3
 Curves Contained in a Hemisphere

There exists a two-way correspondence between the unit sphere \mathbf{S}^{n} in \mathbf{R}^{n+1} and the set consisting of its open hemispheres; namely, with $h \in \mathbf{S}^{n}$ we can associate

$$
H=\left\{p \in \mathbf{S}^{n}:\langle h, p\rangle>0\right\}
$$

Thus the set of open hemispheres of \mathbf{S}^{n} carries a natural topology. For convenience, we will often identify H with h. In the sequel all hemispheres shall be open, save explicit mention to the contrary, and we will assume throughout that $n \geq 2$.

Let $\gamma:[0,1] \rightarrow \mathbf{S}^{n}$ be a (continuous) curve contained in the hemisphere H. As a consequence of the compactness of $[0,1]$, if $\tilde{h} \in \mathbf{S}^{n}$ is sufficiently close to h, then γ is also contained in the hemisphere \tilde{H} corresponding to \tilde{h}. It is desirable to be able to select, in a natural way, a distinguished hemisphere among those which contain γ.
(3.1) Lemma. Let $\gamma:[0,1] \rightarrow \mathbf{S}^{n}$ be contained in a hemisphere. Then the set $\mathcal{H} \subset \mathbf{S}^{n}$ of hemispheres that contain γ is open, geodesically convex and itself contained in a hemisphere. ${ }^{1}$

Proof. The hemisphere determined by $\gamma(0)$ contains \mathcal{H} since $\langle h, \gamma(0)\rangle>0$ for each $h \in \mathcal{H}$. Suppose that the hemispheres H, \tilde{H} corresponding respectively to $h, \tilde{h} \in \mathbf{S}^{n}$ belong to \mathcal{H}. We lose no generality in assuming that

$$
h=e_{1}, \quad \tilde{h}=e^{i \theta_{0}}=\cos \theta_{0} e_{1}+\sin \theta_{0} e_{2}, \quad \text { where } 0<\theta_{0}<\pi .^{2}
$$

Any k in the shortest geodesic through h, \tilde{h} has the form

$$
k=e^{i \theta}, \quad \text { where } 0 \leq \theta \leq \theta_{0},
$$

while any $p \in \mathbf{S}^{n}$ satisfying both $\langle p, h\rangle>0$ and $\langle p, \tilde{h}\rangle>0$ is of the form

$$
p=e^{i \phi}+\nu, \quad \text { where } \theta_{0}-\pi / 2<\phi<\pi / 2 \text { and } \nu \text { is normal to } e_{1} \text { and } e_{2} .
$$

[^0]The bounds on θ and ϕ give $|\theta-\phi|<\pi / 2$, hence $\langle p, k\rangle=\cos (\theta-\phi)>0$. Thus $p \in K$ (the hemisphere determined by k) whenever $p \in H, \tilde{H}$, that is, \mathcal{H} is geodesically convex. Finally, we have already remarked above that \mathcal{H} is open.

From (3.1) we deduce that the barycenter (in \mathbf{R}^{n+1}) of the set \mathcal{H} of hemispheres containing γ is not the origin. Its image under gnomic (i.e., central) projection on the sphere, to be denoted by h_{γ}, will be our choice of distinguished hemisphere containing γ.
(3.2) Lemma. Let $r \geq 0$, let \mathcal{A} denote the space of arcs $\gamma:[0,1] \rightarrow \mathbf{S}^{n}$, with the C^{r} topology, and let $\mathcal{S} \subset A$ be the subspace consisting of all γ whose image is contained in some open hemisphere (depending on γ). Then the map $\mathcal{S} \rightarrow \mathbf{S}^{n}$, $\gamma \mapsto h_{\gamma}$, defined in the preceding paragraph, is continuous.

Before proving this, we record two results which we will use.
(3.3) Lemma. Let $C \subset \mathbf{S}^{n}$ be geodesically convex with non-empty interior. Then there exists a homeomorphism $F: \mathbf{S}^{n-1} \rightarrow \partial C$ which is bi-Lipschitz. ${ }^{3}$

Proof. We may assume without loss of generality that C contains $N=e_{n+1}$ in its interior. Let

$$
\left\{\left(p^{1}, \ldots, p^{n+1}\right) \in \mathbf{S}^{n}: p^{n+1}=0\right\}
$$

be the equator of \mathbf{S}^{n}, which we identify with \mathbf{S}^{n-1}. Because $N \in \operatorname{Int}(C)$, there exists $\delta, 0<\delta<1$, such that the open disk

$$
\begin{equation*}
U=\left\{\left(p^{1}, \ldots, p^{n+1}\right) \in \mathbf{S}^{n}:(1-\delta)<p^{n+1} \leq 1\right\} \tag{1}
\end{equation*}
$$

is contained in C. In particular, $\partial C \cap U=\emptyset$. Since C cannot contain antipodal points, ∂C is also disjoint from $-U$ (the image of U under the antipodal map). Because $N \in C$ and $-N \notin C$, any semicircle containing them, say, the one that also contains $\sigma \in \mathbf{S}^{n-1}$, intersects ∂C at some point $F(\sigma)$.

Let $p \in \partial C, u \in U$. We assert that the semicircle through p, u and $-u$ cannot contain another point $q \in \partial C$ (see fig. 4). If we take $u=N$ then this shows that the definition of $F: \mathbf{S}^{n-1} \rightarrow \partial C$ is unambiguous. Assume for a contradiction that the assertion is false, and suppose further that q lies between p and u (if it lies between $-u$ and p instead, the argument is analogous). Consider the union of all geodesic segments joining points of U to p. This set contains q in its interior by hypothesis. The same is true of the union of all
${ }^{3}$ This means that there exist $k_{1}, k_{2}>0$ such that

$$
k_{1}|\sigma-\tau| \leq|F(\sigma)-F(\tau)| \leq k_{2}|\sigma-\tau| \text { for any } \sigma, \tau \in \mathbf{S}^{n-1}
$$

Figure 4: An illustration of part of the proof of (3.3) when $n=2$.
geodesic segments joining points of U to r, whenever r is sufficiently close to p. Since $p \in \partial C$, we can choose $r \in C$ to conclude from the convexity of C that $q \in \operatorname{Int}(C)$, a contradiction.

Let $\sigma \neq \tau \in \mathbf{S}^{n-1}$. Then

$$
\begin{aligned}
\frac{|F(\sigma)-F(\tau)|}{|\sigma-\tau|} & \geq \frac{|(\sqrt{\delta(2-\delta)} \sigma, 1-\delta)-(\sqrt{\delta(2-\delta)} \tau, 1-\delta)|}{|\sigma-\tau|} \\
& \geq \sqrt{\delta(2-\delta)}>0
\end{aligned}
$$

Let d denote the distance function on \mathbf{S}^{n}. To establish a reverse Lipschitz condition for F, it suffices to prove that

$$
\frac{d(F(\sigma), F(\tau))}{d(\sigma, \tau)}=\frac{F(\sigma) F(\tau)}{\varangle F(\sigma) N F(\tau)}
$$

admits an upper bound independent of the pair $\sigma \neq \tau$. ${ }^{4}$ Since $F(\sigma) F(\tau)$ is bounded by π and $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, it actually suffices to establish a bound on

$$
\begin{equation*}
\frac{\sin (F(\sigma) F(\tau))}{\sin (\varangle F(\sigma) N F(\tau))}=\frac{\sin (N F(\tau))}{\sin (\varangle N F(\sigma) F(\tau))}, \tag{2}
\end{equation*}
$$

where the equality follows from the law of sines (for spherical triangles) applied to $\triangle F(\sigma) N F(\tau)$. For arbitrary $\psi \in \mathbf{S}^{n-1}$, define $z_{\psi} \in \partial U$ and $w_{\psi} \in \partial(-U)$ to be the points where the great circle through N and ψ meets ∂U (resp. $\partial(-U)$); more explicitly,

$$
z_{\psi}=(\sqrt{\delta(2-\delta)} \psi, 1-\delta), \quad w_{\psi}=(\sqrt{\delta(2-\delta)} \psi,-1+\delta)
$$

Let $\psi, \bar{\psi} \in \mathbf{S}^{n-1}$ satisfy $d(\psi, \bar{\psi})=\frac{\pi}{2}$ and let α_{0} be the angle at w_{ψ} in $\triangle w_{\psi} z_{\psi} z_{\bar{\psi}}$. Clearly, this angle is independent of $\psi, \bar{\psi}$. We claim that $\varangle N F(\sigma) F(\tau)>\alpha_{0}$.
${ }^{4} A B$ denotes the geodesic segment joining A to B and $\varangle A B C$ the angle at B in the spherical triangle $A B C$.

Otherwise, the geodesic through $F(\sigma)$ and $F(\tau)$ meets U, and so does the geodesic through p and $F(\tau)$ for p close to $F(\sigma)$, for U is open. Since $F(\sigma) \in \partial C$, we can choose $p \in C$ with this property, which, using the convexity of C, contradicts the fact that $F(\tau) \notin \operatorname{Int}(C)$. Hence, we can complete (2) to

$$
\frac{\sin (F(\sigma) F(\tau))}{\sin (\varangle F(\sigma) N F(\tau))}=\frac{\sin (N F(\tau))}{\sin (\varangle N F(\sigma) F(\tau))}<\frac{\pi}{\sin \alpha_{0}},
$$

finishing the proof that F is bi-Lipschitz.
(3.4) Lemma. Let $A \subset \mathbf{S}^{n}$ be a closed set of Hausdorff dimension less than n. If B_{ε} consists of all points at distance less than ε from A, then $\lim _{\varepsilon \rightarrow 0} V\left(B_{\varepsilon}\right)=0$, where V denotes the volume in \mathbf{S}^{n}.

Proof. Let $\delta(S)$ denote the diameter of a set $S \subset \mathbf{S}^{n}$ and $\Gamma_{\alpha}(S)$ its Hausdorff measure of dimension $\alpha>0$. Since $\Gamma_{n}(A)=0$, given any $\eta>0$ we can cover A by a countable collection of sets $A_{k} \subset \mathbf{S}^{n}$ such that $\sum_{k} \delta\left(A_{k}\right)^{n}<\eta$. Each A_{k} can be enclosed in an open ball U_{k} of diameter $3 \delta\left(A_{k}\right)$, and since A is compact, $\bigcup_{k} U_{k}$ contains some B_{ε}. Therefore, the conclusion follows from the estimate

$$
V\left(B_{\varepsilon}\right) \leq \sum_{k} V\left(U_{k}\right) \leq C \sum_{k} \delta\left(U_{k}\right)^{n}<3^{n} C \eta,
$$

where C is the constant, depending only on n, which relates the Hausdorff measure in dimension n to the usual measure (volume).

Proof of (3.2).. It suffices to prove the result when \mathcal{A} has the C^{0} topology, since it is coarser than the C^{r} topology for any $r \geq 1$.

Let $\gamma \in \mathcal{S}$ and \mathcal{H} (regarded as a subset of \mathbf{S}^{n}) be the set of all open hemispheres containing $\gamma([0,1])$. Let $\varepsilon>0$ and define

$$
\begin{equation*}
B_{\varepsilon}=\bigcup_{q \in \partial \mathcal{H}} B(q ; \varepsilon), \quad \mathcal{H}_{0}=\mathcal{H} \backslash B_{\varepsilon} \quad \text { and } \quad \mathcal{H}_{1}=\mathcal{H} \cup B_{\varepsilon} . \tag{3}
\end{equation*}
$$

Then $\overline{\mathcal{H}}_{0} \subset \mathcal{H} \subset \overline{\mathcal{H}} \subset \mathcal{H}_{1}$. As a consequence of the compactness of $[0,1], \overline{\mathcal{H}}_{0}$ and $\mathbf{S}^{n} \backslash \mathcal{H}_{1}$, there exists $\delta>0$ for which

$$
\langle\gamma(t), u\rangle \geq \delta \text { if } u \in \mathcal{H}_{0} \quad \text { and } \quad\langle\gamma(t), v\rangle \leq-\delta \text { for } v \notin \mathcal{H}_{1} \quad \text { for all } t \in[0,1] .
$$

Consequently, there exists a neighborhood $\mathcal{U} \subset \mathcal{A}$ of γ such that if $\eta \in \mathcal{U}$ then $\langle\eta(t), u\rangle \geq \delta / 2$ if $u \in \mathcal{H}_{0}$ and $\langle\eta(t), v\rangle \leq-\delta / 2$ for $v \notin \mathcal{H}_{1} \quad$ for all $t \in[0,1]$.

Thus, if \mathcal{K} is the set of hemispheres containing η, we have $\overline{\mathcal{H}}_{0} \subset \mathfrak{K} \subset \overline{\mathcal{K}} \subset \mathcal{H}_{1}$.

Without loss of generality, we may assume that the barycenter h_{γ} of \mathcal{H} is e_{n+1}. Let h_{η}^{j} denote the j-th coordinate of the barycenter h_{η} of \mathcal{K}. By definition $h_{\eta}^{j} \int_{\mathcal{K}} d x=\int_{\mathcal{K}} x_{j} d x$, and the latter term satisfies

$$
\begin{aligned}
\int_{\mathfrak{K}} x_{j} d x & =\int_{\mathcal{H}} x_{j} d x+\int_{\mathcal{K}^{\prime} \backslash \mathcal{H}} x_{j} d x-\int_{\mathcal{H}_{\backslash X}} x_{j} d x \\
& \leq \int_{\mathcal{H}} x_{j} d x+\int_{\mathcal{H}_{1} \backslash \mathcal{H}_{0}} 1 d x-\int_{\mathscr{H}_{1} \backslash \mathcal{H}_{0}}(-1) d x \\
& =\int_{\mathcal{H}} x_{j} d x+2 \int_{\mathcal{H}_{1} \backslash \mathcal{H}_{0}} d x
\end{aligned}
$$

Since the j-th coordinate h_{γ}^{j} of h_{γ} is non-negative for each j, it follows that

$$
h_{\eta}^{j} \leq\left(\frac{\int_{\mathcal{H}} d x}{\int_{\mathcal{H}_{0}} d x}\right) h_{\gamma}^{j}+2\left(\frac{\int_{\mathcal{H}_{1}-\mathcal{H}_{0}} d x}{\int_{\mathcal{H}_{0}} d x}\right) ;
$$

similarly,

$$
h_{\eta}^{j} \geq\left(\frac{\int_{\mathcal{H}^{\prime}} d x}{\int_{\mathcal{H}_{1}} d x}\right) h_{\gamma}^{j}-2\left(\frac{\int_{\mathcal{H}_{1}-\mathcal{H}_{0}} d x}{\int_{\mathcal{H}_{0}} d x}\right) .
$$

The set $\partial \mathcal{H}$ has Hausdorff dimension $n-1$, for it is the image of \mathbf{S}^{n-1} under a Lipschitz map (by (3.1) and (3.3)). We also have:
$\int_{\mathscr{H}_{1}} d x \leq \int_{\mathcal{H}} d x+V\left(B_{\varepsilon}\right), \quad \int_{\mathcal{H}_{0}} d x \geq \int_{\mathcal{H}} d x-V\left(B_{\varepsilon}\right)$ and $\int_{\mathscr{H}_{1} \backslash \mathcal{H}_{0}} d x \leq V\left(B_{\varepsilon}\right)$.
Therefore, according to (3.4), we can make h_{η} arbitrarily close to h_{γ} for all $\eta \in \mathcal{U}$ by an adequate choice of ε in (3). In other words, $\gamma \mapsto h_{\gamma}$ is continuous.

The following result (for C^{1} curves) is quite old; see [5], $\S 1$.
(3.5) Lemma. Let $\gamma:[0,1] \rightarrow \mathbf{S}^{2}$ be an admissible closed curve, and let $\mathbf{t}(t)$ denote its unit tangent vector at $\gamma(t)$. Then the curve $\mathbf{t}:[0,1] \rightarrow \mathbf{S}^{2}$ intersects any great circle.

Proof. Let L be the length of γ and $h \in \mathbf{S}^{2}$ any fixed vector. Since γ is a closed curve,

$$
\int_{0}^{L}\langle\mathbf{t}(s), h\rangle d s=\int_{0}^{L}\left\langle\gamma^{\prime}(s), h\right\rangle d s=\langle\gamma(L)-\gamma(0), h\rangle=0 .
$$

In particular, the function $\langle\mathbf{t}(s), h\rangle$ must vanish for some $s_{0} \in[0, L]$. This means that \mathbf{t} intersects the great circle $C=\left\{p \in \mathbf{S}^{2}:\langle p, h\rangle=0\right\}$ at $\mathbf{t}\left(s_{0}\right)$.

[^0]: ${ }^{1}$ See the appendix for the definition and basic properties of geodesically convex sets.
 ${ }^{2}$ The use of complex numbers here is made only to simplify the notation.

