, 2-D case
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