
2
Spaces of Curves of Bounded Geodesic Curvature

Basic definitions and notation

Let M denote either the euclidean space Rn+1 or the unit sphere

Sn ⊂ Rn+1, for some n ≥ 1. By a curve γ in M we mean a continuous

map γ : [a, b] → M . A curve will be called regular when it has a continuous

and nonvanishing derivative; in other words, a regular curve is a C1 immersion

of [a, b] into M . For simplicity, the interval where γ is defined will usually be

[0, 1].

Let γ : [0, 1]→ S2 be a regular curve and let | | denote the usual Euclidean
norm. The arc-length parameter s of γ is defined by

s(t) =

� t

0

|γ̇(t)| dt,

and L =
� 1

0
|γ̇(t)| dt is called the length of γ. Since ṡ(t) > 0 for all t, s is an

invertible function, and we may parametrize γ by s ∈ [0, L]. Derivatives with

respect to t and s will be systematically denoted by a ˙ and a �, respectively;

this convention extends, of course, to higher-order derivatives as well.

Up to homotopy, we can always assume that a family of curves is

parametrized proportionally to arc-length.

(2.1) Lemma. Let A be a topological space and let a �→ γa be a continuous

map from A to the set of all Cr regular curves γ : [0, 1] → M (r ≥ 1) with

the Cr topology. Then there exists a homotopy γu
a : [0, 1]→ M , u ∈ [0, 1], such

that for any a ∈ A:

(i) γ0
a = γa and γ

1
a is parametrized so that |γ̇1

a(t)| is independent of t.

(ii) γu
a is an orientation-preserving reparametrization of γa, for all u ∈ [0, 1].

Proof. Let sa(t) =
� t

0
|γ̇a(τ)| dτ be the arc-length parameter of γa, La its length

and τa : [0, La]→ [0, 1] the inverse function of sa. Define γ
u
a : [0, 1]→ M by:

γu
a (t) = γa

�
(1− u)t+ uτa(Lat)

�
(u, t ∈ [0, 1], a ∈ A).
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Then γu
a is the desired homotopy.

The unit tangent vector to γ at γ(t) will always be denoted by t(t). Set

M = S2 for the rest of this section, and define the unit normal vector n to γ

by

n(t) = γ(t)× t(t),

where × denotes the vector product in R3. Equivalently, n(t) is the unique

vector which makes
�
γ(t), t(t),n(t)

�
a positively oriented orthonormal basis of

R3.

Assume now that γ has a second derivative. By definition, the geodesic

curvature κ(s) at γ(s) is given by

κ(s) = �t�(s),n(s)� . (1)

Note that the geodesic curvature is not altered by an orientation-preserving

reparametrization of the curve, but its sign is changed if we use an orientation-

reversing reparametrization. Since the sectional curvatures of the sphere are

all equal to 1, the normal curvature of γ is 1 at each point. In particular, its

Euclidean curvature K,

K(s) =
�
1 + κ(s)2,

never vanishes.

Closely related to the geodesic curvature of a curve γ : [0, 1] → S2 is the

radius of curvature ρ(t) of γ at γ(t), which we define as the unique number in

(0, π) satisfying

cot ρ(t) = κ(t).

Note that the sign of κ(t) is equal to the sign of π
2
− ρ(t).

Example. A parallel circle of colatitude α, for 0 < α < π, has geodesic curvature

± cotα (the sign depends on the orientation), and radius of curvature α or π−α
at each point. (Recall that the colatitude of a point measures its distance from

the north pole along S2.) The radius of curvature ρ(t) of an arbitrary curve γ

gives the size of the radius of the osculating circle to γ at γ(t), measured along

S2 and taking the orientation of γ into account.

If we consider γ as a curve in R3, then its “usual” radius of curvature R

is defined by R(t) = 1
K(t)

= sin ρ(t). We will rarely mention R or K again,

preferring instead to work with ρ and κ, which are their natural intrinsic

analogues in the sphere.
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Figure 2: A parallel circle of colatitude α has radius of curvature α or π − α,
depending on its orientation. In the first figure the center of the circle on S2 is
taken to be the north pole, and in the second, the south pole.

Spaces of curves

Given p ∈ S2 and v ∈ TpS
2 of norm 1, there exists a unique Q ∈ SO3

having p ∈ R3 as first column and v ∈ R3 as second column. We obtain thus

a diffeomorphism between SO3 and the unit tangent bundle UTS
2 of S2.

(2.2) Definition. For a regular curve γ : [0, 1] → S2, its frame Φγ : [0, 1] →
SO3 is the map given by

Φγ(t) =




| | |
γ(t) t(t) n(t)

| | |


 .1

In other words, Φγ is the curve in UTS2 associated with γ, under the

identification of UTS2 with SO3. We emphasize that it is not necessary that

γ have a second derivative for Φγ to be defined.

Now let −∞ ≤ κ1 < κ2 ≤ +∞ and Q ∈ SO3. We would like to study

the space Lκ2
κ1
(Q) of all regular curves γ : [0, 1]→ S2 satisfying:

(i) Φγ(0) = I and Φγ(1) = Q;

(ii) κ1 < κ(t) < κ2 for each t ∈ [0, 1].

Here I is the 3×3 identity matrix and κ is the geodesic curvature of γ. Condition
(i) says that γ starts at e1 in the direction e2 and ends at Qe1 in the direction

Qe2.

1In the works of Saldanha this is denoted by Fγ and called the Frenet frame of γ. We
will not use this terminology to avoid any confusion with the usual Frenet frame of γ when
it is considered as a curve in R3.
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This definition is incomplete because we have not described the topology

of Lκ2
κ1
(Q), nor explained what is meant by the geodesic curvature of a regular

curve (which need not have a second derivative, according to our definition).

The most natural choice would be to require that the curves in this space

be of class C2, and to give it the C2 topology. The foremost reason why we

will not follow this course is that we would like to be able to perform some

constructions which yield curves that are not C2. For instance, we may wish

to construct a curve γ of positive geodesic curvature by concatenating two

arcs of circles σ1 and σ2 of different radii, as in fig. 3 below. Even though the

resulting curve is regular, it is not possible to assign any meaningful value to

the curvature of γ at p. However, we may approximate γ as well as we like

by a smooth curve which does have everywhere positive geodesic curvature.

We shall adopt a more complicated definition precisely in order to avoid using

convolutions or other tools all the time to smoothen such a curve.

Figure 3: A curve on S2 obtained by concatenation of arcs of circles of different
radii. The dashed line represents the equator.

(2.3) Definition. A function f : [a, b] → R is said to be of class H1 if it is

an indefinite integral of some g ∈ L2[a, b]. We extend this definition to maps

F : [a, b] → Rn by saying that F is of class H1 if and only if each of its

component functions is of class H1.

Since L2[a, b] ⊂ L1[a, b], an H1 function is absolutely continuous (and

differentiable almost everywhere).

We shall now present an explicit description of a topology on Lκ2
κ1
(Q)

which turns it into a Hilbert manifold. The definition is unfortunately not

very natural. However, we shall prove the following two results relating this

space to more familiar concepts: First, for any r ∈ N, r ≥ 2, the subset of

Lκ2
κ1
(Q) consisting of Cr curves will be shown to be dense in Lκ2

κ1
(Q). Second,

DBD
PUC-Rio - Certificação Digital Nº 0812265/CA



Homotopies of Curves on the 2-Sphere with
Geodesic Curvature in a Prescribed Interval 16

we will see that the space of Cr regular curves satisfying conditions (i) and (ii)

above, with the Cr topology, is (weakly) homotopy equivalent to Lκ2
κ1
(Q).2

Consider first a smooth regular curve γ : [0, 1]→ S2. From the definition

of Φγ we deduce that

Φ̇γ(t) = Φγ(t)Λ(t), where Λ(t) =




0 − |γ̇(t)| 0

|γ̇(t)| 0 − |γ̇(t)|κ(t)
0 |γ̇(t)| κ(t) 0


 ∈ so3

(2)
is called the logarithmic derivative of Φγ and κ is the geodesic curvature of γ.

Conversely, given Q0 ∈ SO3 and a smooth map Λ: [0, 1] → so3 of the

form

Λ(t) =




0 −v(t) 0

v(t) 0 −w(t)
0 w(t) 0


 , (3)

let Φ: [0, 1]→ SO3 be the unique solution to the initial value problem

Φ̇(t) = Φ(t)Λ(t), Φ(0) = Q0. (4)

Define γ : [0, 1] → S2 to be the smooth curve given by γ(t) = Φ(t)(e1). Then

γ is regular if and only if v(t) �= 0 for all t ∈ [0, 1], and it satisfies Φγ = Φ if

and only if v(t) > 0 for all t. (If v(t) < 0 for all t then γ is regular, but Φγ is

obtained from Φ by changing the sign of the entries in the second and third

columns.)

Equation (4) still has a unique solution if we only require that v, w ∈
L2[0, 1] (cf. [3], p. 67). With this in mind, let E = L2[0, 1] × L2[0, 1] and let

h : (0,+∞)→ R be the smooth diffeomorphism

h(t) = t− t−1. (5)

For each pair κ1 < κ2 ∈ R, let hκ1, κ2 : (κ1, κ2) → R be the smooth

diffeomorphism

hκ1, κ2(t) = (κ1 − t)−1 + (κ2 − t)−1

and, similarly, set

h−∞,+∞ : R → R h−∞,+∞(t) = t

h−∞,κ2 : (−∞, κ2)→ R h−∞,κ2(t) = t+ (κ2 − t)−1

hκ1,+∞ : (κ1,+∞)→ R hκ1,+∞(t) = t+ (κ1 − t)−1.

(2.4) Definition. Let κ1, κ2 satisfy−∞ ≤ κ1 < κ2 ≤ +∞. A curve γ : [0, 1]→
2The definitions given here are straightforward adaptations of the ones in [13], where

they are used to study spaces of locally convex curves in Sn (which correspond to the spaces
L+∞

0 (Q) when n = 2).
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S2 will be called (κ1, κ2)-admissible if there exist Q0 ∈ SO3 and a pair

(v̂, ŵ) ∈ E such that γ(t) = Φ(t) e1 for all t ∈ [0, 1], where Φ is the unique

solution to equation (4), with v, w given by

v(t) = h−1(v̂(t)), w(t) = v(t)h−1
κ1, κ2

(ŵ(t)). (6)

When it is not important to keep track of the bounds κ1, κ2, we shall say more

simply that γ is admissible.

In vague but more suggestive language, an admissible curve γ is essen-

tially an H1 frame Φ: [0, 1] → SO3 such that γ = Φe1 : [0, 1] → S2 has

geodesic curvature in the interval (κ1, κ2). The unit tangent (resp. normal) vec-

tor t(t) = Φ(t)e2 (resp. n(t) = Φ(t)e3) of γ is thus defined everywhere on [0, 1],

and it is absolutely continuous as a function of t. The curve γ itself is, like Φ,

of class H1. However, the coordinates of its velocity vector γ̇(t) = v(t)Φ(t)e2

lie in L2[0, 1], so the latter is only defined almost everywhere. The geodesic

curvature of γ, which is also defined a.e., is given by

κ(t) =
1

v(t)

�
ṫ(t),n(t)

�
= h−1

κ1, κ2
(ŵ(t)) ∈ (κ1, κ2)

(cf. (2), (3) and (6)).

Remark. The reason for the choice of the specific diffeomorphism h : (0,+∞)→
R in (5) (instead of, say, h(t) = log t) is that we need h−1(t) to diverge linearly

to ±∞ as t → 0,+∞ in order to guarantee that v = h−1 ◦ v̂ ∈ L2[0, 1]

whenever v̂ ∈ L2[0, 1]. The reason for the choice of the other diffeomorphisms

is analogous.

(2.5) Definition. Let −∞ ≤ κ1 < κ2 ≤ +∞, Q0 ∈ SO3. Define L
κ2
κ1
(Q0, ·) to

be the set of all (κ1, κ2)-admissible curves γ such that

Φγ(0) = Q0,

where Φγ is the frame of γ. This set is identified with E via the correspondence

γ ↔ (v̂, ŵ), and this defines a (trivial) Hilbert manifold structure on Lκ2
κ1
(Q0, ·).

In particular, this space is contractible by definition. We are now ready

to define the spaces Lκ2
κ1
(Q), which constitute the main object of study of this

work.

(2.6) Definition. Let −∞ ≤ κ1 < κ2 ≤ +∞, Q ∈ SO3. We define Lκ2
κ1
(Q)

to be the subspace of Lκ2
κ1
(I, ·) consisting of all curves γ in the latter space

satisfying

Φγ(0) = I and Φγ(1) = Q. (i)
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Here Φγ is the frame of γ and I is the 3×3 identity matrix.3

Because SO3 has dimension 3, the condition Φγ(1) = Q implies that

Lκ2
κ1
(Q) is a closed submanifold of codimension 3 in E ≡ Lκ2

κ1
(I, ·). (Here we

are using the fact that the map which sends the pair (v̂, ŵ) ∈ E to Φ(1) is

a submersion; a proof of this when κ1 = 0 and κ2 = +∞ can be found in

§3 of [12], and the proof of the general case is analogous.) The space Lκ2
κ1
(Q)

consists of closed curves only when Q = I. Also, when κ1 = −∞ and κ2 = +∞
simultaneously, no restrictions are placed on the geodesic curvature. The

resulting space (for arbitrary Q ∈ SO3) is known to be homotopy equivalent

to ΩS3 � ΩS3; see the discussion after (2.13).

Note that we have natural inclusions Lκ2
κ1
(Q) �→ Lκ̄2

κ̄1
(Q) whenever

κ̄1 ≤ κ1 < κ2 ≤ κ̄2. More explicitly, this map is given by:

γ ≡ (v̂, ŵ) �→
�
v̂, hκ̄1,κ̄2 ◦ h−1

κ1,κ2
(ŵ)

�
;

it is easy to check that the actual curve associated with the pair of functions in

Lκ̄2
κ̄1
(Q) on the right side (via (3), (4) and (6)) is the original curve γ, so that

the use of the term“inclusion” is justified. In fact, this map is an embedding, so

that Lκ2
κ1
(Q) can be considered a subspace of Lκ̄2

κ̄1
(Q) when κ̄1 ≤ κ1 < κ2 ≤ κ̄2.

The next lemma contains all results on Hilbert manifolds that we shall

use.

(2.7) Lemma. Let M be a Hilbert manifold. Then:

(a) M is locally path-connected. In particular, its connected components and

path components coincide.

(b) If M is weakly contractible then it is contractible.4

(c) Assume that 0 is a regular value of F : M → Rn. Then P = F−1(0) is

a closed submanifold which has codimension n and trivial normal bundle

in M.

(d) Let E and F be separable Banach spaces. Suppose i : F → E is a bounded,

injective linear map with dense image and M ⊂ E is a smooth closed

submanifold of finite codimension. Then N = i−1(M) is a smooth closed

submanifold of F and i : (F, N) → (E,M) is a homotopy equivalence of

pairs.

3The letter ‘L’ in Lκ2
κ1
(Q) is a reference to John A. Little, who determined the connected

components of L+∞
0 (I) in [8].

4Recall that a map f : X → Y between topological spaces X and Y is said to be a weak
homotopy equivalence if f∗ : πn(X,x0) → πn(Y, f(x0)) is an isomorphism for any n ≥ 0 and
x0 ∈ X. The space X is said to be weakly contractible if it is weakly homotopy equivalent
to a point, that is, if all of its homotopy groups are trivial.
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Proof. Part (a) is obvious and part (b) is a special case of thm. 15 in [9]. The

first assertion of part (c) is a consequence of the implicit function theorem (for

Banach spaces). The triviality of the normal bundle can be proved as follows:

Let p ∈ P and NPp be the fiber over p of the normal bundle NP. Then

TMp = TPp ⊕NPp,

and TPp lies in the kernel of the derivative TFp by hypothesis, as F vanishes

identically on P. Since TFp is surjective and dimNPp = n, TFp must be an

isomorphism when restricted to NPp. This is valid for any p ∈ P, so we can

obtain a trivialization τ of NP by setting:

τ(p, v) =
�
(TFp)|NPp

�−1
(v) (p ∈ P, v ∈ Rn).

Finally, part (d) is thm. 2 in [2].

(2.8) Lemma. Let r ∈ {2, 3, . . . ,∞}. Then the subset of all γ : [0, 1] → S2 of

class Cr is dense in Lκ2
κ1
(Q).

Proof. This follows from the fact that the set of smooth functions f : [0, 1]→ R

is dense in L2[0, 1].

(2.9) Definition. Let −∞ ≤ κ1 < κ2 ≤ +∞, Q ∈ SO3 and r ∈ N, r ≥ 2.

Define Cκ2
κ1
(Q) to be the set, furnished with the Cr topology, of all Cr regular

curves γ : [0, 1]→ S2 such that:

(i) Φγ(0) = I and Φγ(1) = Q;

(ii) κ1 < κ(t) < κ2 for each t ∈ [0, 1].

The value of r is not important, as all of these spaces are homotopy

equivalent. Because of this, after the next lemma, when we speak of Cκ2
κ1
(Q),

we will implicitly assume that r = 2.

(2.10) Lemma. Let r ∈ N (r ≥ 2), Q ∈ SO3 and −∞ ≤ κ1 < κ2 ≤ +∞.

Then the set inclusion i : Cκ2
κ1
(Q) �→ Lκ2

κ1
(Q) is a homotopy equivalence.

Proof. In this proof we will highlight the differentiability class by denoting

Cκ2
κ1
(Q) by Cκ2

κ1
(Q)r. Let E = L2[0, 1] × L2[0, 1], let F = Cr−1[0, 1] × Cr−2[0, 1]

(where Ck[0, 1] denotes the set of all Ck functions [0, 1] → R, with the Ck

norm) and let i : E → F be set inclusion. Setting M = Lκ2
κ1
(Q), we conclude

from (2.7(d)) that i : N = i−1(M) �→ M is a homotopy equivalence. We claim

that N ≈ Cκ2
κ1
(Q)r, where the homeomorphism is obtained by associating a
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pair (v̂, ŵ) ∈ N to the curve γ obtained by solving (4) (with Λ defined by (3)

and (6) and Q0 = I), and vice-versa.

Suppose first that γ ∈ Cκ2
κ1
(Q)r. Then |γ̇| (resp. κ) is a function [0, 1]→ R

of class Cr−1 (resp. Cr−2). Hence, so are v̂ = h◦|γ̇| and ŵ = hκ2
κ1
◦κ, since h and

hκ2
κ1
are smooth. Conversely, if (v̂, ŵ) ∈ N , then v = h−1(v̂) is of class Cr−1 and

w = (hκ2
κ1
)−1 ◦ ŵ of class Cr−2, and the frame Φ of the curve γ corresponding

to that pair satisfies

Φ̇ = ΦΛ, Λ =



0 − |γ̇| 0

|γ̇| 0 − |γ̇|κ
0 |γ̇|κ 0


 =



0 −v 0

v 0 −w
0 w 0


 .

Since the entries of Λ are of class (at least) Cr−2, the entries of Φ are functions

of class Cr−1. Moreover, γ = Φe1, hence

γ̇ = Φ̇e1 = ΦΛe1 = vΦe2,

and the velocity vector of γ is seen to be of class Cr−1. It follows that γ is a

curve of class Cr. Finally, it is easy to check that the correspondence (v̂, ŵ)↔ γ

is continuous in both directions.

Lifted frames

The (two-sheeted) universal covering space of SO3 is S3. Let us briefly

recall the definition of the covering map π : S3 → SO3.
5 We start by identifying

R4 with the algebra H of quaternions, and S3 with the subgroup of unit

quaternions. Given z ∈ S3, v ∈ R4, define a transformation Tz : R
4 → R4

by Tz(v) = zvz−1 = zvz. One checks easily that Tz preserves the sum,

multiplication and conjugation operations. It follows that, for any v, w ∈ R4,

4 �Tz(v), Tz(w)� = |Tz(v) + Tz(w)|2 − |Tz(v)− Tz(w)|2

= |v + w|2 − |v − w|2 = 4 �v, w� ,

where � , � denotes the usual inner product in R4. Thus Tz is an orthogonal

linear transformation of R4. Moreover, Tz(1) = 1 (where 1 is the unit of H),

hence the three-dimensional vector subspace {0} ×R3 ⊂ R4 consisting of the

purely imaginary quaternions is invariant under Tz. The element π(z) ∈ SO3

is the restriction of Tz to this subspace, where (a, b, c) ∈ R3 is identified with

the quaternion ai+ bj + ck.

5See [4] for more details and further information on quaternions and rotations.
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In what follows we adopt the convention that S3 (resp. SO3) is furnished

with the Riemannian metric inherited from R4 (resp. R9).

(2.11) Lemma. Let � , � denote the metric in S3 and ��� , ��� the metric in SO3.

Then π∗��� , ��� = 8 � , �, where π∗��� , ��� denotes the pull-back of ��� , ��� by π.

Proof. It suffices to prove that if

z : (−1, 1)→ S3, t �→ a(t)1+ b(t)i+ c(t)j + d(t)k

is a regular curve and Q = π ◦ z then
��Q̇(0)

��2 = 8 |ż(0)|2. Let us assume first
that z(0) = 1, so that ȧ(0) = 0. From the definition of Q, we have

Q(t)e1 = z(t)iz̄(t)

and similarly for j,k, where, as above, we identify R3 with the imaginary

quaternions. Hence

��Q̇(0)e1
��2 = |z(0)i ˙̄z(0) + ż(0)iz̄(0)|2 = 2 |ż(0)|2 −

�
ż(0)i

�2 −
�
i ˙̄z(0)

�2

= 2 |ż(0)|2 − 2Re
�
(ż(0)i)2

�

Therefore

��Q̇(0)
��2 = 6 |ż(0)|2 − 2Re

�
(ż(0)i)2

�
− 2Re

�
(ż(0)j)2

�
− 2Re

�
(ż(0)k)2

�

Since Re(w2) = α2 − β2 − γ2 − δ2 if w = α + βi + γj + δk and ȧ(0) = 0, we

deduce that

−2Re
�
(ż(0)i)2

�
= 2ċ(0)2 + 2ḋ(0)2 − 2ḃ(0)2 = 2 |ż(0)|2 − 4ḃ(0)2

and analogously for j, k. Thus
��Q̇(0)

��2 = 8 |ż(0)|2 as claimed, provided

z(0) = 1.

Now consider any regular curve w : (−1, 1)→ S3, let P = π ◦ w and set

z(t) = w(0)−1w(t), Q(t) = π(z(t)) = P (0)−1P (t).

Then z(0) = 1, hence

��Ṗ (0)
��2 =

��P (0)Q̇(0)
��2 =

��Q̇(0)
��2 = 8 |ż(0)|2 = 8 |w(0)ż(0)|2 = 8 |ẇ(0)|2 .

(2.12) Definition. Let Φ: [0, 1]→ SO3 be a frame (of classH
1) and let z ∈ S3

satisfy π(z) = Φγ(0). We define the lifted frame Φ̃
z : [0, 1] → S3 to be the lift

DBD
PUC-Rio - Certificação Digital Nº 0812265/CA



Homotopies of Curves on the 2-Sphere with
Geodesic Curvature in a Prescribed Interval 22

of Φ to S3, starting at z. When Φ(0) = I we adopt the convention that z = 1,

and we denote the lifted frame simply by Φ̃.

Here is a simple but important application of this concept.

(2.13) Lemma. Let γ0, γ1 ∈ Lκ2
κ1
(Q), for some Q ∈ SO3, and suppose that

γ0, γ1 lie in the same connected component of this space. Then Φ̃γ0(1) = Φ̃γ1(1).

Proof. Since Lκ2
κ1
(Q) is a Hilbert manifold, its path and connected components

coincide. Therefore, to say that γ0, γ1 lie in the same connected component of

Lκ2
κ1
(Q) is the same as to say that there exists a continuous family of curves

γs ∈ Lκ2
κ1
(Q) joining γ0 and γ1, s ∈ [0, 1]. The family Φγs yields a homotopy

between the paths Φγ0 and Φγ1 in SO3. (Recall that each of the frames Φγs is

(absolutely) continuous.) By the homotopy lifting property of covering spaces,

the paths Φ̃γ0 and Φ̃γ1 are also homotopic in S3 (fixing the endpoints).

The role of the initial and final frames

We will now study how the topology of Lκ2
κ1
(Q) changes if we consider

variations of condition (i) in (2.6); by the end of the section it should be

clear that our original definition is sufficiently general. A summary of all the

definitions considered here is given in table form on p. 28.

For fixed z ∈ S3, let ΩzS
3 denote the set of all continuous paths

ω : [0, 1] → S3 such that ω(0) = 1 and ω(1) = z, furnished with the compact-

open topology. It can be shown (see [1], p. 198) that ΩzS
3 � ΩS3 for any

z ∈ S3, where ΩS3 is the space of paths in S3 which start and end at 1 ∈ S3.6

The topology of this space is well understood; we refer the reader to [1], §16,
for more information.

Now let κ1 < κ2, z ∈ S3 be arbitrary and Q = π(z). Define

F : Lκ2
κ1
(Q)→ ΩzS

3 ∪ Ω−zS
3 � ΩS3 � ΩS3 by F (γ) = Φ̃γ. (7)

In the special case κ1 = −∞, κ2 = +∞, it follows from the Hirsch-Smale

theorem that this map is a homotopy equivalence. In the general case this is

false, however. For instance, ΩS3 � ΩS3 has two connected components, while

Little has proved ([8], thm. 1) that L+∞
0 (I) has three connected components.

We take this opportunity to recall the precise statement of Little’s theorem

and to introduce a new class of spaces.

6The notation X � Y (resp. X ≈ Y ) means that X is homotopy equivalent (resp. home-
omorphic) to Y .
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(2.14) Definition. Let −∞ ≤ κ1 < κ2 ≤ +∞. Define Lκ2
κ1
to be the space of

all (κ1, κ2)-admissible curves γ : [0, 1]→ S2 such that

Φγ(0) = Φγ(1).

Note that the only difference between Lκ2
κ1
(I) and Lκ2

κ1
is that curves in

the latter space may have arbitrary initial and final frames, as long as they

coincide. An argument analogous to the one given for the spaces Lκ2
κ1
(Q) shows

that Lκ2
κ1
is also a Hilbert manifold. In fact, we have the following relationship

between the two classes.

(2.15) Proposition. The space Lκ2
κ1
is homeomorphic to SO3 × Lκ2

κ1
(I).

Proof. For Q ∈ SO3 and γ ∈ Lκ2
κ1
(I), let Qγ be the curve defined by

(Qγ)(t) = Q(γ(t)). Because Q is an isometry, the geodesic curvatures of Qγ

at (Qγ)(t) and of γ at γ(t) coincide. Define F : SO3 × Lκ2
κ1
(I) → Lκ2

κ1
by

F (Q, γ) = Qγ; clearly, F is continuous. Since it has the continuous inverse

η �→ (Φη(0),Φη(0)
−1η), F is a homeomorphism.

Let us temporarily denote by L the space L0
−∞ �L+∞

0 studied by Little.

We have L0
−∞ ≈ L+∞

0 , since the map which takes a curve in L to the same curve

with reversed orientation is a (self-inverse) homeomorphism mapping L0
−∞ onto

L+∞
0 . What is proved in [8] is that L has six connected components.7 Using

prop. (2.15) and the fact that SO3 is connected, we see that Little’s theorem

is equivalent to the assertion that L+∞
0 (I) has three connected components, as

was claimed immediately above (2.14).

A natural generalization of the spaces Lκ2
κ1
(Q) is obtained by modifying

condition (i) of (2.6) as follows.

(2.16) Definition. Let −∞ ≤ κ1 < κ2 ≤ +∞ and Q0, Q1 ∈ SO3. Define

Lκ2
κ1
(Q0, Q1) to be the space of all (κ1, κ2)-admissible curves γ : [0, 1] → S2

such that

Φγ(0) = Q0 and Φγ(1) = Q1. (i�)

Thus, the only difference between condition (i) on p. 17 and condition

(i�) is that the latter allows arbitrary initial frames.

(2.17) Proposition. Lκ2
κ1
(Q0, Q1) ≈ Lκ2

κ1
(PQ0, PQ1) for any P,Q0, Q1 ∈

SO3. Then. In particular, L
κ2
κ1
(Q0, Q1) ≈ Lκ2

κ1
(Q), where Q = Q−1

0 Q1.

Proof. The proof is similar to that of (2.15). The map γ �→ Pγ takes

Lκ2
κ1
(Q0, Q1) into L

κ2
κ1
(PQ0, PQ1) and is continuous. The map γ �→ P−1γ, which

is likewise continuous, is its inverse.

7Little works with C2 curves, but, as we have seen, this is not important.

DBD
PUC-Rio - Certificação Digital Nº 0812265/CA



Homotopies of Curves on the 2-Sphere with
Geodesic Curvature in a Prescribed Interval 24

Of course, we could also consider the spaces Lκ2
κ1
(·, Q), consisting of all

(κ1, κ2)-admissible curves γ having final frame Φγ(1) = Q ∈ SO3 (but arbitrary

initial frame). Like Lκ2
κ1
(Q, ·), this space is contractible. To see this, one can

go through the definition to check that it is indeed diffeomorphic to E, or,

alternatively, one can observe that the map γ �→ γ̄, γ̄(t) = γ(1− t), establishes

a homeomorphism

Lκ2
κ1
(·, Q) ≈ Lκ2

κ1
(QR, ·),

where

R =



1 0 0

0 −1 0

0 0 −1


 .

Finally, we could study the space Lκ2
κ1
(·, ·) of all (κ1, κ2)-admissible curves, with

no conditions placed on the frames. The argument given in the proof of (2.15)

shows that

Lκ2
κ1
(·, ·) ≈ SO3 × Lκ2

κ1
(I, ·).

Hence, Lκ2
κ1
(·, ·) is homeomorphic to E × SO3, and has the homotopy type of

SO3.

Thus, the topology of the spaces Lκ2
κ1
(Q, ·), Lκ2

κ1
(·, Q) and Lκ2

κ1
(·, ·) is

uninteresting. We will have nothing else to say about these spaces.

The role of the bounds on the curvature

Having analyzed the significance of condition (i) on p. 14, let us examine

next condition (ii). Notice that we have allowed the bounds κ1, κ2 on the

curvature to be infinite. The definition of radius of curvature is extended

accordingly by setting arccot(+∞) = 0 and arccot(−∞) = π. We can then

rephrase (ii) as:

(ii) ρ(t) ∈ (ρ2, ρ1) for each t ∈ [0, 1].

Here ρ is the radius of curvature of γ and ρi = arccotκi ∈ [0, π], i = 1, 2. The

main result of this section relates the topology of Lκ2
κ1
(Q) to the size ρ1 − ρ2 of

the interval (ρ2, ρ1). Its proof relies on the following construction.

Given −π < θ < π and an admissible curve γ : [0, 1] → S2, define the

translation γθ : [0, 1]→ S2 of γ by θ to be the curve given by

γθ(t) = cos θ γ(t) + sin θ n(t) (t ∈ [0, 1]). (8)

Example. Let 0 < α < π
2
and let C be the circle of colatitude α. Depending

on the orientation, the translation of C by θ, 0 ≤ θ ≤ α, is either the circle of
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colatitude α + θ or the circle of colatitude α − θ. In particular, taking θ = α

and a suitable orientation of C, the translation degenerates to a single point

(the north pole).

This example shows that some care must be taken in the choice of θ for

the resulting curve to be admissible.

(2.18) Lemma. Let γ : [0, 1] → S2 be an admissible curve and ρ its radius of

curvature. Suppose

ρ2 < ρ(t) < ρ1 for a.e. t ∈ [0, 1] and ρ1 − π ≤ θ ≤ ρ2. (9)

Then γθ is an admissible curve and its frame is given by:

Φγθ = ΦγRθ , where Rθ =



cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


 . (10)

Proof. Let Ψ = ΦγRθ. Since Φγ satisfies the differential equation (2), Ψ

satisfies

Ψ̇ = Ψ(R−1
θ ΛRθ).

A direct calculation shows that

R−1
θ ΛRθ =




0 −
�
cos θv − sin θw

�
0

cos θv − sin θw 0 −
�
cos θw + sin θv

�

0 cos θw + sin θv 0


 ,

where v = v(t) = |γ̇(t)| and w = w(t) = v(t)κ(t). Also, Ψe1 = γθ by

construction. To show that γθ is admissible, it is thus only necessary to show

that

cos θv(t)− sin θw(t) = v(t)
�
cos θ − sin θ cot ρ(t)

�
=

v(t)

sin ρ(t)
sin(ρ(t)− θ) > 0

for almost every t ∈ [0, 1], and this is true by our choice of θ and the fact that

v > 0.

Thus, for θ satisfying (9), we obtain from (10) that the unit tangent

vector tθ and unit normal vector nθ to the translation γθ of γ are given by:

tθ(t) = t(t) and nθ(t) = − sin θ γ(t) + cos θ n(t) (11)

for almost every t ∈ [0, 1].

(2.19) Lemma. Let γ : [0, 1] → S2 be an admissible curve and suppose that

(9) holds. Then (γθ)ϕ = γθ+ϕ for any ϕ ∈ (−π, π). In particular, (γθ)−θ = γ.
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Proof. Note that (γθ)ϕ is defined because γθ is admissible, as we have just seen.

Using (8) and (11) we obtain that

(γθ)ϕ = cosϕ
�
cos θ γ + sin θ n

�
+ sinϕ

�
− sin θ γ + cos θ n

�
= γθ+ϕ.

Given three distinct points on S2, there is a unique circle passing through

them; this circle is also contained in the sphere, for it is the intersection of the

unique plane containing the points with S2. Now consider a C2 regular curve

γ : [0, 1] → S2. Fix t ∈ [0, 1], and take distinct t1, t2, t3 ∈ [0, 1]. Because the

Euclidean curvature K(t) �= 0, the osculating circle to γ at γ(t) exists and is

equal to the limit position, as t1, t2, t3 approach t, of the unique circle through

γ(t1), γ(t2) and γ(t3). Therefore, being a limit of circles contained in the sphere,

the osculating circle at any point of γ is also contained in the sphere.

(2.20) Lemma. Let γ : [0, 1] → S2 be C2 regular and let θ satisfy (9). Then

the osculating circle to the translation γθ at γθ(t) is the translation of the

osculating circle to γ at γ(t) by θ.

Proof. Let γ be parametrized by arc-length and let σ be a parametrization,

also by arc-length, of the osculating circle to γ at γ(0). By definition, the

osculating circle is the unique circle in R3 which has contact of order 3 with γ

at γ(0); that is, σ must satisfy:

σ(0) = γ(0), σ�(0) = γ�(0), σ��(0) = γ��(0).

In particular, the geodesic curvatures of γ and σ at the point γ(0) = σ(0)

coincide. From these relations and (8) we deduce that σθ(0) = γθ(0), σ̇θ(0) =

γ̇θ(0). Another calculation shows that

γ̈θ(0) =
�
κ(0) sin θ − cos θ

��
γ(0)− κ(0)n(0)

�
− κ�(0) sin θ t(0),

σ̈θ(0) =
�
κ(0) sin θ − cos θ

��
σ(0)− κ(0)n(0)

�
.

(Here γθ (resp. σθ) is parametrized with respect to the arc-length parameter

of γ (resp. σ).) This shows that the vector subspaces of R3 spanned by the

two pairs {γ̇θ(0), γ̈θ(0)} and {σ̇θ(0), σ̈θ(0)} coincide. Consequently, the image
of σθ is a circle in the sphere contained in the plane parallel to γ̇θ(0) and γ̈θ(0)

through γθ(0). But there is only one such circle, viz., the osculating circle to γθ

at γθ(0). Since 0 could have been replaced by any s0 ∈ [0, 1] in this argument,

the proof is complete.

(2.21) Corollary. Let γ : [0, 1] → S2 be an admissible curve and let θ satisfy

(9). Then the radius of curvature ρ̄ of γθ is given by ρ̄ = ρ− θ.
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Proof. If γ is C2 regular we can, by (2.20), actually assume that it is a circle.

Then an easy direct verification shows that the formula ρ̄ = ρ − θ holds

regardless of which orientation we choose. The general case where γ is only

admissible can be deduced from this by applying (2.8).

(2.22) Theorem. Let Q ∈ SO3, κ1 < κ2, κ̄1 < κ̄2, ρi = arccotκi, ρ̄i =

arccot κ̄i. Suppose that ρ1−ρ2 = ρ̄1− ρ̄2. Then Lκ2
κ1
(Q) ≈ Lκ̄2

κ̄1
(R−θQRθ), where

θ = ρ2 − ρ̄2 and

Rθ =



cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


 .

We recall that the bounds κi, κ̄i may take on infinite values, and we

adopt the conventions that arccot(+∞) = 0 and arccot(−∞) = π.

Proof. Let γ ∈ Lκ2
κ1
(Q) and let ρ be its radius of curvature. We have:

ρ2 < ρ(t) < ρ1 for a.e. t ∈ [0, 1].

Set θ = ρ2 − ρ̄2. Then (9) is satisfied, so γθ is and admissible curve. By (2.21),

the radius of curvature ρ̄ of γθ is given by ρ̄ = ρ− θ. Thus,

ρ̄2 < ρ̄(t) < ρ̄1 for a.e. t ∈ [0, 1].

Together with (2.18), this says that F : γ �→ γθ maps Lκ2
κ1
(Q) into

Lκ̄2
κ̄1
(Rθ, QRθ). Similarly, translation by −θ is a map G : Lκ̄2

κ̄1
(Rθ, QRθ) →

Lκ2
κ1
(Q). By (2.19), the maps F and G are inverse to each other, hence

Lκ2
κ1
(Q) ≈ Lκ̄2

κ̄1
(Rθ, QRθ).

Finally, because R−1
θ = R−θ, (2.17) guarantees that

Lκ̄2
κ̄1
(Rθ, QRθ) ≈ Lκ̄2

κ̄1
(R−θQRθ).

(2.23) Remark. Taking Q = I we obtain from (2.22) that Lκ2
κ1
(I) ≈ Lκ̄2

κ̄1
(I) (κi,

κ̄i as in the hypothesis of the theorem). It will also be important to us that

under the homeomorphisms of (2.22) and the following corollaries, the image

of any circle traversed k times is another circle traversed k times.

(2.24) Corollary. Let Q ∈ SO3 and κ1 < κ2. Then Lκ2
κ1
(Q) ≈ L+κ0

−κ0
(P ) for

suitable κ0 > 0, P ∈ SO3. Moreover, if Q = I then P = I also.

Proof. Let ρi = arccotκi, i = 1, 2, and set

ρ̄1 =
π

2
+
ρ1 − ρ2
2

, ρ̄2 =
π

2
− ρ1 − ρ2

2
and κ0 = cot(ρ̄2).
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The interval (ρ̄2, ρ̄1) has the same size as (ρ2, ρ1) by construction. Since

cot(ρ̄1) = −κ0, (2.22) yields that Lκ2
κ1
(Q) ≈ L+κ0

−κ0
(R−θQRθ), where θ =

ρ1+ρ2−π
2

.

(2.25) Corollary. Let Q ∈ SO3 and κ1 < κ2. Then Lκ2
κ1
(Q) ≈ L+∞

κ0
(P ) for

suitable κ0 ∈ [−∞,+∞) and P ∈ SO3. Moreover, if Q = I then P = I also.

Proof. Let ρi = arccotκi, i = 1, 2. Then the interval (ρ2, ρ1) has the same size

as the interval (0, ρ1 − ρ2). Hence, by (2.22), L
κ2
κ1
(Q) ≈ L+∞

κ0
(R−θQRθ), where

κ0 = cot(ρ1 − ρ2) =
1 + κ1κ2

κ2 − κ1

and θ = ρ2.

Corollaries (2.24) and (2.25) both express the fact that, for fixed Q ∈
SO3, the topology of the spaces L

κ2
κ1
(Q) depends essentially on one parameter,

not two. The spaces of type L+κ0
−κ0

(Q) and L+∞
κ0

(Q) have been singled out merely

because they are more convenient to work with. For spaces of closed curves

we have the following result relating the two classes, which is another simple

consequence of (2.24).

(2.26) Corollary. Let κ0 ∈ [−∞,+∞), κ1 ∈ (0,+∞] and ρi = arccot(κi),

i = 0, 1. If ρ0 = π − 2ρ1 then L+κ1
−κ1

(I) ≈ L+∞
κ0

(I).

For convenience, we list in table 2.1 all the spaces considered thus far,

together with some of the results that we have proved about their topology.

As we have already remarked, the spaces Lκ2
κ1
(·, Q), Lκ2

κ1
(Q, ·) and Lκ2

κ1
(·, ·) will

not be mentioned again.

Space Definition Condition on Frames Topology

Lκ2
κ1
(Q) p. 17, (2.6) Φ(0) = I, Φ(1) = Q depends on ρ1 − ρ2, Q

Lκ2
κ1

p. 22, (2.14) Φ(0) = Φ(1) arbitrary ≈ SO3 × Lκ2
κ1
(I)

Lκ2
κ1
(Q0, Q1) p. 23, (2.16) Φ(0) = Q0, Φ(1) = Q1 ≈ Lκ2

κ1
(Q−1

0 Q1)

Lκ2
κ1
(Q, ·) p. 17, (2.5) Φ(0) = Q, Φ(1) arbitrary contractible

Lκ2
κ1
(·, Q) p. 24 Φ(0) arbitrary, Φ(1) = Q contractible

Lκ2
κ1
(·, ·) p. 24 none � SO3

Table 2.1: Spaces of spherical curves of bounded geodesic curvature. Here
Q ∈ SO3, −∞ ≤ κ1 < κ2 ≤ +∞ and ρi = arccot(κi). The notation X ≈ Y
(resp. X � Y ) means that X is homeomorphic (resp. homotopy equivalent) to
Y .
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