3 **Curves Contained in a Hemisphere**

There exists a two-way correspondence between the unit sphere \mathbf{S}^n in \mathbf{R}^{n+1} and the set consisting of its open hemispheres; namely, with $h \in \mathbf{S}^n$ we can associate

$$H = \left\{ p \in \mathbf{S}^n : \langle h, p \rangle > 0 \right\}.$$

Thus the set of open hemispheres of \mathbf{S}^n carries a natural topology. For convenience, we will often identify H with h. In the sequel all hemispheres shall be open, save explicit mention to the contrary, and we will assume throughout that $n \geq 2$.

Let $\gamma: [0,1] \to \mathbf{S}^n$ be a (continuous) curve contained in the hemisphere H. As a consequence of the compactness of [0, 1], if $\tilde{h} \in \mathbf{S}^n$ is sufficiently close to h, then γ is also contained in the hemisphere \tilde{H} corresponding to \tilde{h} . It is desirable to be able to select, in a natural way, a distinguished hemisphere among those which contain γ .

(3.1) Lemma. Let $\gamma: [0,1] \to \mathbf{S}^n$ be contained in a hemisphere. Then the set $\mathcal{H} \subset \mathbf{S}^n$ of hemispheres that contain γ is open, geodesically convex and itself contained in a hemisphere.¹

Proof. The hemisphere determined by $\gamma(0)$ contains \mathcal{H} since $\langle h, \gamma(0) \rangle > 0$ for each $h \in \mathcal{H}$. Suppose that the hemispheres H, \tilde{H} corresponding respectively to $h, \tilde{h} \in \mathbf{S}^n$ belong to \mathcal{H} . We lose no generality in assuming that

$$h = e_1, \quad \tilde{h} = e^{i\theta_0} = \cos\theta_0 e_1 + \sin\theta_0 e_2, \quad \text{where } 0 < \theta_0 < \pi.^2$$

Any k in the shortest geodesic through h, \tilde{h} has the form

$$k = e^{i\theta}$$
, where $0 \le \theta \le \theta_0$,

while any $p \in \mathbf{S}^n$ satisfying both $\langle p, h \rangle > 0$ and $\langle p, \tilde{h} \rangle > 0$ is of the form

 $p = e^{i\phi} + \nu$, where $\theta_0 - \pi/2 < \phi < \pi/2$ and ν is normal to e_1 and e_2 .

¹See the appendix for the definition and basic properties of geodesically convex sets.

²The use of complex numbers here is made only to simplify the notation.

The bounds on θ and ϕ give $|\theta - \phi| < \pi/2$, hence $\langle p, k \rangle = \cos(\theta - \phi) > 0$. Thus $p \in K$ (the hemisphere determined by k) whenever $p \in H, \tilde{H}$, that is, \mathcal{H} is geodesically convex. Finally, we have already remarked above that \mathcal{H} is open.

From (3.1) we deduce that the barycenter (in \mathbb{R}^{n+1}) of the set \mathcal{H} of hemispheres containing γ is not the origin. Its image under gnomic (i.e., central) projection on the sphere, to be denoted by h_{γ} , will be our choice of distinguished hemisphere containing γ .

(3.2) Lemma. Let $r \ge 0$, let \mathcal{A} denote the space of arcs $\gamma \colon [0,1] \to \mathbf{S}^n$, with the C^r topology, and let $S \subset A$ be the subspace consisting of all γ whose image is contained in some open hemisphere (depending on γ). Then the map $S \to \mathbf{S}^n$, $\gamma \mapsto h_{\gamma}$, defined in the preceding paragraph, is continuous.

Before proving this, we record two results which we will use.

(3.3) Lemma. Let $C \subset \mathbf{S}^n$ be geodesically convex with non-empty interior. Then there exists a homeomorphism $F: \mathbf{S}^{n-1} \to \partial C$ which is bi-Lipschitz.³

Proof. We may assume without loss of generality that C contains $N = e_{n+1}$ in its interior. Let

$$\{(p^1,\ldots,p^{n+1})\in\mathbf{S}^n: p^{n+1}=0\}$$

be the equator of \mathbf{S}^n , which we identify with \mathbf{S}^{n-1} . Because $N \in \text{Int}(C)$, there exists δ , $0 < \delta < 1$, such that the open disk

$$U = \left\{ (p^1, \dots, p^{n+1}) \in \mathbf{S}^n : (1 - \delta) < p^{n+1} \le 1 \right\}$$
(1)

is contained in C. In particular, $\partial C \cap U = \emptyset$. Since C cannot contain antipodal points, ∂C is also disjoint from -U (the image of U under the antipodal map). Because $N \in C$ and $-N \notin C$, any semicircle containing them, say, the one that also contains $\sigma \in \mathbf{S}^{n-1}$, intersects ∂C at some point $F(\sigma)$.

Let $p \in \partial C$, $u \in U$. We assert that the semicircle through p, u and -u cannot contain another point $q \in \partial C$ (see fig. 4). If we take u = N then this shows that the definition of $F: \mathbf{S}^{n-1} \to \partial C$ is unambiguous. Assume for a contradiction that the assertion is false, and suppose further that q lies between p and u (if it lies between -u and p instead, the argument is analogous). Consider the union of all geodesic segments joining points of U to p. This set contains q in its interior by hypothesis. The same is true of the union of all

³This means that there exist $k_1, k_2 > 0$ such that

$$|k_1|\sigma - \tau| \le |F(\sigma) - F(\tau)| \le k_2 |\sigma - \tau|$$
 for any $\sigma, \tau \in \mathbf{S}^{n-1}$.

Figure 4: An illustration of part of the proof of (3.3) when n = 2.

geodesic segments joining points of U to r, whenever r is sufficiently close to p. Since $p \in \partial C$, we can choose $r \in C$ to conclude from the convexity of C that $q \in \text{Int}(C)$, a contradiction.

Let $\sigma \neq \tau \in \mathbf{S}^{n-1}$. Then

$$\frac{|F(\sigma) - F(\tau)|}{|\sigma - \tau|} \ge \frac{\left| \left(\sqrt{\delta(2 - \delta)}\sigma, 1 - \delta \right) - \left(\sqrt{\delta(2 - \delta)}\tau, 1 - \delta \right) \right|}{|\sigma - \tau|} \\ \ge \sqrt{\delta(2 - \delta)} > 0.$$

Let d denote the distance function on \mathbf{S}^n . To establish a reverse Lipschitz condition for F, it suffices to prove that

$$\frac{d(F(\sigma), F(\tau))}{d(\sigma, \tau)} = \frac{F(\sigma)F(\tau)}{\triangleleft F(\sigma)NF(\tau)}$$

admits an upper bound independent of the pair $\sigma \neq \tau$.⁴ Since $F(\sigma)F(\tau)$ is bounded by π and $\lim_{x\to 0} \frac{\sin x}{x} = 1$, it actually suffices to establish a bound on

$$\frac{\sin\left(F(\sigma)F(\tau)\right)}{\sin\left(\triangleleft F(\sigma)NF(\tau)\right)} = \frac{\sin\left(NF(\tau)\right)}{\sin\left(\triangleleft NF(\sigma)F(\tau)\right)},\tag{2}$$

where the equality follows from the law of sines (for spherical triangles) applied to $\Delta F(\sigma)NF(\tau)$. For arbitrary $\psi \in \mathbf{S}^{n-1}$, define $z_{\psi} \in \partial U$ and $w_{\psi} \in \partial(-U)$ to be the points where the great circle through N and ψ meets ∂U (resp. $\partial(-U)$); more explicitly,

$$z_{\psi} = \left(\sqrt{\delta(2-\delta)}\,\psi, 1-\delta\right), \qquad w_{\psi} = \left(\sqrt{\delta(2-\delta)}\,\psi, -1+\delta\right).$$

Let $\psi, \bar{\psi} \in \mathbf{S}^{n-1}$ satisfy $d(\psi, \bar{\psi}) = \frac{\pi}{2}$ and let α_0 be the angle at w_{ψ} in $\Delta w_{\psi} z_{\psi} z_{\bar{\psi}}$. Clearly, this angle is independent of $\psi, \bar{\psi}$. We claim that $\triangleleft NF(\sigma)F(\tau) > \alpha_0$.

 ${}^{4}AB$ denotes the geodesic segment joining A to B and $\triangleleft ABC$ the angle at B in the spherical triangle ABC.

Otherwise, the geodesic through $F(\sigma)$ and $F(\tau)$ meets U, and so does the geodesic through p and $F(\tau)$ for p close to $F(\sigma)$, for U is open. Since $F(\sigma) \in \partial C$, we can choose $p \in C$ with this property, which, using the convexity of C, contradicts the fact that $F(\tau) \notin \text{Int}(C)$. Hence, we can complete (2) to

$$\frac{\sin\left(F(\sigma)F(\tau)\right)}{\sin\left(\triangleleft F(\sigma)NF(\tau)\right)} = \frac{\sin\left(NF(\tau)\right)}{\sin\left(\triangleleft NF(\sigma)F(\tau)\right)} < \frac{\pi}{\sin\alpha_0},$$

finishing the proof that F is bi-Lipschitz.

(3.4) Lemma. Let $A \subset \mathbf{S}^n$ be a closed set of Hausdorff dimension less than n. If B_{ε} consists of all points at distance less than ε from A, then $\lim_{\varepsilon \to 0} V(B_{\varepsilon}) = 0$, where V denotes the volume in \mathbf{S}^n .

Proof. Let $\delta(S)$ denote the diameter of a set $S \subset \mathbf{S}^n$ and $\Gamma_{\alpha}(S)$ its Hausdorff measure of dimension $\alpha > 0$. Since $\Gamma_n(A) = 0$, given any $\eta > 0$ we can cover Aby a countable collection of sets $A_k \subset \mathbf{S}^n$ such that $\sum_k \delta(A_k)^n < \eta$. Each A_k can be enclosed in an open ball U_k of diameter $3\delta(A_k)$, and since A is compact, $\bigcup_k U_k$ contains some B_{ε} . Therefore, the conclusion follows from the estimate

$$V(B_{\varepsilon}) \le \sum_{k} V(U_{k}) \le C \sum_{k} \delta(U_{k})^{n} < 3^{n} C \eta,$$

where C is the constant, depending only on n, which relates the Hausdorff measure in dimension n to the usual measure (volume).

Proof of (3.2).. It suffices to prove the result when \mathcal{A} has the C^0 topology, since it is coarser than the C^r topology for any $r \geq 1$.

Let $\gamma \in S$ and \mathcal{H} (regarded as a subset of \mathbf{S}^n) be the set of all open hemispheres containing $\gamma([0, 1])$. Let $\varepsilon > 0$ and define

$$B_{\varepsilon} = \bigcup_{q \in \partial \mathcal{H}} B(q; \varepsilon), \quad \mathcal{H}_0 = \mathcal{H} \smallsetminus B_{\varepsilon} \quad \text{and} \quad \mathcal{H}_1 = \mathcal{H} \cup B_{\varepsilon}.$$
(3)

Then $\overline{\mathcal{H}}_0 \subset \mathcal{H} \subset \overline{\mathcal{H}} \subset \mathcal{H}_1$. As a consequence of the compactness of [0, 1], $\overline{\mathcal{H}}_0$ and $\mathbf{S}^n \smallsetminus \mathcal{H}_1$, there exists $\delta > 0$ for which

$$\langle \gamma(t), u \rangle \ge \delta$$
 if $u \in \mathcal{H}_0$ and $\langle \gamma(t), v \rangle \le -\delta$ for $v \notin \mathcal{H}_1$ for all $t \in [0, 1]$.

Consequently, there exists a neighborhood $\mathcal{U} \subset \mathcal{A}$ of γ such that if $\eta \in \mathcal{U}$ then

$$\langle \eta(t), u \rangle \ge \delta/2$$
 if $u \in \mathcal{H}_0$ and $\langle \eta(t), v \rangle \le -\delta/2$ for $v \notin \mathcal{H}_1$ for all $t \in [0, 1]$.

Thus, if \mathcal{K} is the set of hemispheres containing η , we have $\overline{\mathcal{H}}_0 \subset \mathcal{K} \subset \overline{\mathcal{K}} \subset \mathcal{H}_1$.

Without loss of generality, we may assume that the barycenter h_{γ} of \mathcal{H} is e_{n+1} . Let h_{η}^{j} denote the *j*-th coordinate of the barycenter h_{η} of \mathcal{K} . By definition $h_{\eta}^{j} \int_{\mathcal{K}} dx = \int_{\mathcal{K}} x_{j} dx$, and the latter term satisfies

$$\begin{split} \int_{\mathcal{K}} x_j dx &= \int_{\mathcal{H}} x_j \, dx &+ \int_{\mathcal{K} \smallsetminus \mathcal{H}} x_j \, dx - \int_{\mathcal{H} \smallsetminus \mathcal{K}} x_j \, dx \\ &\leq \int_{\mathcal{H}} x_j \, dx &+ \int_{\mathcal{H}_1 \smallsetminus \mathcal{H}_0} 1 \, dx - \int_{\mathcal{H}_1 \smallsetminus \mathcal{H}_0} (-1) \, dx \\ &= \int_{\mathcal{H}} x_j \, dx &+ 2 \int_{\mathcal{H}_1 \smallsetminus \mathcal{H}_0} dx \end{split}$$

Since the *j*-th coordinate h_{γ}^{j} of h_{γ} is non-negative for each *j*, it follows that

$$h_{\eta}^{j} \leq \left(\frac{\int_{\mathcal{H}} dx}{\int_{\mathcal{H}_{0}} dx}\right) h_{\gamma}^{j} + 2\left(\frac{\int_{\mathcal{H}_{1}-\mathcal{H}_{0}} dx}{\int_{\mathcal{H}_{0}} dx}\right) ;$$

similarly,

$$h_{\eta}^{j} \ge \left(\frac{\int_{\mathcal{H}} dx}{\int_{\mathcal{H}_{1}} dx}\right) h_{\gamma}^{j} - 2\left(\frac{\int_{\mathcal{H}_{1}-\mathcal{H}_{0}} dx}{\int_{\mathcal{H}_{0}} dx}\right)$$

The set $\partial \mathcal{H}$ has Hausdorff dimension n-1, for it is the image of \mathbf{S}^{n-1} under a Lipschitz map (by (3.1) and (3.3)). We also have:

$$\int_{\mathcal{H}_1} dx \le \int_{\mathcal{H}} dx + V(B_{\varepsilon}), \quad \int_{\mathcal{H}_0} dx \ge \int_{\mathcal{H}} dx - V(B_{\varepsilon}) \quad \text{and} \quad \int_{\mathcal{H}_1 \smallsetminus \mathcal{H}_0} dx \le V(B_{\varepsilon}).$$

Therefore, according to (3.4), we can make h_{η} arbitrarily close to h_{γ} for all $\eta \in \mathcal{U}$ by an adequate choice of ε in (3). In other words, $\gamma \mapsto h_{\gamma}$ is continuous.

The following result (for C^1 curves) is quite old; see [5], §1.

(3.5) Lemma. Let $\gamma: [0,1] \to \mathbf{S}^2$ be an admissible closed curve, and let $\mathbf{t}(t)$ denote its unit tangent vector at $\gamma(t)$. Then the curve $\mathbf{t}: [0,1] \to \mathbf{S}^2$ intersects any great circle.

Proof. Let L be the length of γ and $h \in \mathbf{S}^2$ any fixed vector. Since γ is a closed curve,

$$\int_0^L \langle \mathbf{t}(s), h \rangle \ ds = \int_0^L \langle \gamma'(s), h \rangle \ ds = \langle \gamma(L) - \gamma(0), h \rangle = 0.$$

In particular, the function $\langle \mathbf{t}(s), h \rangle$ must vanish for some $s_0 \in [0, L]$. This means that \mathbf{t} intersects the great circle $C = \{p \in \mathbf{S}^2 : \langle p, h \rangle = 0\}$ at $\mathbf{t}(s_0)$. \Box