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Basic Results on Convexity

In this section we collect some results on convexity, none of which is new,

that are used throughout the work.

Let C ⊂ Rn+1. We say that C is convex if it contains the line segment

[p, q] joining p to q whenever p, q ∈ C. The convex hull X̂ of a subsetX ⊂ Rn+1

is the intersection of all convex subsets of Rn+1 which contain X. It may be

characterized as the set of all points q of the form

q =
m�

k=1

skpk, where
m�

k=1

sk = 1, sk > 0 and pk ∈ X for each k. (1)

(11.1) Lemma. Let X ⊂ Sn and consider the conditions:

(i) 0 does not belong to the closure of X̂.

(ii) There exists an open hemisphere containing X.

(iii) 0 does not belong to X̂.

(iv) X does not contain any pair of antipodal points.

Then (i)→ (ii)→ (iii)→ (iv), but none of the implications is reversible. If X

is closed then (ii) and (iii) are equivalent.

Proof.

(i) → (ii) This is a special case of the Hahn-Banach theorem, since {0} is a compact
convex set and the closure of X̂ is a closed convex set.

(ii) �→ (i) For X ⊂ Sn the open upper hemisphere, we have

X̂ =
�
(x1, . . . , xn+1) ∈ Dn+1 : xn+1 > 0

�
.

Hence the closure of X̂ contains the origin, even though X is (contained

in) an open hemisphere.

(ii) → (iii) Let H =
�
p ∈ Sn : �p, h� > 0

�
be an open hemisphere containing X

and U =
�
p ∈ Rn+1 : �p, h� > 0

�
. Then U is convex, X ⊂ U and 0 /∈ U .

Thus, 0 /∈ X̂.
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(iii) �→ (ii) Let X be the image of [0, π) under t �→ exp(it).

(iii) → (iv) If p and −p both belong to X, then 0 ∈ [−p, p] ⊂ X̂.

(iv) �→ (iii) Let X = {1, ζ, ζ2} ⊂ S1, where ζ = exp(2
3
πi) is a primitive third

root of unity. Then X does not contain antipodal points, but 0 =
1
3

�
1 + ζ + ζ2

�
.

The last assertion is the combination of (i)→ (ii) and (ii)→ (iii), together with

the fact that X̂ is closed if X is closed, as shown in (11.6) below (its proof

does not rely on the present lemma).

(11.2) Lemma. Let X ⊂ Sn. Then 0 belongs to the interior of X̂ if and only

if X is not contained in any closed hemisphere of Sn.

Proof. Suppose first that 0 /∈ Int X̂. If 0 does not belong to the closure of X̂

then, as above, we can use the Hahn-Banach theorem to find a hyperplane

separating 0 and X. If 0 ∈ ∂X̂ then there exists a supporting hyperplane for

X̂ through 0. One of the closed hemispheres determined by this hyperplane

contains X.

Conversely, if X is contained in a closed hemisphere

H =
�
p ∈ Sn : �p, h� ≥ 0

�

then X̂ is contained in the “dome”

D =
�
p ∈ Rn : |p| ≤ 1 and �p, h� ≥ 0

�
,

which contains 0 in its boundary. Hence, X̂ cannot contain 0 in its interior.

Let A ⊂ Sn, n ≥ 1. We say that A is geodesically convex if it contains no

antipodal points and if for any p, q ∈ A, the shortest geodesic joining p to q is

also contained in A. The convexification X̆ of a subset X ⊂ Sn is defined to be

the intersection of all geodesically convex subsets of Sn which contain X; if no

such subset exists, then we set X̆ = Sn.

In what follows let pr : Rn+1 � {0} → Sn denote the gnomic projection

x �→ x
|x| .

(11.3) Lemma. Let X ⊂ Sn.

(a) If 0 /∈ X̂ then X̆ = pr(X̂).

(b) 0 ∈ X̂ if and only if X̆ = Sn.

Proof. We may assume that X �= ∅ since (a) and (b) are trivially true if X = ∅.
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(a) Assume that 0 /∈ X̂. If p = pr(p0) and −p = pr(p�0) for p0, p
�
0 ∈ X̂, then

0 ∈ [p0, p
�
0] ⊂ X̂, a contradiction. Hence, pr(X̂) does not contain any

antipodal points.

Let q ∈ X̂ be as in (1). We shall prove by induction on m that pr(q) ∈ X̆.

This is obvious for m = 1, so assume m > 1, and set σ = s1+ · · ·+ sm−1.

Then

q = (1− σ)p1 + σ
� m�

k=2

sk
σ
pk

�
= (1− σ)p1 + σp.

Both p1 and p belong to X̂. Moreover, by the induction hypothesis,

pr(p) ∈ X̆. Since X̆ is geodesically convex, it contains the shortest

geodesic joining p1 to pr(p), which is precisely the image of the line

segment [p1, p] under pr. Hence pr(q) ∈ X̆, and pr(X̂) ⊂ X̆ is established.

Now let p = pr(p0), q = pr(q0), with p0, q0 ∈ X̂. Then (1−s)p0+sq0 ∈ X̂

for all s ∈ [0, 1], whence pr[p0, q0] ⊂ pr(X̂). Since pr[p0, q0] is the shortest

geodesic joining p to q, we conclude that pr(X̂) is geodesically convex.

Therefore the reverse inclusion X̆ ⊂ pr(X̂) also holds.

(b) Suppose first that 0 ∈ X̂ and write 0 as a convex combination

0 =
m�

k=1

skpk, where
m�

k=1

sk = 1, pk ∈ X and sk > 0 for each k,

with m as small as possible; clearly, m > 1. Set σ = s2 + · · ·+ sm. Then

0 = (1− σ)p1 + σ
� m�

k=2

sk
σ
pk

�
= (1− σ)p1 + σp.

Let S = {p2, . . . , pm} ⊂ Sn. If 0 ∈ Ŝ, then we would be able to write

0 as a convex combination of m− 1 points in X, a contradiction. Thus,

applying part (a) to S, we deduce that pr(p) ∈ S̆ ⊂ X̆. Because 0 ∈ [p1, p],

p1 and pr(p) must be antipodal to each other, whence X̆ contains a pair

of antipodal points. Therefore X̆ = Sn.

Finally, suppose that 0 /∈ X̂. By part (a), X̆ = pr(X̂). Further, as we

saw in the first paragraph of the proof, pr(X̂) does not contain antipodal

points. Therefore X̆ �= Sn.

(11.4) Lemma. A convex set C ⊂ Rn has empty interior if and only if it is

contained in a hyperplane.

Proof. Suppose that C is not contained in a hyperplane and let x0 ∈ C. Then

we can find x1, . . . , xn ∈ C such that {xi − x0}i=1,...,n forms a basis for Rn.
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Being convex, C must contain the simplex [x0, . . . , xn], which has nonempty

interior since it is homeomorphic to the standard n-simplex. The converse is

obvious.

(11.5) Lemma. Let X ⊂ Rn be any set. If p ∈ X̂, then there exists a k-

dimensional simplex which has vertices in X and contains p, for some k ≤ n.

Another way to formulate this result is the following: If X ⊂ Rn and

p ∈ X̂, then it is possible to write p as a convex combination of k + 1 points

in X which are in general position, where k is at most equal to n.

Proof. If p ∈ X̂ then p can be written as a finite convex combination of points

in X. Hence, we may always assume that X is finite. The proof will be by

induction on m + n, where m is the cardinality of X. If m = 1 or n = 1 the

result is trivial.

Let X = {x0, . . . , xm} and X0 = X � {x0}. If p ∈ X̂0 then we can use

the induction hypothesis on X0, so we may suppose that p /∈ X̂0. There exist

q ∈ X̂0 and t ∈ [0, 1] such that p = (1 − t)x0 + tq. Let t0 be the infimum of

all u ≥ t such that (1 − u)x0 + uq ∈ X̂0, and let q0 = (1 − t0)x0 + t0q be the

corresponding point. Note that q0 ∈ X̂0 since the latter set is closed, by (11.6),

and that t0 > t, since p /∈ X̂0

If X0 is contained in some hyperplane, then we can apply the induction

hypothesis toX0 ⊂ Rn−1 to conclude that there exists some (k−1)-dimensional

simplex Δ0 with vertices in X0 containing q0, for some k ≤ n. Then p belongs

to the k-dimensional simplex which is the cone on Δ0 with vertex x0.

If X0 is not contained in a hyperplane then X̂0 has nonempty interior in

Rn, by (11.4). Suppose that it is not possible to write q0 as a combination of

fewer than m points in X0. Then q0 ∈ Int X̂0, so that (1 − t)x0 + tq ∈ X̂0 for

all t sufficiently close to t0. This contradicts the choice of t0. Hence, we may

write q0 as a convex combination of m − 1 points in X0, and p as a convex

combination of m points in X. By the induction hypothesis, we conclude that

p lies in some k-dimensional simplex with vertices in X, k ≤ n.

Let Y ⊂ R2 the graph of the function f(t) = (1 + t2)−1, for t ∈ R. Then

any point on the x-axis belongs to the closure of Ŷ , but not to Ŷ . Thus, even

though Y is closed, Ŷ is not. When X is compact, however, the situation is

different.

(11.6) Lemma. If X ⊂ Rn is compact, then X̂ is compact. In particular, if

X ⊂ Sn is closed, then X̂ is compact.
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Proof. Let

Δn =
�
(s1, . . . , sn+1) ∈ Rn+1 : s1 + s2 + · · ·+ sn+1 = 1, si ∈ [0, 1] for all i

�

and define f : Δn ×Xn+1 → Rn by

f(s1, . . . , sn+1, x1, . . . , xn+1) = s1x1 + s2x2 + · · ·+ sn+1xn+1.

By (11.5), the image of f is exactly the convex closure X̂ ofX. Since Δn×Xn+1

is compact and f is continuous, X̂ must also be compact.
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