
4
The Connected Components of Lκ2

κ1

The following theorem is the main result of this work. It presents a

description of the components of Lκ2
κ1

in terms of κ1 and κ2.

(4.1) Theorem. Let −∞ ≤ κ1 < κ2 ≤ +∞, ρi = arccotκi (i = 1, 2) and �x�
denote the greatest integer smaller than or equal to x. Then Lκ2

κ1
has exactly n

connected components L1, . . . ,Ln, where

n =

�
π

ρ1 − ρ2

�
+ 1 (1)

and Lj contains circles traversed j times (1 ≤ j ≤ n). The component Ln−1

also contains circles traversed (n − 1) + 2k times, and Ln contains circles

traversed n+2k times, for k ∈ N. Moreover, each of L1, . . . ,Ln−2 is homotopy

equivalent to SO3 (n ≥ 3).

Figure 5: The number of connected components of Lκ2
κ1

, as ρ1 − ρ2 varies in
(0, π] (where ρi = arccotκi). When ρ1 − ρ2 = π

n
, Lκ2

κ1
has n + 1 components.

If we replace Lκ2
κ1

by Lκ2
κ1

(I) in the statement then the conclusion is the

same, except that L1(I), . . . ,Ln−2(I) are now contractible, and, of course, the

circles are required to have initial and final frames equal to I. This is what will

actually be proved; the theorem follows from this and the homeomorphism

Lκ2
κ1

≈ SO3 × Lκ2
κ1

(I), which was established in (2.15). We could also have

replaced Lκ2
κ1

by the space of all Cr closed curves (r ≥ 2) whose geodesic

curvatures lie in the interval (κ1, κ2), with the Cr topology, since this space is

homotopy equivalent to the former, by (2.10).

Examples. Let us first discuss some concrete cases of the theorem.
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(a) We have already mentioned (on p. 22) that L+∞
−∞ = I � SO3× (ΩS3�

ΩS3) has two connected components I+ and I−, which are characterized by:

γ ∈ I+ if and only if Φ̃γ(1) = Φ̃γ(0) and γ ∈ I− if and only if Φ̃γ(1) = −Φ̃γ(0).

This is consistent with (4.1).

(b) Suppose κ0 < 0. Setting ρ2 = 0 and ρ1 = arccotκ0 in (4.1), we find

that L+∞
κ0

also has two connected components. Since L+∞
κ0

can be considered a

subspace of L+∞
−∞, these components have the same characterization in terms

of Φ̃(1): two curves γ, η ∈ L+∞
κ0

are homotopic if and only if Φ̃γ(1) = ±Φ̃γ(0)

and Φ̃η(1) = ±Φ̃η(0), with the same choice of sign for both curves.

(c) In contrast, L+∞
κ0

has at least three connected components when

κ0 ≥ 0. It has exactly three components in case

0 ≤ κ0 <
1√
3
.

The case κ0 = 0 is Little’s theorem ([8], thm. 1). If

1√
3
≤ κ0 < 1

it has four connected components and so forth.

To sum up, as we impose starker restrictions on the geodesic curvatures,

a homotopy which existed “before” may now be impossible to carry out. For

instance, in any space L+∞
κ0

with κ0 < 0, it is possible to deform a circle

traversed once into a circle traversed three times. However, in L+∞
0 this is not

possible anymore, which gives rise to a new component.

The first part of theorem (4.1) is an immediate consequence of the

following results.

(4.2) Theorem. Let −∞ ≤ κ1 < κ2 ≤ +∞. Every curve in Lκ2
κ1

(I) (resp. Lκ2
κ1
)

lies in the same component as a circle traversed k times, for some k ∈ N

(depending on the curve).

(4.3) Theorem. Let −∞ ≤ κ1 < κ2 ≤ +∞ and let σk ∈ Lκ2
κ1

(I) (resp. Lκ2
κ1
)

denote any circle traversed k ≥ 1 times. Then σk, σk+2 lie in the same

component of Lκ2
κ1

(I) (resp. Lκ2
κ1
) if and only if

k ≥
�

π

ρ1 − ρ2

�
(ρi = arccotκi, i = 1, 2).

The following very simple result will be used implicitly in the sequel; it

implies in particular that it does not matter which circle σk we choose in (4.2)

and (4.3).
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(4.4) Lemma. Let σ, σ̃ ∈ Lκ2
κ1

(I) (resp. Lκ2
κ1
) be parametrized circles traversed

the same number of times. Then σ and σ̃ lie in the same connected component

of Lκ2
κ1

(I) (resp. Lκ2
κ1
).

Proof. By (2.15), it suffices to prove the result for Lκ2
κ1

(I), since any circle in

Lκ2
κ1

is obtained from a circle in the former space by a rotation and SO3 is

connected. By (2.1), we can assume that both σ and σ̃ are parametrized by a

multiple of arc-length. Let k be the common number of times that the circles

are traversed, let ρ, ρ̃ ∈ (ρ2, ρ1) be their respective radii of curvature (where

ρi = arccot(κi)) and define ρ(s) = (1 − s)ρ + sρ̃ for s ∈ [0, 1]. Then

(s, t) �→ cos ρ(s)(cos ρ(s), 0, sin ρ(s))

+ sin ρ(s)
�

sin ρ(s) cos(2kπt) , sin(2kπt) , − cos ρ(s) cos(2kπt)
�
,

where s, t ∈ [0, 1], yields the desired homotopy between σ and σ̃ in Lκ2
κ1

(I).

Next we introduce the main concepts and tools used in the proofs of the

theorems listed above. From now on we shall work almost exclusively with

spaces of type L+∞
κ0

and L+∞
κ0

(I); we are allowed to do so by (2.25).

The bands spanned by a curve

Let γ : [0, 1] → S2 be a C2 regular curve. For t ∈ [0, 1], let χ(t) (or χγ(t))

be the center, on S2, of the osculating circle to γ at γ(t).1 The point χ(t) will

be called the center of curvature of γ at γ(t), and the correspondence t �→ χ(t)

defines a new curve χ : [0, 1] → S2, the caustic of γ. In symbols,

χ(t) = cos ρ(t)γ(t) + sin ρ(t)n(t). (2)

Here, as always, ρ = arccotκ is the radius of curvature and n the unit normal

to γ. Note that the caustic of a circle degenerates to a single point, its center.

This is explained by the following result.

(4.5) Lemma. Let r ≥ 2, γ : [0, 1] → S2 be a Cr regular curve and χ its

caustic. Then χ is a curve of class Cr−2. When χ is differentiable, χ̇(t) = 0 if

and only if κ̇(t) = 0, where κ is the geodesic curvature of γ.

Proof. If γ is Cr then ρ is a Cr−2 function, hence χ is also of class Cr−2.

The proof of the second assertion is a straightforward computation: Using the

1There are two possibilities for the center on S2 of a circle. To distinguish them we use
the orientation of the circle, as in fig. 2. The radius of curvature ρ(t) is the distance from
γ(t) to the center χ(t), measured along S2.
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arc-length parameter s of γ instead of t, we find that

χ�(s) = ρ�(s)
�
− sin ρ(s)γ(s) + cos ρ(s)n(s)

�
+
�

cos ρ(s) − κ(s) sin ρ(s)
�
t(s)

=
κ�(s)

1 + κ(s)2
�

sin ρ(s)γ(s) − cos ρ(s)n(s)
�
,

where we have used that

cos ρ− κ sin ρ = sin ρ(cot ρ− κ) = 0

together with 0 < ρ < π. Therefore, χ�(s) = 0 if and only if κ�(s) vanishes.

(4.6) Definitions. Let κ0 ∈ R, ρ0 = arccotκ0 and γ ∈ L+∞
κ0

. Define the

regular band Bγ and the caustic band Cγ to be the maps

Bγ : [0, 1] × [ρ0 − π, 0] → S2 and Cγ : [0, 1] × [0, ρ0] → S2

given by the same formula:

(t, θ) �→ cos θ γ(t) + sin θ n(t). (3)

The image of Cγ will be denoted by C, and the geodesic circle orthogonal to

γ at γ(t) will be denoted by Γt. As a set,

Γt =
�

cos θ γ(t) + sin θ n(t) : θ ∈ [−π, π)
�
.

Figure 6:

For fixed t, the images of ±Bγ(t, ·) and ±Cγ(t, ·) divide the circle Γt in

four parts. Note also that χγ(t) = Cγ(t, ρ(t)).
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(4.7) Lemma. Let γ ∈ L+∞
κ0

and let Bγ : [0, 1]× [ρ0−π, 0] → S2 be the regular

band spanned by γ. Then:

(a) The derivative of Bγ is an isomorphism at every point.

(b) ∂Bγ

∂θ
(t, θ) has norm 1 and is orthogonal to ∂Bγ

∂t
(t, θ). Moreover,

det
�
Bγ ,

∂Bγ

∂t
,
∂Bγ

∂θ

�
> 0.

(c) Cγ fails to be an immersion precisely at the points (t, ρ(t)) whose images

form the caustic χ.

Proof. We have:

∂Bγ

∂θ
(t, θ) = − sin θ γ(t) + cos θ n(t). (4)

and

∂Bγ

∂t
(t, θ) = |γ̇(t)|

�
cos θ − κ(t) sin θ

�
t(t) (5)

=
|γ̇(t)|

sin ρ(t)
sin(ρ(t) − θ)t(t), (6)

where ρ(t) = arccotκ(t) is the radius of curvature of γ at γ(t). The inequality

κ0 < κ < +∞ translates into 0 < ρ < ρ0, hence the factor multiplying t(t) in

(6) is positive for θ satisfying ρ0 − π ≤ θ ≤ 0, and this implies (a) and (b).

Part (c) also follows directly from (6), because Cγ and Bγ are defined by the

same formula.

Thus, Bγ is an immersion (and a submersion) at every point of its domain.

It is merely a way of collecting the regular translations of γ (as defined on p. 24)

in a single map.

If we fix t and let θ vary in (0, ρ0), the section Cγ(t, θ) of Γt describes

the set of “valid” centers of curvature for γ at γ(t), in the sense that the

circle centered at Cγ(t, θ) passing through γ(t), with the same orientation, has

geodesic curvature greater than κ0. This interpretation is important because

it motivates many of the constructions that we consider ahead.

Condensed and diffuse curves

(4.8) Definition. Let κ0 ∈ R and γ ∈ L+∞
κ0

. We shall say that γ is condensed

if the image C of Cγ is contained in a closed hemisphere, and diffuse if C

contains antipodal points (i.e., if C ∩ −C �= ∅).
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Examples. A circle in L+∞
κ0

is always condensed for κ0 ≥ 0, but when κ0 < 0

it may or may not be condensed, depending on its radius. If a curve contains

antipodal points then it must be diffuse, since Cγ(t, 0) = γ(t). By the same

reason, a condensed curve is itself contained in a closed hemisphere.

There exist curves which are condensed and diffuse at the same time;

an example is a geodesic circle in L+∞
κ0

, with κ0 < 0. There also exist curves

which are neither condensed nor diffuse. To see this, let S1 be identified with

the equator of S2 and let ζ ∈ S1 be a primitive third root of unity. Choose small

neighborhoods Ui of ζ i (i = 0, 1, 2) and V of the north pole in S2. Then the set

G consisting of all geodesic segments joining points of U1∪U2∪U3 to points of

V does not contain antipodal points, nor is it contained in a closed hemisphere,

by (11.2). By taking ρ0 = arccotκ0 to be very small, we can construct a curve

γ ∈ L+∞
κ0

for which C = Im(Cγ) ⊂ G, but ζ i ∈ C for each i, so that γ is neither

condensed nor diffuse.

To sum up, a curve may be condensed, diffuse, neither of the two, or both

simultaneously, but this ambiguity is not as important as it seems.

(4.9) Lemma. Let κ0 ∈ R and suppose that γ ∈ L+∞
κ0

is condensed. Then the

image of χ = χγ is contained in an open hemisphere.

Proof. Let H =
�
p ∈ S2 : �p, h� ≥ 0

�
be a closed hemisphere containing the

image of Cγ and suppose that �χ(t0), h� = 0 for some t0 ∈ [0, 1]. At least one

of γ(t0) or n(t0) is not a multiple of h× χγ(t0). In either case,

Cγ

�
(t0 − ε, t0 + ε) × (ρ(t0) − ε, ρ(t0) + ε)

�
�⊂ H,

for sufficiently small ε > 0, a contradiction.

Let κ0 ∈ R and let O ⊂ L+∞
κ0

denote the subset of condensed curves.

Define a map h : O → S2 by γ �→ hγ, where hγ is the image under gnomic

(central) projection of the barycenter, in R3, of the set of closed hemispheres

which contain C = Im(Cγ).

(4.10) Lemma. The map h : O → S2, γ �→ hγ, defined above is continuous.

Proof. Consider first the subset S ⊂ L+∞
κ0

consisting of all curves γ such that

Im(Cγ) is contained in an open hemisphere. A minor modification in the proof

of (3.1) shows that, in this case, the set H of closed hemispheres which contain

γ is geodesically convex, open and contained in an open hemisphere. Thus, we

may apply (3.3) and (3.4) to H and ∂H, respectively. Using these, the proof

of (3.2) goes through almost unchanged to establish that the restriction of h

to S is continuous.
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It remains to prove that h is continuous at any curve γ ∈ O � S. Note

first that there exists exactly one closed hemisphere hγ containing Im(Cγ) in

this case. For if C = Im(Cγ) is contained in distinct closed hemispheres H1 and

H2, then it is contained in the closed lune H1 ∩H2. The boundary of Im(Cγ)

is contained in the union of the images of γ = Cγ(·, 0) and γ̌ = Cγ(·, ρ0); since

these curves have a unit tangent vector at all points, they cannot pass through

either of the points in E1 ∩E2 (where Ei is the equator corresponding to Hi).

It follows that Im(Cγ) is contained in an open hemisphere, a contradiction.

Furthermore, by (11.1), (11.2) and (11.5), we can find

zi = Cγ(ti, θi) ∈ Im(Cγ) ∩
�
p ∈ S2 : �p, hγ� = 0

�
(θi ∈ {0, ρ0} , i = 1, 2, 3)

such that 0 lies in the simplex spanned by z1, z2, z3; any hemisphere other

than ±hγ separates these three points. Let z0 = Cγ(t0, θ0) be a point in Im(Cγ)

satisfying �z0, hγ� > 0. Then we may choose δ > 0 and a sufficiently small

neighborhood U of γ in L+∞
κ0

such that �Cη(t0, θ0), k� < 0 for any η ∈ U and

k ∈ S2 satisfying d(k, hγ) ≥ π−δ (where d denotes the distance function on S2).

By reducing U if necessary, we can also arrange that if δ ≤ d(k, hγ) ≤ π−δ, then

the hemisphere corresponding to k separates {Cη(ti, θi), i = 1, 2, 3} whenever

η ∈ U. The conclusion is that if k ∈ S2 satisfies �c, k� ≥ 0 for all c ∈ Im(Cη)

and η ∈ U, then d(k, hγ) < δ. It follows that h is continuous at γ ∈ O� S.

An argument entirely similar to that given above can be used to modify

(3.2) as follows.

(4.11) Lemma. Let κ0 ∈ R and H ⊂ L+∞
κ0

be the subspace consisting of all γ

whose image is contained in some closed hemisphere (depending on γ). Then

the map h : H → S2, which associates to γ the barycenter hγ on S2 of the set

of closed hemispheres that contain γ, is continuous.
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