11 Basic Results on Convexity

In this section we collect some results on convexity, none of which is new, that are used throughout the work.

Let $C \subset \mathbf{R}^{n+1}$. We say that C is convex if it contains the line segment $[p, q]$ joining p to q whenever $p, q \in C$. The convex hull \hat{X} of a subset $X \subset \mathbf{R}^{n+1}$ is the intersection of all convex subsets of \mathbf{R}^{n+1} which contain X. It may be characterized as the set of all points q of the form

$$
\begin{equation*}
q=\sum_{k=1}^{m} s_{k} p_{k}, \quad \text { where } \quad \sum_{k=1}^{m} s_{k}=1, s_{k}>0 \text { and } p_{k} \in X \text { for each } k . \tag{1}
\end{equation*}
$$

(11.1) Lemma. Let $X \subset \mathbf{S}^{n}$ and consider the conditions:
(i) 0 does not belong to the closure of \hat{X}.
(ii) There exists an open hemisphere containing X.
(iii) 0 does not belong to \hat{X}.
(iv) X does not contain any pair of antipodal points.

Then (i) \rightarrow (ii) \rightarrow (iii) \rightarrow (iv), but none of the implications is reversible. If X is closed then (ii) and (iii) are equivalent.

Proof.
(i) \rightarrow (ii) This is a special case of the Hahn-Banach theorem, since $\{0\}$ is a compact convex set and the closure of \hat{X} is a closed convex set.
(ii) \nrightarrow (i) For $X \subset \mathbf{S}^{n}$ the open upper hemisphere, we have

$$
\hat{X}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbf{D}^{n+1}: x_{n+1}>0\right\} .
$$

Hence the closure of \hat{X} contains the origin, even though X is (contained in) an open hemisphere.
(ii) \rightarrow (iii) Let $H=\left\{p \in \mathbf{S}^{n}:\langle p, h\rangle>0\right\}$ be an open hemisphere containing X and $U=\left\{p \in \mathbf{R}^{n+1}:\langle p, h\rangle>0\right\}$. Then U is convex, $X \subset U$ and $0 \notin U$. Thus, $0 \notin \hat{X}$.
(iii) \nrightarrow (ii) Let X be the image of $[0, \pi)$ under $t \mapsto \exp (i t)$.
(iii) \rightarrow (iv) If p and $-p$ both belong to X, then $0 \in[-p, p] \subset \hat{X}$.
(iv) \nrightarrow (iii) Let $X=\left\{1, \zeta, \zeta^{2}\right\} \subset \mathbf{S}^{1}$, where $\zeta=\exp \left(\frac{2}{3} \pi i\right)$ is a primitive third root of unity. Then X does not contain antipodal points, but $0=$ $\frac{1}{3}\left(1+\zeta+\zeta^{2}\right)$.

The last assertion is the combination of (i) \rightarrow (ii) and (ii) \rightarrow (iii), together with the fact that \hat{X} is closed if X is closed, as shown in (11.6) below (its proof does not rely on the present lemma).
(11.2) Lemma. Let $X \subset \mathbf{S}^{n}$. Then 0 belongs to the interior of \hat{X} if and only if X is not contained in any closed hemisphere of \mathbf{S}^{n}.

Proof. Suppose first that $0 \notin \operatorname{Int} \hat{X}$. If 0 does not belong to the closure of \hat{X} then, as above, we can use the Hahn-Banach theorem to find a hyperplane separating 0 and X. If $0 \in \partial \hat{X}$ then there exists a supporting hyperplane for \hat{X} through 0 . One of the closed hemispheres determined by this hyperplane contains X.

Conversely, if X is contained in a closed hemisphere

$$
H=\left\{p \in \mathbf{S}^{n}:\langle p, h\rangle \geq 0\right\}
$$

then \hat{X} is contained in the "dome"

$$
D=\left\{p \in \mathbf{R}^{n}:|p| \leq 1 \text { and }\langle p, h\rangle \geq 0\right\},
$$

which contains 0 in its boundary. Hence, \hat{X} cannot contain 0 in its interior.
Let $A \subset \mathbf{S}^{n}, n \geq 1$. We say that A is geodesically convex if it contains no antipodal points and if for any $p, q \in A$, the shortest geodesic joining p to q is also contained in A. The convexification \bar{X} of a subset $X \subset \mathbf{S}^{n}$ is defined to be the intersection of all geodesically convex subsets of \mathbf{S}^{n} which contain X; if no such subset exists, then we set $\breve{X}=\mathbf{S}^{n}$.

In what follows let pr: $\mathbf{R}^{n+1} \backslash\{0\} \rightarrow \mathbf{S}^{n}$ denote the gnomic projection $x \mapsto \frac{x}{|x|}$.
(11.3) Lemma. Let $X \subset \mathbf{S}^{n}$.
(a) If $0 \notin \hat{X}$ then $\breve{X}=\operatorname{pr}(\hat{X})$.
(b) $0 \in \hat{X}$ if and only if $\breve{X}=\mathbf{S}^{n}$.

Proof. We may assume that $X \neq \emptyset$ since (a) and (b) are trivially true if $X=\emptyset$.
(a) Assume that $0 \notin \hat{X}$. If $p=\operatorname{pr}\left(p_{0}\right)$ and $-p=\operatorname{pr}\left(p_{0}^{\prime}\right)$ for $p_{0}, p_{0}^{\prime} \in \hat{X}$, then $0 \in\left[p_{0}, p_{0}^{\prime}\right] \subset \hat{X}$, a contradiction. Hence, $\operatorname{pr}(\hat{X})$ does not contain any antipodal points.
Let $q \in \hat{X}$ be as in (1). We shall prove by induction on m that $\operatorname{pr}(q) \in \tilde{X}$. This is obvious for $m=1$, so assume $m>1$, and set $\sigma=s_{1}+\cdots+s_{m-1}$. Then

$$
q=(1-\sigma) p_{1}+\sigma\left(\sum_{k=2}^{m} \frac{s_{k}}{\sigma} p_{k}\right)=(1-\sigma) p_{1}+\sigma p
$$

Both p_{1} and p belong to \hat{X}. Moreover, by the induction hypothesis, $\operatorname{pr}(p) \in \breve{X}$. Since \check{X} is geodesically convex, it contains the shortest geodesic joining p_{1} to $\operatorname{pr}(p)$, which is precisely the image of the line segment $\left[p_{1}, p\right]$ under pr. Hence $\operatorname{pr}(q) \in \breve{X}$, and $\operatorname{pr}(\hat{X}) \subset \breve{X}$ is established. Now let $p=\operatorname{pr}\left(p_{0}\right), q=\operatorname{pr}\left(q_{0}\right)$, with $p_{0}, q_{0} \in \hat{X}$. Then $(1-s) p_{0}+s q_{0} \in \hat{X}$ for all $s \in[0,1]$, whence $\operatorname{pr}\left[p_{0}, q_{0}\right] \subset \operatorname{pr}(\hat{X})$. Since $\operatorname{pr}\left[p_{0}, q_{0}\right]$ is the shortest geodesic joining p to q, we conclude that $\operatorname{pr}(\hat{X})$ is geodesically convex. Therefore the reverse inclusion $\breve{X} \subset \operatorname{pr}(\hat{X})$ also holds.
(b) Suppose first that $0 \in \hat{X}$ and write 0 as a convex combination

$$
0=\sum_{k=1}^{m} s_{k} p_{k}, \quad \text { where } \sum_{k=1}^{m} s_{k}=1, \quad p_{k} \in X \text { and } s_{k}>0 \text { for each } k,
$$

with m as small as possible; clearly, $m>1$. Set $\sigma=s_{2}+\cdots+s_{m}$. Then

$$
0=(1-\sigma) p_{1}+\sigma\left(\sum_{k=2}^{m} \frac{s_{k}}{\sigma} p_{k}\right)=(1-\sigma) p_{1}+\sigma p
$$

Let $S=\left\{p_{2}, \ldots, p_{m}\right\} \subset \mathbf{S}^{n}$. If $0 \in \hat{S}$, then we would be able to write 0 as a convex combination of $m-1$ points in X, a contradiction. Thus, applying part (a) to S, we deduce that $\operatorname{pr}(p) \in \breve{S} \subset \breve{X}$. Because $0 \in\left[p_{1}, p\right]$, p_{1} and $\operatorname{pr}(p)$ must be antipodal to each other, whence \breve{X} contains a pair of antipodal points. Therefore $\breve{X}=\mathbf{S}^{n}$.
Finally, suppose that $0 \notin \hat{X}$. By part (a), $\breve{X}=\operatorname{pr}(\hat{X})$. Further, as we saw in the first paragraph of the proof, $\operatorname{pr}(\hat{X})$ does not contain antipodal points. Therefore $\breve{X} \neq \mathbf{S}^{n}$.
(11.4) Lemma. A convex set $C \subset \mathbf{R}^{n}$ has empty interior if and only if it is contained in a hyperplane.

Proof. Suppose that C is not contained in a hyperplane and let $x_{0} \in C$. Then we can find $x_{1}, \ldots, x_{n} \in C$ such that $\left\{x_{i}-x_{0}\right\}_{i=1, \ldots, n}$ forms a basis for \mathbf{R}^{n}.

Being convex, C must contain the simplex $\left[x_{0}, \ldots, x_{n}\right]$, which has nonempty interior since it is homeomorphic to the standard n-simplex. The converse is obvious.
(11.5) Lemma. Let $X \subset \mathbf{R}^{n}$ be any set. If $p \in \hat{X}$, then there exists a k dimensional simplex which has vertices in X and contains p, for some $k \leq n$.

Another way to formulate this result is the following: If $X \subset \mathbf{R}^{n}$ and $p \in \hat{X}$, then it is possible to write p as a convex combination of $k+1$ points in X which are in general position, where k is at most equal to n.

Proof. If $p \in \hat{X}$ then p can be written as a finite convex combination of points in X. Hence, we may always assume that X is finite. The proof will be by induction on $m+n$, where m is the cardinality of X. If $m=1$ or $n=1$ the result is trivial.

Let $X=\left\{x_{0}, \ldots, x_{m}\right\}$ and $X_{0}=X \backslash\left\{x_{0}\right\}$. If $p \in \hat{X}_{0}$ then we can use the induction hypothesis on X_{0}, so we may suppose that $p \notin \hat{X}_{0}$. There exist $q \in \hat{X}_{0}$ and $t \in[0,1]$ such that $p=(1-t) x_{0}+t q$. Let t_{0} be the infimum of all $u \geq t$ such that $(1-u) x_{0}+u q \in \hat{X}_{0}$, and let $q_{0}=\left(1-t_{0}\right) x_{0}+t_{0} q$ be the corresponding point. Note that $q_{0} \in \hat{X}_{0}$ since the latter set is closed, by (11.6), and that $t_{0}>t$, since $p \notin \hat{X}_{0}$

If X_{0} is contained in some hyperplane, then we can apply the induction hypothesis to $X_{0} \subset \mathbf{R}^{n-1}$ to conclude that there exists some ($k-1$)-dimensional simplex Δ_{0} with vertices in X_{0} containing q_{0}, for some $k \leq n$. Then p belongs to the k-dimensional simplex which is the cone on Δ_{0} with vertex x_{0}.

If X_{0} is not contained in a hyperplane then \hat{X}_{0} has nonempty interior in \mathbf{R}^{n}, by (11.4). Suppose that it is not possible to write q_{0} as a combination of fewer than m points in X_{0}. Then $q_{0} \in \operatorname{Int} \hat{X}_{0}$, so that $(1-t) x_{0}+t q \in \hat{X}_{0}$ for all t sufficiently close to t_{0}. This contradicts the choice of t_{0}. Hence, we may write q_{0} as a convex combination of $m-1$ points in X_{0}, and p as a convex combination of m points in X. By the induction hypothesis, we conclude that p lies in some k-dimensional simplex with vertices in $X, k \leq n$.

Let $Y \subset \mathbf{R}^{2}$ the graph of the function $f(t)=\left(1+t^{2}\right)^{-1}$, for $t \in \mathbf{R}$. Then any point on the x-axis belongs to the closure of \hat{Y}, but not to \hat{Y}. Thus, even though Y is closed, \hat{Y} is not. When X is compact, however, the situation is different.
(11.6) Lemma. If $X \subset \mathbf{R}^{n}$ is compact, then \hat{X} is compact. In particular, if $X \subset \mathbf{S}^{n}$ is closed, then \hat{X} is compact.

Proof. Let

$$
\Delta^{n}=\left\{\left(s_{1}, \ldots, s_{n+1}\right) \in \mathbf{R}^{n+1}: s_{1}+s_{2}+\cdots+s_{n+1}=1, s_{i} \in[0,1] \text { for all } i\right\}
$$

and define $f: \Delta^{n} \times X^{n+1} \rightarrow \mathbf{R}^{n}$ by

$$
f\left(s_{1}, \ldots, s_{n+1}, x_{1}, \ldots, x_{n+1}\right)=s_{1} x_{1}+s_{2} x_{2}+\cdots+s_{n+1} x_{n+1} .
$$

By (11.5), the image of f is exactly the convex closure \hat{X} of X. Since $\Delta^{n} \times X^{n+1}$ is compact and f is continuous, \hat{X} must also be compact.

