11 Basic Results on Convexity

In this section we collect some results on convexity, none of which is new, that are used throughout the work.

Let $C \subset \mathbf{R}^{n+1}$. We say that C is *convex* if it contains the line segment [p,q] joining p to q whenever $p,q \in C$. The *convex hull* \hat{X} of a subset $X \subset \mathbf{R}^{n+1}$ is the intersection of all convex subsets of \mathbf{R}^{n+1} which contain X. It may be characterized as the set of all points q of the form

$$q = \sum_{k=1}^{m} s_k p_k, \quad \text{where} \quad \sum_{k=1}^{m} s_k = 1, \ s_k > 0 \text{ and } p_k \in X \text{ for each } k.$$
(1)

(11.1) Lemma. Let $X \subset \mathbf{S}^n$ and consider the conditions:

- (i) 0 does not belong to the closure of \hat{X} .
- (ii) There exists an open hemisphere containing X.
- (iii) 0 does not belong to X.
- (iv) X does not contain any pair of antipodal points.

Then (i) \rightarrow (ii) \rightarrow (iii) \rightarrow (iv), but none of the implications is reversible. If X is closed then (ii) and (iii) are equivalent.

Proof.

- (i) \rightarrow (ii) This is a special case of the Hahn-Banach theorem, since $\{0\}$ is a compact convex set and the closure of \hat{X} is a closed convex set.
- (ii) $\not\rightarrow$ (i) For $X \subset \mathbf{S}^n$ the open upper hemisphere, we have

$$\hat{X} = \{(x_1, \dots, x_{n+1}) \in \mathbf{D}^{n+1} : x_{n+1} > 0\}.$$

Hence the closure of \hat{X} contains the origin, even though X is (contained in) an open hemisphere.

(ii) \rightarrow (iii) Let $H = \{p \in \mathbf{S}^n : \langle p, h \rangle > 0\}$ be an open hemisphere containing Xand $U = \{p \in \mathbf{R}^{n+1} : \langle p, h \rangle > 0\}$. Then U is convex, $X \subset U$ and $0 \notin U$. Thus, $0 \notin \hat{X}$.

- (iii) $\not\rightarrow$ (ii) Let X be the image of $[0,\pi)$ under $t \mapsto \exp(it)$.
- (iii) \rightarrow (iv) If p and -p both belong to X, then $0 \in [-p, p] \subset \hat{X}$.
- (iv) $\not\rightarrow$ (iii) Let $X = \{1, \zeta, \zeta^2\} \subset \mathbf{S}^1$, where $\zeta = \exp(\frac{2}{3}\pi i)$ is a primitive third root of unity. Then X does not contain antipodal points, but $0 = \frac{1}{3}(1+\zeta+\zeta^2)$.

The last assertion is the combination of (i) \rightarrow (ii) and (ii) \rightarrow (iii), together with the fact that \hat{X} is closed if X is closed, as shown in (11.6) below (its proof does not rely on the present lemma).

(11.2) Lemma. Let $X \subset \mathbf{S}^n$. Then 0 belongs to the interior of \hat{X} if and only if X is not contained in any closed hemisphere of \mathbf{S}^n .

Proof. Suppose first that $0 \notin \text{Int } \hat{X}$. If 0 does not belong to the closure of \hat{X} then, as above, we can use the Hahn-Banach theorem to find a hyperplane separating 0 and X. If $0 \in \partial \hat{X}$ then there exists a supporting hyperplane for \hat{X} through 0. One of the closed hemispheres determined by this hyperplane contains X.

Conversely, if X is contained in a closed hemisphere

$$H = \left\{ p \in \mathbf{S}^n : \langle p, h \rangle \ge 0 \right\}$$

then \hat{X} is contained in the "dome"

$$D = \left\{ p \in \mathbf{R}^n : |p| \le 1 \text{ and } \langle p, h \rangle \ge 0 \right\},\$$

which contains 0 in its boundary. Hence, \hat{X} cannot contain 0 in its interior. \Box

Let $A \subset \mathbf{S}^n$, $n \ge 1$. We say that A is geodesically convex if it contains no antipodal points and if for any $p, q \in A$, the shortest geodesic joining p to q is also contained in A. The convexification \check{X} of a subset $X \subset \mathbf{S}^n$ is defined to be the intersection of all geodesically convex subsets of \mathbf{S}^n which contain X; if no such subset exists, then we set $\check{X} = \mathbf{S}^n$.

In what follows let pr: $\mathbf{R}^{n+1} \smallsetminus \{0\} \to \mathbf{S}^n$ denote the gnomic projection $x \mapsto \frac{x}{|x|}$.

(11.3) Lemma. Let $X \subset \mathbf{S}^n$.

- (a) If $0 \notin \hat{X}$ then $\breve{X} = \operatorname{pr}(\hat{X})$.
- (b) $0 \in \hat{X}$ if and only if $\check{X} = \mathbf{S}^n$.

Proof. We may assume that $X \neq \emptyset$ since (a) and (b) are trivially true if $X = \emptyset$.

(a) Assume that $0 \notin \hat{X}$. If $p = \operatorname{pr}(p_0)$ and $-p = \operatorname{pr}(p'_0)$ for $p_0, p'_0 \in \hat{X}$, then $0 \in [p_0, p'_0] \subset \hat{X}$, a contradiction. Hence, $\operatorname{pr}(\hat{X})$ does not contain any antipodal points.

Let $q \in \hat{X}$ be as in (1). We shall prove by induction on m that $pr(q) \in \check{X}$. This is obvious for m = 1, so assume m > 1, and set $\sigma = s_1 + \cdots + s_{m-1}$. Then

$$q = (1 - \sigma)p_1 + \sigma \left(\sum_{k=2}^m \frac{s_k}{\sigma}p_k\right) = (1 - \sigma)p_1 + \sigma p.$$

Both p_1 and p belong to \hat{X} . Moreover, by the induction hypothesis, $\operatorname{pr}(p) \in \check{X}$. Since \check{X} is geodesically convex, it contains the shortest geodesic joining p_1 to $\operatorname{pr}(p)$, which is precisely the image of the line segment $[p_1, p]$ under pr. Hence $\operatorname{pr}(q) \in \check{X}$, and $\operatorname{pr}(\hat{X}) \subset \check{X}$ is established. Now let $p = \operatorname{pr}(p_0)$, $q = \operatorname{pr}(q_0)$, with $p_0, q_0 \in \hat{X}$. Then $(1-s)p_0 + sq_0 \in \hat{X}$ for all $s \in [0, 1]$, whence $\operatorname{pr}[p_0, q_0] \subset \operatorname{pr}(\hat{X})$. Since $\operatorname{pr}[p_0, q_0]$ is the shortest geodesic joining p to q, we conclude that $\operatorname{pr}(\hat{X})$ is geodesically convex. Therefore the reverse inclusion $\check{X} \subset \operatorname{pr}(\hat{X})$ also holds.

(b) Suppose first that $0 \in \hat{X}$ and write 0 as a convex combination

$$0 = \sum_{k=1}^{m} s_k p_k, \text{ where } \sum_{k=1}^{m} s_k = 1, p_k \in X \text{ and } s_k > 0 \text{ for each } k,$$

with m as small as possible; clearly, m > 1. Set $\sigma = s_2 + \cdots + s_m$. Then

$$0 = (1 - \sigma)p_1 + \sigma \left(\sum_{k=2}^m \frac{s_k}{\sigma}p_k\right) = (1 - \sigma)p_1 + \sigma p.$$

Let $S = \{p_2, \ldots, p_m\} \subset \mathbf{S}^n$. If $0 \in \hat{S}$, then we would be able to write 0 as a convex combination of m-1 points in X, a contradiction. Thus, applying part (a) to S, we deduce that $\operatorname{pr}(p) \in \check{S} \subset \check{X}$. Because $0 \in [p_1, p]$, p_1 and $\operatorname{pr}(p)$ must be antipodal to each other, whence \check{X} contains a pair of antipodal points. Therefore $\check{X} = \mathbf{S}^n$.

Finally, suppose that $0 \notin \hat{X}$. By part (a), $\check{X} = \operatorname{pr}(\hat{X})$. Further, as we saw in the first paragraph of the proof, $\operatorname{pr}(\hat{X})$ does not contain antipodal points. Therefore $\check{X} \neq \mathbf{S}^n$.

(11.4) Lemma. A convex set $C \subset \mathbb{R}^n$ has empty interior if and only if it is contained in a hyperplane.

Proof. Suppose that C is not contained in a hyperplane and let $x_0 \in C$. Then we can find $x_1, \ldots, x_n \in C$ such that $\{x_i - x_0\}_{i=1,\ldots,n}$ forms a basis for \mathbb{R}^n .

Being convex, C must contain the simplex $[x_0, \ldots, x_n]$, which has nonempty interior since it is homeomorphic to the standard *n*-simplex. The converse is obvious.

(11.5) Lemma. Let $X \subset \mathbf{R}^n$ be any set. If $p \in \hat{X}$, then there exists a k-dimensional simplex which has vertices in X and contains p, for some $k \leq n$.

Another way to formulate this result is the following: If $X \subset \mathbf{R}^n$ and $p \in \hat{X}$, then it is possible to write p as a convex combination of k + 1 points in X which are in general position, where k is at most equal to n.

Proof. If $p \in \hat{X}$ then p can be written as a finite convex combination of points in X. Hence, we may always assume that X is finite. The proof will be by induction on m + n, where m is the cardinality of X. If m = 1 or n = 1 the result is trivial.

Let $X = \{x_0, \ldots, x_m\}$ and $X_0 = X \setminus \{x_0\}$. If $p \in \hat{X}_0$ then we can use the induction hypothesis on X_0 , so we may suppose that $p \notin \hat{X}_0$. There exist $q \in \hat{X}_0$ and $t \in [0, 1]$ such that $p = (1 - t)x_0 + tq$. Let t_0 be the infimum of all $u \ge t$ such that $(1 - u)x_0 + uq \in \hat{X}_0$, and let $q_0 = (1 - t_0)x_0 + t_0q$ be the corresponding point. Note that $q_0 \in \hat{X}_0$ since the latter set is closed, by (11.6), and that $t_0 > t$, since $p \notin \hat{X}_0$

If X_0 is contained in some hyperplane, then we can apply the induction hypothesis to $X_0 \subset \mathbf{R}^{n-1}$ to conclude that there exists some (k-1)-dimensional simplex Δ_0 with vertices in X_0 containing q_0 , for some $k \leq n$. Then p belongs to the k-dimensional simplex which is the cone on Δ_0 with vertex x_0 .

If X_0 is not contained in a hyperplane then \hat{X}_0 has nonempty interior in \mathbf{R}^n , by (11.4). Suppose that it is not possible to write q_0 as a combination of fewer than m points in X_0 . Then $q_0 \in \text{Int } \hat{X}_0$, so that $(1-t)x_0 + tq \in \hat{X}_0$ for all t sufficiently close to t_0 . This contradicts the choice of t_0 . Hence, we may write q_0 as a convex combination of m-1 points in X_0 , and p as a convex combination of m points in X. By the induction hypothesis, we conclude that p lies in some k-dimensional simplex with vertices in $X, k \leq n$.

Let $Y \subset \mathbf{R}^2$ the graph of the function $f(t) = (1 + t^2)^{-1}$, for $t \in \mathbf{R}$. Then any point on the *x*-axis belongs to the closure of \hat{Y} , but not to \hat{Y} . Thus, even though Y is closed, \hat{Y} is not. When X is compact, however, the situation is different.

(11.6) Lemma. If $X \subset \mathbf{R}^n$ is compact, then \hat{X} is compact. In particular, if $X \subset \mathbf{S}^n$ is closed, then \hat{X} is compact.

Proof. Let

$$\Delta^{n} = \left\{ (s_{1}, \dots, s_{n+1}) \in \mathbf{R}^{n+1} : s_{1} + s_{2} + \dots + s_{n+1} = 1, \ s_{i} \in [0, 1] \text{ for all } i \right\}$$

and define $f \colon \Delta^n \times X^{n+1} \to \mathbf{R}^n$ by

$$f(s_1, \dots, s_{n+1}, x_1, \dots, x_{n+1}) = s_1 x_1 + s_2 x_2 + \dots + s_{n+1} x_{n+1}.$$

By (11.5), the image of f is exactly the convex closure \hat{X} of X. Since $\Delta^n \times X^{n+1}$ is compact and f is continuous, \hat{X} must also be compact.