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A

A Quick Survey of the Finite Element Method

In this appendix we present the very basics of Finite Element Theory.

The literature in the field is vast and we suggest [8] and [5] for those seeking

more details on the subject. Let us start by motivating the method in its

simplest application.

A.1

Variational Formulation

The classical formulation of the Poisson Equation with Dirichlet boun-

dary conditions is the problem of finding a function u ∈ C2
(

Ω
)

satisfying

−∆u(x) = g(x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω. (A-1)

Multiplying equation (A-1) above by a function v ∈ C∞
0

(Ω) and integrating

over the domain we obtain
∫

Ω

−v(x)∆u(x) =

∫

Ω

g(x)v(x). (A-2)

Integrating by parts (i.e., using Green’s first identity), the compact support of

v annihilates the boundary terms and we obtain
∫

Ω

∇v(x) · ∇u(x) =

∫

Ω

g(x)v(x), v ∈ C∞
0

(Ω) . (A-3)

The equation above makes sense not only for functions v ∈ C∞
0

(Ω), but for the

broader class of functions in V = H1

0
(Ω). This is the variational formulation

of Poisson’s problem:
∫

Ω

∇v(x) · ∇u(x) =

∫

Ω

g(x)v(x), ∀v ∈ V. (A-4)

In fact, (A-4) is equivalent to the original equation (A-1). We no longer need

additional information on the boundary. This is already built-in in the choice

of the space V = H1

0
(Ω).

That (A-4) has a unique solution u ∈ H1

0
(Ω) is a straightforward

consequence of Riesz Representation Theorem applied to the Hilbert space V .

The Finite Element Method begins by replacing the infinite-dimensional space

V above by a finite dimensional subspace Vh. The functions of Vh are called
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finite elements. In order to still have functions vanishing in the boundary, we

require that each element also have this property. Once in Xh (A-4) reduces

to a finite-dimensional linear system. Indeed, if {ψ1, . . . , ψN} is a basis of

Xh, it is sufficient that (A-4) is satisfied for each of the ψi. Also expanding

u(x) =
∑

j ujψj(x) we obtain the equivalent set of N = dim V equations:

(

∑

j

∫

Ω

∇ψi(x) · ∇ψj(x)

)

uj =

∫

Ω

g(x)ψi(x), i = 1, . . . , N. (A-5)

It is easy to see that this is an N × N system

K u = ĝ (A-6)

where the stiffness matrix K is given by Kij =
∫

Ω
∇ψi(x) · ∇ψj(x) and

ĝi =
∫

Ω
g(x)ψi(x).

A.2

Triangulation and P1 Elements

Regardless of the element space or even the choice of basis, the stiffness

matrix is always a positive definite matrix. Indeed, for u 6= 0,

〈Ku, u〉 =
∑

i,j

∫

Ω

∇ψi(x) · ∇ψj(x)uiuj =
∑

i,j

∫

Ω

∇ (uiψi(x)) · ∇
(

ujψj(x)
)

=

∫

Ω

∑

i

∇ (uiψi(x)) ·
∑

j

∇
(

ujψj(x)
)

=

∫

Ω

∇u(x) · ∇u(x) > 0.

On the other hand, the sparsity pattern of K depends on the choice of

basis for Xh. It is desirable to have the support of the ψi’s overlapping as little

as possible (this is not the only possibility, but it is the one we pursue here;

an alternative would be spectral elements).

Let us describe briefly a way of designing the finite element used in this

work. We want to take Vh consisting of continuous, piecewise linear functions.

To allow for interpolation, we split the (rectangular) domain into triangles,

as on the left of Figure A.1. Here, instead, we consider the more regular

triangulation given by the figure on the right.

A function f ∈ Xh can be described by its values on each vertex νi of

the triangulation. This space is called in the literature P1P1. Keeping in mind

sparsity, we choose as a basis of Xh the nodal functions ψi defined by

ψi(νj) = δij, i, j = 1, . . . , dim Xh. (A-7)

It is clear that the support of ψi, naturally associated with vertex νi, will

overlap at most that of the nodal functions corresponding to neighboring
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Figure A.1: Two Triangulations of [0, 1] × [0, 2].

vertices. Figure A.2 shows the graph of a typical ψi in a regular mesh. Since the
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Figure A.2: A Nodal Basis Function

functions are piecewise linear, the integral needed to compute K, at least on

each triangle, is the integral of a constant. That is a good motivation to range

over triangles as we assemble K, instead of doing it scanning all possible indices

(i, j). That is, denoting by T a generic triangle in the underlying triangulation

of Ω, we have

Kij =

∫

Ω

∇ψi(x) · ∇ψj(x) =
∑

T

∫

T

∇ψi(x) · ∇ψj(x).

What we do then is start with a zero matrix, range over all triangles computing

a local 3 × 3 stiffness matrix and add this contribution to the actual K.

A.3

Error Bounds, Convergence

We are interested in having control over the error incurred when we

replace our original problem in V by a finite-dimensional version Xh. The

subscript h in Xh refers to a typical triangle size in a triangulation. A first
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remark is that the solution uh of the linear system (A-6) is the closest we

can get to the true solution u, measured in the H1-seminorm — this is Céa’s

Lemma.

Lemma 2 (Céa’s Lemma). For any finite element vh function we have

|u − uh|1 ≤ |u − vh|1. (A-8)

We then study the case where vh above is the interpolation Πhu of the

solution u in the space Xh. The idea is similar to a Taylor expansion. If our

solution u is regular enough, it is possible to estimate the difference u − Πhu

in terms of its higher derivatives and obtain a bound of the form

|u − Πhu|1 ≤ Ch. (A-9)

Notice that we do not need to know the solution u a priori, only some estimate

on its higher order derivatives. Its regularity is also a consequence of domain

regularity, which we do have in the rectangular case. The constant in (A-9) is

also uniform provided for instance if we keep refining a given triangulation in

a way that the triangles do not get too deformed. This provides a check for

the computations we performed — halving triangles should halve the error.
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