
5
Grafting

(5.1) Definition. Let γ : [a, b]→ S2 be an admissible curve. The total curva-

ture tot(γ) of γ is given by

tot(γ) =

� b

a

K(t) |γ̇(t)| dt,

where
K =

√
1 + κ2 = csc ρ (1)

is the Euclidean curvature of γ. We say that γ : [0, T ] → S2, u �→ γ(u), is a

parametrization of γ by curvature if

��Φ�
γ(u)

�� =
√
2 or, equivalently,

��Φ̃�
γ(u)

�� = 1
2
for a.e. u ∈ [0, T ].

The equivalence of the two equalities comes from (2.11). The next result

justifies our terminology.

(5.2) Lemma. Let γ : [0, T ]→ S2 be an admissible curve. Then:

(a) γ is parametrized by curvature if and only if

tot
�
γ|[0,u]

�
= u for every u ∈ [0, T ].

(b) If γ is parametrized by curvature then its logarithmic derivatives Λ =

Φ−1
γ Φ

�
γ and Λ̃ = Φ̃−1

γ Φ̃
� are given by:

Λ(u) =




0 − sin ρ(u) 0

sin ρ(u) 0 − cos ρ(u)
0 cos ρ(u) 0


 ,

Λ̃(u) =
1

2

�
cos ρ(u)i+ sin ρ(u)k

�
.

Here, as always, ρ is the radius of curvature of γ. In the expression for

Λ̃ above and in the sequel we are identifying the Lie algebra �so3 = T1S
3 (the

tangent space to S3 at 1) with the vector space of all imaginary quaternions.
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Also, it follows from (a) that if γ : [0, T ] → S2 is parametrized by curvature

then T = tot(γ).

Proof. Let us denote differentiation with respect to u by �. Using (1), we deduce

that

Λ(u) = |γ�(u)|



0 −1 0

1 0 −κ(u)
0 κ(u) 0


 (2)

= K(u) |γ�(u)|




0 − sin ρ(u) 0

sin ρ(u) 0 − cos ρ(u)
0 cos ρ(u) 0


 , (3)

hence |Φ�(u)| = |Λ(u)| =
√
2K(u) |γ �(u)|. Therefore, γ is parametrized by

curvature if and only if

K(u) |γ�(u)| = 1 for a.e. u ∈ [0, T ].

Integrating we deduce that this is equivalent to

tot(γ|[0,u]) = u for every u ∈ [0, T ],

which proves (a). The expression for Λ̃ is obtained from (2), using that under

the isomorphism �so3 → so3 induced by the projection S3 → SO3,
i
2
, j

2
and k

2

correspond respectively to



0 0 0

0 0 −1
0 1 0


 ,



0 0 1

0 0 0

−1 0 0


 , and



0 −1 0

1 0 0

0 0 0


 .

We now introduce the essential notion of grafting.

(5.3) Definition. Let γi : [0, Ti] → S2 (i = 0, 1) be admissible curves

parametrized by curvature.

(a) A grafting function is a function φ : [0, s0]→ [0, s1] of the form

φ(t) = t+
�

x<t, x∈X+

δ+(x) +
�

x≤t, x∈X−

δ−(x), (4)

where X+ ⊂ [0, s0) and X
− ⊂ [0, s0] are countable sets and δ

± : X± →
(0,+∞) are arbitrary functions.

(b) We say that γ1 is obtained from γ0 by grafting, denoted γ0 � γ1, if there

exists a grafting function φ : [0, T0]→ [0, T1] such that Λγ0 = Λγ1 ◦ φ.
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(c) Let J be an interval (not necessarily closed). A chain of grafts consists

of a homotopy s �→ γs, s ∈ J , and a family of grafting functions

φs0,s1 : [0, s0]→ [0, s1], s0 < s1 ∈ J , such that:

(i) Λγs0
= Λγs1

◦ φs0,s1 whenever s0 < s1;

(ii) φs0,s2 = φs1,s2 ◦ φs0,s1 whenever s0 < s1 < s2.

Here every curve is admissible and parametrized by curvature.

(5.4) Remarks.

(a) A function φ : [0, s0] → [0, s1], s0 ≤ s1, is a grafting function if and

only if it is increasing and there exists a countable set X ⊂ [0, s0] such that

φ(t) = t+ c whenever t belongs to one of the intervals which form (0, s0)�X,

where c ≥ 0 is a constant depending on the interval.
(b) Observe that in eq. (4), x < t in the first sum, while x ≤ t in the

second sum. We do not require X+ and X− to be disjoint, and they may be

finite (or even empty).

(c) If φ : [0, s0] → [0, s1] is a grafting function then it is monotone

increasing and has derivative equal to 1 a.e.. Moreover, φ(t+h)−φ(t) ≥ h for

any t and h ≥ 0; in particular, s0 ≤ s1.

(d) As the name suggests, γ0 � γ1 if γ1 is obtained by inserting a

countable number of pieces of curves (e.g., arcs of circles) at chosen points

of γ0 (see fig. 9). This can be used, for instance, to increase the total curvature

of a curve. The difficulty is that it is usually not clear how we can graft pieces

of curves onto a closed curve so that the resulting curve is still closed and the

restrictions on the geodesic curvature are not violated.

(e) Two curves γ0, γ1 ∈ Lκ2
κ1
(Q) agree if and only if Λγ0 = Λγ1 a.e. on [0, 1].

Indeed, γi = Φγie1, where Φγi is the unique solution to an initial value problem

as in eq. (4) of §1. Of course, if the curves are parametrized by curvature
instead, then the latter condition should be replaced by T0 = T1 and Λγ0 = Λγ1

a.e. on [0, T0] = [0, T1].

For a grafting function φ : [0, s0]→ [0, s1] and t ∈ [0, s0], define:

ω+(t) = lim
h→0+

φ(t+ h)− φ(t), ω−(t) = lim
h→0+

φ(t)− φ(t− h).

We also adopt the convention that ω+(s0) = 0, while ω
−(0) = φ(0). Note that

the limits above exist because φ is increasing.

(5.5) Lemma. Let φ : [0, s0] → [0, s1] be a grafting function, and let X± and

δ± be as in definition (5.3(a)).
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(a) t ∈ X± if and only if ω±(t) > 0. In this case, δ±(t) = ω±(t).

(b) X± and δ± are uniquely determined by φ.

(c) If φ0 : [0, s0]→ [0, s1] and φ1 : [0, s1]→ [0, s2] are grafting functions then

so is φ = φ1 ◦ φ0. Moreover,

X±
0 ⊂ X± and δ±0 ≤ δ±.

(Here δ±0 correspond to φ0, δ
± correspond to φ, and so forth.)

Proof. The proof will be split into parts.

(a) Firstly, ω+(s0) = 0 by convention and s0 /∈ X+ because X+ ⊂ [0, s0).

Secondly, ω−(0) = φ(0) by convention, and (4) tells us that 0 ∈ X− if and

only if φ(0) �= 0, in which case δ−(0) = φ(0). This proves the assertion

for t = 0 (resp. t = s0) and X
− (resp. X+).

Since �

x∈X+

δ+(x) +
�

x∈X−

δ−(x) ≤ s1 − s0,

given ε > 0 there exist finite subsets F± ⊂ X± such that

�

x∈X+�F+

δ+(x) +
�

x∈X−�F−

δ−(x) < ε.

Suppose t /∈ X+, t < s0. Then there exists η, 0 < η < ε, such that

[t, t+ η]∩F+ = ∅ and [t, t+ η]∩F− is either empty or {x}. In any case,

ω+(t) ≤ φ(t+ η)− φ(t) < η + ε < 2ε,

which proves that ω+(t) = 0.

Conversely, suppose that t ∈ X+. Then clearly ω+(t) ≥ δ+(t). Moreover,

an argument entirely similar to the one above shows that ω+(t) ≤
δ+(t) + 2ε for any ε > 0, hence ω+(t) = δ+(t) > 0. The results for

X− (and t > 0) follow by symmetry.

(b) Since ω± are determined by φ, the same must be true of X± and δ±,

by part (a). The converse is an obvious consequence of the definition of

grafting function in (4).

(c) Let φ1,φ0 be as in the statement and set Xi = X−
i ∪ X+

i , i = 0, 1, and

X = X0 ∪ φ−1
0 (X1). Then X is countable since both X0 and X1 are
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countable and φ0 is injective. Moreover, if (a, b) ⊂ (0, s0)�X then

φ1(φ0(t)) = φ1(t+ c0) = t+ c0 + c1 (t ∈ (a, b))

for some constants c0, c1 ≥ 0. In addition, φ1 ◦φ0 is increasing, as φ1 and

φ0 are both increasing. Thus, φ1 ◦ φ0 is a grafting function by (5.4(e)).

For the second assertion, let x ∈ X+
0 and h > 0 be arbitrary. Then

φ1(φ0(x+ h))− φ1(φ0(x)) ≥ φ0(x+ h)− φ0(x) ≥ ω+
0 (x),

hence ω+(x) ≥ ω+
0 (x) > 0. Similarly, if x ∈ X−

0 then ω
−(x) ≥ ω−

0 (x) > 0.

Therefore, it follows from part (a) that X±
0 ⊂ X± and δ±0 ≤ δ±.

(5.6) Lemma. The grafting relation � is a partial order over Lκ2
κ1
(Q).

Proof. Suppose γ0, γ1 are as in (5.3), with γ0 � γ1 and γ1 � γ0. Let

φ0 : [0, T0] → [0, T1] and φ1 : [0, T1] → [0, T0] be the corresponding grafting

functions. By (5.4(d)), the existence of such functions implies that T0 = T1,

which, in turn, implies that φ0(t) = t = φ1(t) for all t. Hence Λγ0 = Λγ1 ◦ φ0 =

Λγ1 , and it follows that γ0 = γ1. This proves that � is antisymmetric.

Now suppose γ0 � γ1, γ1 � γ2 and let φi : [0, Ti] → [0, Ti+1] be the

corresponding grafting functions, i = 0, 1. By (5.5(c)), φ = φ1 ◦ φ0 is also a

grafting function. Furthermore,

Λγ0 = Λγ1 ◦ φ0 = (Λγ2 ◦ φ1) ◦ φ0 = Λγ2 ◦ φ

by hypothesis, so γ0 � γ2, proving that � is transitive.

Finally, it is clear that � is reflexive.

(5.7) Lemma. Let Γ = (γs)s∈[a,b), γs ∈ Lκ2
κ1
(Q), be a chain of grafts. Then

there exists a unique extension of Γ to a chain of grafts on [a, b].

Proof. For s0 < s1 ∈ [a, b], let φs0,s1 : [0, s0] → [0, s1] be the grafting function

corresponding to γs0 � γs1 and similarly for X
±
s0,s1

, δ±s0,s1 , ω
±
s0,s1

.

Suppose s0 < s1 < s2. By hypothesis, φs0,s2 = φs1,s2 ◦ φs0,s1 . Therefore,

by (5.5(c)),

X±
s0,s1

⊂ X±
s0,s2

and δ±s0,s1 ≤ δ±s0,s2 (s0 < s1 < s2). (5)

Fix s0 ∈ [a, b) and set

X±
s0,b
=

�

s0<s<b

X±
s0,s

and δ±s0,b = sup
s0<s<b

�
δ±s0,s

�
.
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Since
�
X±

s0,s

�
is an increasing family of countable sets, X±

s0,b
must also be

countable. Define φs0,b : [0, s0]→ [0, b] by

φs0,b(t) = t+
�

x<t, x∈X+
s0,b

δ+s0,b(x) +
�

x≤t, x∈X−
s0,b

δ−s0,b(x).

Then φs0,b is a grafting function for any s0 by construction, and for s0 < s1 we

have

φs0,b = lim
s→b−

φs0,s = lim
s→b−

φs1,s ◦ φs0,s1 = φs1,b ◦ φs0,s1 .

Before defining the curve γb, we construct its logarithmic derivative Λ.

For each s < b, let

Es = φs,b

�
[0, s]

�
, E =

�

s<b

Es.

Then µ(Es) = s for all s, hence [0, b] � E has measure zero, which implies

that E is measurable and µ(E) = b. (Here µ denotes Lebesgue measure.) For

u ∈ E, u = φs,b(t) for some t ∈ [0, s] and s ∈ [a, b), set

Λ(u) = Λ(φs,b(t)) = Λs(t) (u ∈ E), (6)

where Λs denotes the logarithmic derivative of γs. Observe that Λ is well-

defined, for if φs0,b(t0) = u = φs1,b(t1), with s0 < s1, then

φs1,b(t1) = φs0,b(t0) = φs1,b ◦ φs0,s1(t0),

hence t1 = φs0,s1(t0) (because φs0,s1 is increasing) and thus

Λs1(t1) = Λs1(φs0,s1(t0)) = Λs0(t0).

Moreover, by (5.2),

Λ(u) =




0 − sin ρ(u) 0

sin ρ(u) 0 − cos ρ(u)
0 cos ρ(u) 0




where ρ(u) = ρs0(t) if u = φs0,b(t). The measurability of ρ follows from that of

each ρs. Thus, the entries of Λ belong to L
2[0, b] and the initial value problem

Φ̇ = ΦΛ, Φ(0) = I, has a unique solution Φ: [0, b]→ SO3. Naturally, we define

γb(t) = Φ(t)e1.

Let Xs,b = X+
s,b ∪ X−

s,b and suppose that (α, β) is one of the intervals

which form (0, s)�Xs,b. Then φs,b(α, β) ⊂ Es ⊂ [0, b] is an interval of measure
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β − α; we have Λ(t) = Λs(t − c) for t ∈ φs,b(α, β) and a constant c ≥ 0,

so that the restriction of γb to this interval is just γs|[α, β] composed with a
rotation of S2. In particular, we deduce that the geodesic curvature κ of γb

satisfies κ1 < κ < κ2 a.e. on φs(α, β). Since lims→b µ(Es) = b, this argument

shows that κ1 < κ < κ2 a.e. on [0, b]. We claim also that Φ(b) = Q. To see

this, let Λ̄s : [0, b] → so3 be the extension of Λs by zero to all of [0, b]. If Φ̄s

is the solution to the initial value problem ˙̄Φs = Φ̄sΛ̄s, Φ̄s(0) = I, we have

Φs(b) = Φs(s) = Q. Since Λ̄s converges to Λ in the L
2-norm, it follows from

continuous dependence on the parameters of a differential equation that

|Φ(b)−Q| = lim
s→b

|Φ(b)− Φs(b)| = 0.

The curve γb satisfies γs � γb for any s ≤ b by construction. Conversely,

if this condition is satisfied then (6) must hold, showing that γb is the unique

curve with this property. This completes the proof.

Adding loops

This subsection presents adaptations of a few concepts and results

contained in §5 of [12]. Let κ0 ∈ R, ρ0 = arccotκ0 and Q ∈ SO3 be fixed

throughout the discussion.

For arbitrary ρ1 ∈ (0, ρ0), define σρ1 to be the unique circle in L+∞
κ0
(I) of

radius of curvature ρ1:

σρ1(t) = cos ρ1(cos ρ1, 0, sin ρ1)

+ sin ρ1
�
sin ρ1 cos(2πt), sin(2πt),− cos ρ1 cos(2πt)

�
,

and let σρ1
n ∈ L+∞

κ0
(I) be σρ1 traversed n times; in symbols, σρ1

n (t) = σρ1(nt),

t ∈ [0, 1]. As we have seen in (4.4), if ρ1, ρ2 < ρ0 then σ
ρ1 and σρ2 are homotopic

within L+∞
κ0
(I).

Now let γ ∈ L+∞
κ0
(Q), n ∈ N, ε > 0 be small and t0 ∈ (0, 1). Let γ[t0#n]

be the curve obtained by inserting (a suitable rotation of) σρ1
n at γ(t0), as

depicted in fig. 7. More explicitly,

γ[t0#n](t) =





γ(t) if 0 ≤ t ≤ t0 − 2ε
γ(2t− t0 + 2ε) if t0 − 2ε ≤ t ≤ t0 − ε

Φγ(t0)σ
ρ1
n

�
t−t0+ε

2ε

�
if t0 − ε ≤ t ≤ t0 + ε

γ(2t− t0 − 2ε) if t0 + ε ≤ t ≤ t0 + 2ε

γ(t) if t0 + 2ε ≤ t ≤ 1
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Figure 7: A curve γ ∈ L+∞
κ0
(Q) and the curve γ[t0#n] obtained from γ by adding

loops at γ(t0).

The precise values of ε and ρ1 are not important, in the sense that

different values of both parameters yield curves that are homotopic. For

t0 �= t1 ∈ (0, 1) and n0, n1 ∈ N, the curve
�
γ[t0#n0]

�[t1#n1] will be denoted

by γ[t0#n0;t1#n1].

We shall now explain how to spread loops along a curve, as in fig. 8;

to do this, a special parametrization is necessary. Given γ ∈ L+∞
−∞(Q), let

Λγ = (Φγ)
−1Φ̇γ : [0, 1]→ so3 denote its logarithmic derivative. Since the entries

of Λγ are L
2 functions and [0, 1] is bounded,

M =

� 1

0

|Λγ(t)| dt < +∞. (7)

Define a function τ : [0, 1]→ [0, 1] by

τ(t) =
1

M

� t

0

|Λγ(u)| du.

Then τ is a monotone increasing function, hence it admits an inverse. If we

reparametrize γ by τ �→ γ(t(τ)), τ ∈ [0, 1], then its logarithmic derivative with
respect to τ satisfies

|Λγ(τ)| = |Φ̇γ(t(τ))| ṫ(τ) = |Λγ(t(τ))|
M

|Λγ(t(τ))|
=M.1

Therefore, using (2.1), we may assume at the outset that all curves γ ∈ L+∞
−∞(Q)

are parametrized so that |Φ̇γ| = |Λγ| is constant (and finite). With this
assumption in force, let n ∈ N, ρ1 ∈ (0, π) and define a map Fn : L

+∞
−∞(Q) →

L+∞
−∞(Q) by:

Fn(γ)(t) = Φγ(t)σ
ρ1
n (t) (γ ∈ L+∞

−∞(Q), t ∈ [0, 1]). (8)

Figure 8:

1The parameter τ is a multiple of the curvature parameter considered in (5.1).
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Using that Φ̇γ = ΦγΛγ (where ˙ denotes differentiation with respect to

t), we find that
Ḟn(γ) = Φγ

�
Λγσ

ρ1
n + σ̇ρ1

n

�
, (9)

and this allows us to conclude that ΦFn(γ)(0) = Φγ(0) and ΦFn(γ)(1) = Φγ(1) for

any admissible curve γ, so that Fn does indeed map L
+∞
−∞(Q) to itself. Moreover,

Fn(γ) is never homotopic to Fm(γ) when m �≡ n (mod 2). This is because the

two curves have different final lifted frames: Φ̃Fn(γ)(1) = (−1)n−mΦ̃Fm(γ)(1) in

S3.

(5.8) Lemma. Let κ0 = cot ρ0 ∈ R, Q ∈ SO3, ρ1 ∈ (0, ρ0), K be compact

and f : K → L+∞
−∞(Q) be continuous. Then the image of Fn ◦ f is contained in

L+∞
κ0
(Q) for all sufficiently large n.

Proof. In order to simplify the notation, we will prove the lemma when K

consists of a single point. The proof still works in the more general case because

all that we need is a uniform bound on |Λf(a)| for a ∈ K. Denoting σρ1
1 simply

by σ, we may rewrite (9) as:

Ḟn(γ)(t) = nΦγ(t)
�
σ̇(nt) +O( 1

n
)
�
(t ∈ [0, 1]), (10)

where O( 1
n
) denotes a term such that n

��O( 1
n
)
�� is uniformly bounded over [0, 1]

as n ranges over all ofN. (In this case, n
��O( 1

n
)
�� = |Λγ(t)| =M for all t ∈ [0, 1],

with M as in (7).) Therefore,

Fn(γ)(t)×
Ḟn(γ)(t)

|Ḟn(γ)(t)|
= Φγ(t)

�
σ(nt)× σ̇(nt)

|σ̇(nt)|

�
+O( 1

n
). (11)

Let ΦFn(γ) (resp. Φσ) denote the frame of Fn(γ) (resp. σ) and ΛFn(γ) (resp. Λσ)

its logarithmic derivative. It follows from (8), (10) and (11) that

ΦFn(γ)(t) = Φγ(t)Φσ(nt) +O( 1
n
).

Differentiating both sides of this equality, we obtain that

Φ̇Fn(γ)(t) = Φ̇γ(t)Φσ(nt) + nΦγ(t)Φ̇σ(nt) +O(1) = n
�
Φγ(t)Φ̇σ(nt) +O( 1

n
)
�
.

Multiplying on the left by the inverse of ΦFn(γ), we finally conclude that

ΛFn(γ)(t) = n
�
Λσ(nt) +O( 1

n
)
�
. (12)

DBD
PUC-Rio - Certificação Digital Nº 0812265/CA



Homotopies of Curves on the 2-Sphere with
Geodesic Curvature in a Prescribed Interval 50

Recall that, by the definition of logarithmic derivative (eq. (2), §1),

ΛFn(γ) =




0 −|Ḟn(γ)| 0

|Ḟn(γ)| 0 −|Ḟn(γ)|κFn(γ)

0 |Ḟn(γ)|κFn(γ) 0


 (13)

and Λσ =



0 − |σ̇| 0

|σ̇| 0 − |σ̇|κ1

0 |σ̇|κ1 0


 , (14)

where κFn(γ) (resp. κ1 = cot ρ1) denotes the geodesic curvature of Fn(γ)

(resp. σ). Comparing the (3,2)-entries of (12) and (13), and using (10), we

deduce that

n
�
|σ̇(nt)|+O( 1

n
)
�
κFn(γ)(t) = n

�
|σ̇(nt)|κ1 +O( 1

n
)
�
.

Therefore limn→+∞ κFn(γ) = κ1 > κ0 uniformly over [0, 1], as required.

(5.9) Lemma. Let γ ∈ L+∞
κ0
(Q), t0 ∈ (0, 1). Then γ[t0#n] � Fn(γ) within

L+∞
κ0
(Q) for all sufficiently large n ∈ N.

Proof. Intuitively, the homotopy is obtained by pushing the loops in Fn(γ)

towards γ(t0). If n is large enough, then we can guarantee that the curvature

remains greater than κ0 throughout the deformation; the proof is similar to

that of (5.8), so we will omit it. See lemma 5.4 in [12] for the details when

κ0 = 0.

The next result states that after we add enough loops to a curve, it

becomes so flexible that any condition on the curvature may be safely forgotten.

(5.10) Lemma. Let γ0, γ1 ∈ L+∞
κ0
(Q) be two curves in the same component

of I(Q) = L+∞
−∞(Q). Then Fn(γ0) and Fn(γ1) lie in the same component of

L+∞
κ0
(Q) for all sufficiently large n ∈ N.

Proof. Let γ0, γ1 be two curves in the same component of L
+∞
−∞(Q). Taking

K = [0, 1] and h : K → L+∞
−∞(Q) to be a path joining γ0 and γ1, we conclude

from (5.8) that g = Fn ◦ h is a path in L+∞
κ0
(Q) joining both curves if n is

sufficiently large.

Thus, if we can find a way to deform γi into F2n(γi) for large n, i = 0, 1,

then the question of deciding whether γ0 and γ1 are homotopic reduces to the

easy verification of whether their final lifted frames Φ̃γ0(1) and Φ̃γ1(1) agree.

One way to achieve this is to graft arbitrarily long arcs of circles onto such a

curve; this is possible if it is diffuse (see fig. 9 below).

DBD
PUC-Rio - Certificação Digital Nº 0812265/CA



Homotopies of Curves on the 2-Sphere with
Geodesic Curvature in a Prescribed Interval 51

Grafting non-condensed curves

(5.11) Proposition. Let κ0 ∈ R and suppose that γ ∈ L+∞
κ0

is diffuse. Then

γ is homotopic to a circle traversed a number of times.

Proof. Let γ : [0, T ]→ S2 be parametrized by curvature and let Λ̃ : [0, T ]→ s̃o3

be its (lifted) logarithmic derivative. Since γ is diffuse, we can find 0 <

t1 < t2 < T and ρ1, ρ2 ∈ [0, ρ0] such that Cγ(t1, ρ1) = −Cγ(t2, ρ2). By

deforming γ in a neighborhood of γ(t2) if necessary, we can actually assume

that ρ1, ρ2 ∈ (0, ρ0). Set zi = Φ̃(ti),

χi = Cγ(ti, ρi) = cos ρi γ(ti)+ sin ρin(ti) and λi = cos ρi i+sin ρik (i = 1, 2).

Identifying S2 with the unit imaginary quaternions, we have

ziλiz
−1
i = χi (i = 1, 2). (15)

We will define a family of curves s �→ γs, s ≥ 0, as follows: First, let

Λ̃s : [0, T + 2s]→ s̃o3 be given by:

Λ̃s(t) =





Λ̃(t) if 0 ≤ t ≤ t1

1
2
λ1 if t1 ≤ t ≤ t1 + s

Λ̃(t− s) if t1 + s ≤ t ≤ t2 + s

1
2
λ2 if t2 + s ≤ t ≤ t2 + 2s

Λ̃(t− 2s) if t2 + 2s ≤ t ≤ T + 2s

Next, let Λs ∈ so3 correspond to Λ̃s ∈ �so3 and define Φs to be the unique

solution to the initial value problem Φs(0) = I, Φ̇s = ΦsΛs. Finally, set

γs = Φse1. Geometrically, when s = 2πk, γs is obtained from γ by grafting a

circle of radius ρ1 traversed k times at γ(t1) and another circle of radius ρ2

traversed k times at γ(t2) (see fig. 9). We claim that γs ∈ L+∞
κ0
(I) for all s ≥ 0.

Indeed, we have

Φ̃s(t) =





Φ̃(t) if 0 ≤ t ≤ t0

z1 exp
�
λ1

2
(t− t1)

�
if t1 ≤ t ≤ t1 + s

exp
�
χ1

2
s
�
Φ̃(t− s) if t1 + s ≤ t ≤ t2 + s

exp
�
χ1

2
s
�
z2 exp

�
λ1

2
(t− t2 − s)

�
if t2 + s ≤ t ≤ t2 + 2s

exp
�
χ1

2
s
�
exp

�
χ2

2
s
�
Φ̃(t− 2s) if t2 + 2s ≤ t ≤ T + 2s
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where we have used (15) to write

�
z1 exp

�
sλ1

2

���
z−1
1 Φ̃(t− s)

�
= exp

�
sχ1

2

�
Φ̃(t− s),

which yields the expression for Φ̃(t) when t ∈ [t1, t1 + s], and similarly for the

interval [t2+2s, T +2s]. In particular, we deduce that the final lifted frame is:

Φ̃s(T + 2s) = exp
�
sχ1

2

�
exp

�
sχ2

2

�
Φ̃(T ) = Φ̃(T ),

as χ2 = −χ1 by hypothesis. This proves that each γs has the correct final

frame. The curvature κs of γs clearly satisfies κ
s > κ0 almost everywhere in

[0, t1]∪ [t1+s, t2+s]∪ [t2+2s, T +2s], because, by construction, the restriction
of γs to each of these intervals is the composition of a rotation of S

2 with an arc

of γ. Moreover, the restriction of γs to the interval [t1, t1+ s] is an arc of circle

of radius of curvature ρ1 < ρ0; similarly, the restriction of γs to [t2+ s, t2+2s]

is an arc of circle of radius of curvature ρ2 < ρ0. Therefore κ
s > κ0 almost

everywhere on [0, T + 2s], and we conclude that γs ∈ L+∞
κ0
(I).

We have thus proved that γ is homotopic to γ [t0#n;t1#n] for all n ∈ N when

γ is diffuse. The proposition now follows from (5.9) and (5.10) combined.

Figure 9: Grafting arcs of circles onto a diffuse curve, as described in (5.11).

The next result says that we can still graft small arcs of circle onto γ

even when it is not diffuse, as long as it is also not condensed.

(5.12) Proposition. Suppose that γ ∈ L+∞
κ0
(I) is non-condensed. Then there

exist ε > 0 and a chain of grafts (γs) such that γ0 = γ, γs ∈ L+∞
κ0
(I) and

tot(γs) = tot(γ) + s for all s ∈ [0, ε).

Proof. (In this proof the identification of S2 with the set of unit imaginary

quaternions used in (5.11) is still in force.) Let γ : [0, T ]→ S2 be parametrized

by curvature and let Λ̃ : [0, T ] → s̃o3 be its (lifted) logarithmic derivative.
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Since γ is not condensed, 0 lies in the interior of the convex closure of the

image C of Cγ by (11.2). Hence, by (11.5), we can find a 3-dimensional

simplex with vertices in C containing 0 in its interior. In symbols, we can

find 0 < t1 < t2 < t3 < t4 < T and s1, s2, s3, s4 > 0, s1 + s2 + s3 + s4 = 1, such

that
0 = s1χ1 + s2χ2 + s3χ3 + s4χ4, (16)

where χi = Cγ(ti, ρi), for some ρi ∈ (0, ρ0), and the χi are in general position.

Furthermore, these numbers si are the only ones which have these properties

(for this choice of the χi). Define a function G : R
4 → S3 by

G(σ1, σ2, σ3, σ4) = exp
�σ1χ1

2

�
exp

�σ2χ2

2

�
exp

�σ3χ3

2

�
exp

�σ4χ4

2

�
.

Then G(0, 0, 0, 0) = 1 and

DG(0,0,0,0)(a, b, c, d) =
1

2

�
aχ1 + bχ2 + cχ3 + dχ4

�
.

Since the χi are in general position by hypothesis, we can invoke the implicit

function theorem to find some δ > 0 and, without loss of generality, functions

σ̄2, σ̄3, σ̄4 : (−δ, δ)→ R of σ1 such that

G
�
σ1, σ̄2(σ1), σ̄3(σ1), σ̄4(σ1)

�
= 1 (σ1 ∈ (−δ, δ)).

Differentiating the previous equality with respect to σ1 at 0 and compar-

ing (16) we deduce that

σ̄�
i(0) =

si
2s1

> 0 (i = 2, 3, 4).

Let s(σ1) = σ1+ σ̄2(σ1)+ σ̄3(σ1)+ σ̄4(σ1). Then s
�(σ1) > 0, hence we can write

σ1, σ2, σ3 and σ4 as a function of s in a neighborhood of 0. The conclusion is

thus that there exist ε > 0 and non-negative functions σ1, σ2, σ3, σ4 of s such

that σ1(s) + σ2(s) + σ3(s) + σ4(s) = s and

exp
�σ1χ1

2

�
exp

�σ2χ2

2

�
exp

�σ3χ3

2

�
exp

�σ4χ4

2

�
= 1 for all s ∈ [0,+ε).

We will now use these functions to obtain γs, s ∈ [0,+ε).
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Define Λ̃s : [0, T + s]→ ˜so3 by:

Λ̃s(t) =





Λ̃(t) if 0 ≤ t ≤ t1

1
2
λ1 if t1 ≤ t ≤ t1 + σ1

Λ̃(t− σ1) if t1 + σ1 ≤ t ≤ t2 + σ1

1
2
λ2 if t2 + σ1 ≤ t ≤ t2 + σ1 + σ2

Λ̃(t− σ1 − σ2) if t2 + σ1 + σ2 ≤ t ≤ t3 + σ1 + σ2

1
2
λ3 if t3 + σ1 + σ2 ≤ t ≤ t3 + σ1 + σ2 + σ3

Λ̃(t− σ1 − σ2 − σ3) if t3 + σ1 + σ2 + σ3 ≤ t ≤ t4 + σ1 + σ2 + σ3

1
2
λ4 if t4 + σ1 + σ2 + σ3 ≤ t ≤ t4 + s

Λ̃(t− s) if t4 + s ≤ t ≤ T + s

where σi = σi(s) (i = 1, 2, 3, 4) are the functions obtained above. Let

Φ̃s : [0, T + s] → S3 be the solution to the initial value problem Φ̃� = Φ̃Λ̃,

Φ̃(0) = 1 and let Φ: [0, T + s] → SO3 be its projection. Then using the

relation χi = ziλiz
−1
i one finds by a verification entirely similar to the one in

the proof of (5.11) that

Φ̃s(T + s) = exp
�σ1χ1

2

�
exp

�σ2χ2

2

�
exp

�σ3χ3

2

�
exp

�σ4χ4

2

�
˜Φ(T ) = Φ̃(T ).

Hence, each γs = Φse1 has the correct final frame. In addition, over each of the

subintervals of [0, T + s] listed above, γs is either the composition of a rotation

of S2 with an arc of γ, or an arc of circle of radius ρi ∈ (0, ρ0) (i = 1, 2, 3, 4).
We conclude from this that the geodesic curvature κs of γs satisfies κ

s > κ0

almost everywhere on [0, T + s], that is, γs ∈ L+∞
κ0
(I) as we wished. Finally,

tot(γs) = T + s = tot(γ) + s

because γs is parametrized by curvature (see (5.2)), and (γs) is a chain of grafts

by construction.
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