
6
Condensed Curves

The rotation number N(η) of a regular closed plane curve η : [0, 1] → R2

is simply the degree of the unit tangent vector t : S1 → S1 (we may consider γ

and t to be defined on S1 since γ is closed). Suppose now that η : [0, L] → R2

is parametrized by arc-length, and write

t(s) = exp(iθ(s)),

for some angle-function θ : [0, L] → R. Then the curvature κ of η is given by

κ(s) = θ�(s); (1)

furthermore, the rotation number of η is given by 2πN(η) = θ(L)−θ(0). These

facts are explained in any textbook on differential geometry. The Whitney-

Graustein theorem ([17], thm. 1) states that two regular closed plane curves

are homotopic through regular closed curves if and only if they have the same

rotation number.

Now suppose γ ∈ L+∞
κ0

has image contained in some closed hemisphere.

Let hγ be the barycenter, on S
2, of the set of closed hemispheres which contain

Im(γ) (cf. (4.11)), and let pr : S2 → R2 denote stereographic projection from

−hγ. Define the rotation number ν(γ) of γ by ν(γ) = −N(η), where η = pr ◦γ.
Recall that a curve γ ∈ L+∞

κ0
is called condensed if the image C of its caustic

band Cγ : [0, 1]× [0, ρ0] → S2 is contained in some closed hemisphere. Because

Cγ(t, 0) = γ(t), any condensed curve is contained in a closed hemisphere, hence

we may speak of its rotation number.

Remark. It is natural to ask why this notion of rotation number is not extended

to a larger class of curves. For instance, if γ is any admissible curve then, by

Sard’s theorem, there exists some point p ∈ S2 not in the image of γ. We

could use stereographic projection from p to define the rotation number of γ.

The trouble is that it is not clear how p can be chosen so that the resulting

number is locally constant (i.e., continuous) on L+∞
κ0

: A different choice of p

yields a different rotation number (although its parity remains the same). In

fact, the class of spherical curves for which a meaningful notion of rotation
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number exists must be restricted, since it is always possible to deform a circle

traversed ν times into a circle traversed ν + 2 times in L+∞
κ0

if ν is sufficiently

large.

(6.1) Proposition. Let A be a connected compact space, κ0 > 0 and f : A →
L+∞

κ0
(I) be such that f(a) is condensed for all a ∈ A. Then there exists ν ∈ N

such that f is homotopic in L+∞
κ0

(I) to the constant map a �→ σν, σν a circle

traversed ν times.

The idea of the proof is to use Möbius transformations to make the

curves ηa = f(a) so small that they become approximately plane curves.

The hypothesis that the curves are condensed guarantees that the geodesic

curvature does not decrease during the deformation. A slight variation of

the Whitney-Graustein theorem is then used to deform the curves to a circle

traversed ν times, where ν is the common rotation number of the curves.

We will also need the following technical result, which is a corollary of

the proof of (6.1).

(6.2) Corollary. Let κ0 > 0 and γ ∈ L+∞
κ0

be a condensed curve. Then there

exists a homotopy s �→ γs ∈ L+∞
κ0

(s ∈ [0, 1]) such that γ1 = γ, γ0 is a

parametrized circle and Im(Cγs) is contained in an open hemisphere for each

s ∈ [0, 1).

We start by defining spaces of closed curves in R2 which are analogous

to the spaces Lκ2
κ1

of curves on S2.1 Let −∞ ≤ κ1 < κ2 ≤ +∞. A (κ1, κ2)-

admissible plane curve is an element (c, z, v̂, ŵ) of R2×S1×L2[0, 1]×L2[0, 1].

With such a 4-tuple we associate the unique curve γ : [0, 1] → R2 satisfying

γ(t) = c+

� t

0

v(τ)t(τ)dτ, t(0) = z, t�(t) = w(t)it(t) (t ∈ [0, 1]),

where v and w are given by eq. (6) on p. 17 and i = (0, 1) is the imaginary unit.

The space of all (κ1, κ2)-admissible plane curves is thus given the structure of a

Hilbert manifold, and we define Wκ2
κ1

to be its subspace consisting of all closed

curves.

Although γ̇ is defined only almost everywhere for a curve γ ∈ Wκ2
κ1
, its

unit tangent vector t is defined over all of [0, 1], and if we parametrize γ by a

multiple of arc-length instead, then γ̇ is defined and nonzero everywhere. More

importantly, since t is (absolutely) continuous, we may speak of the rotation

number of γ and (1) still holds a.e..

1These spaces of plane curves will only be considered in this section.
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(6.3) Lemma. Let A be compact and connected, κ0 ≥ 0 and A → W+∞
κ0
,

a �→ ηa, be a continuous map. Then there exists a homotopy [0, 1]×A → W+∞
κ0
,

(s, a) �→ ηsa, such that η
0
a = ηa and

η1a = σN(t+ ta) for all a ∈ A,

where σN(t) = R0 exp(2πiNt) is a circle traversed N > 0 times. In addition,

if the image of ηa is contained in some ball B(0;R) for all a ∈ A, then we can

arrange that ηsa have the same property for all s ∈ [0, 1] and a ∈ A.

Thus, given a family of curves in W+∞
κ0

indexed by a compact connected

set, we may deform all of them to the same parametrized circle σN , except for

the starting point of the parametrization.

Proof. Since A is connected, all the curves ηa have the same rotation number

N . Moreover, N > 0 because of (1) and the fact that κ0 ≥ 0.

For η ∈ W+∞
κ0

, let zη = tη(0), where tη is the unit tangent vector to η.

The homotopy g : [0, 1]× A → W+∞
κ0

by translations,

g(s, a)(t) = ηa(t)− s
�
izηa + ηa(0)

�
(s, t ∈ [0, 1], a ∈ A),

preserves the curvature and, for any a ∈ A, g(1, a) has the property that it

starts at some z ∈ S1 in the direction iz. Thus, we may assume without loss

of generality that the original curves ηa have this property.

Let ρ0 =
1
κ0
, L(ηa) denote the length of ηa, L0 = mina∈A {L(ηa)} and let

R1 > 0 satisfy
R1 < min

� L

2πN
, ρ0

�
.2 (2)

Define f : [0, 1]× A → W+∞
κ0

to be the homotopy given by

f(s, a)(t) = ηa(0)+
�
(1−s)+s

R12πN

L(ηa)

��
ηa(t)−ηa(0)

�
(s, t ∈ [0, 1], a ∈ A).

Then f(1, a) has length L = 2πNR1 for all a ∈ A. In addition, the curvature

of f(s, a) is bounded from below by κ0 for all s ∈ [0, 1], a ∈ A and almost

every t ∈ [0, 1], as an easy calculation using (2) shows.

The conclusion is that we lose no generality in assuming that the curves

ηa all have the same length L = 2πNR0. Further, by (2.1), we can assume

that they are all parametrized by a multiple of arc-length. This implies that

η̇a takes values on the circle LS1 of radius L. Using angle-functions θa with

2If κ0 = 0 then we adopt the convention that ρ0 = +∞.
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θa(0) = 0 and θa(1) = 2πN , we can write:

η̇a(t) = Lza exp
�
iθa(t)

�
(t ∈ [0, 1]),

where za = tηa(0). Let θ(t) = 2πNt, t ∈ [0, 1], and define

θsa(t) = (1−s)θa(t)+sθ(t), τ̄ s
a(t) = Lza exp(iθ

s
a(t)) (s, t ∈ [0, 1], a ∈ A).

Then θsa(0) = 0 and θsa(1) = 2πN for all s ∈ [0, 1], a ∈ A. The idea is that τ̄ s
a

should be the tangent vector to a curve; the problem is that this curve need

not be closed. We can fix this by defining instead

τ s
a(t) = τ̄ s

a(t)−
� 1

0

τ̄ s
a(v) dv, ηsa(t) = −iza +

� t

0

τ s
a(v) dv.

The conditions
� 1

0
τ s
a(t) dt = 0 and τ s

a(0) = τ s
a(1) then guarantee that ηsa

is a closed curve. Because θsa(1) = 2πN and N > 0, τ̄ s
a must traverse all of

LS1, so that
� 1

0
τ̄ s
a(v) dv lies in the interior of the disk bounded by this circle

for any s ∈ [0, 1], a ∈ A. Consequently, τ s
a(t) never vanishes. Moreover,

η0a = ηa and η1a(t) = −izηa exp(2πNit) for all a ∈ A.

Finally, ηsa has positive curvature for all s ∈ [0, 1] and a ∈ A. Although it

is easier to see this using a geometrical argument, the following computation

suffices: The curvature κs
a of η

s
a is given by

κs
a(t) =

det
�
τ s
a(t), τ̇

s
a(t)

�

|τ s
a(t)|3

=
L2θ̇sa(t)

|τ s
a(t)|3

�
1− det

�� 1

0

exp(iθsa(v)) dv, i exp(iθ
s
a(t))

��
.

Because θsa = (1−s)θa+sθ is monotone increasing (recall that θ�a = κa > κ0 ≥ 0

a.e. by hypothesis), the map t �→ exp(iθsa(t)) runs over all of S
1 for any s and

a. As a consequence, the integral above has norm strictly less than 1, hence

so does the determinant. In fact, since A is compact, we can find a constant

C > 0, independent of a and s, such that

κs
a > Cκ0.

For λ > 0 and an admissible plane curve γ, the curve λγ has curvature given

by κ
λ
, where κ is the curvature of γ. Again using compactness of A, we may

find a smooth function λ : [0, 1] → (0, 1] such that λ(0) = 1 and λ(s) is as

small as necessary for s ∈ (0, 1] to guarantee that κs
a > κ0 for all s ∈ [0, 1]

and a ∈ A if we replace ηsa by λ(s)η̄sa. In addition, we can choose λ so that the
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image of λ(s)ηsa is contained in the ball BR(0) if this is the case for each ηa.

This establishes the lemma with R0 = λ(1).

The next result states that the geodesic curvature of a curve γ : [0, 1] →
S2 and the curvature of the plane curve obtained by projecting γ orthogonally

on TpS
2 are roughly the same, as long as the curve is contained in a small

neighborhood of p.

(6.4) Lemma. Let κ0 < κ1 < κ2 and p ∈ S2 be given. Identifying TpS
2 with

R2, with p corresponding to the origin, let P : S2 → R2 be the orthogonal

projection. Then there exists ε > 0 such that:

(a) If γ ∈ L+∞
κ2

satisfies d(γ(t), p) < ε for all t ∈ [0, 1], then η = P ◦ γ ∈
W+∞

κ1
.

(b) If η ∈ W+∞
κ1

satisfies |η(t)| < ε for all t ∈ [0, 1], then γ = P−1 ◦η ∈ L+∞
κ0
.

In part (a), d denotes the distance function on S2 and the transformation

P−1 in part (b) is to be understood as the inverse of P when restricted to the

hemisphere
�
q ∈ S2 : �q, p� > 0

�
.

Proof. Since the subset of smooth curves is dense in the space of all admissible

(plane or spherical) curves, it suffices to prove the lemma for C2 curves. Let

γ ∈ L+∞
κ2

be a C2 curve such that d(γ(t), p) < ε for all t ∈ [0, 1]. If 0 < ε < π
2

then η will also be a C2 regular curve. Let UTS2 denote the unit tangent bundle

of S2 and U ⊂ UTS2 the open set consisting of all vectors in the fibers of those

q ∈ S2 with d(p, q) < π
2
(d being the distance on S2). Define f, g : U → R by

f(u) =
det(P (u), P (q × u))

|P (u)|3
and g(u) =

det(P (u), P (q))

|P (u)|3
for u ∈ TqS

2,

where × denotes the vector product in R3.

Note that we may identify P with its derivative dPq : TqS
2 → R2 at any

q ∈ S2, because P is the restriction of a linear transformation R3 → R2. With

this observation in mind, a straightforward calculation yields the following

expression for the curvature κη of η = P ◦ γ:

κη(t) = f(t(t))κγ(t)− g(t(t)) (t ∈ [0, 1]).

Here t is the unit tangent vector to γ.

Since f, g are continuous and f(u) = 1, g(u) = 0 for all unit vectors

u ∈ TpS
2, it follows that there exists ε such that if d(p, q) < ε, then

κ0 < f(v)κ1 − g(v) for any v ∈ TqS
2, |v| = 1.
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Hence, if d(γ(t), p) < ε for all t ∈ [0, 1] then κη satisfies the conclusion of (a).

A similar reasoning shows that, by reducing ε if necessary, we can also

arrange for (b) to hold.

Remark. An analogous result to (6.4), with a similar proof, holds for upper

bounds on the curvature, or even lower and upper bounds simultaneously.

However, since we need neither of these versions, we will not formulate them

carefully.

(6.5) Lemma. Let h ∈ S2, H =
�
q ∈ S2 : �q, h� ≥ 0

�
, let pr : S2 → R2

denote stereographic projection from −h. Let κ0 > 0 and γ ∈ L+∞
κ0

be such that

Im(Cγ) ⊂ H. Define Tr : S
2 → S2 to be the Möbius transformation (dilatation)

given by

Tr(p) = pr−1
�
r pr(p)

�
(r ∈ (0, 1], p ∈ S2).

Then, given κ1 > κ0, there exists r0 > 0, depending only on κ0 and κ1, such

that the geodesic curvature κr of Tr(γ) satisfies κ
r > κ1 a.e. for any r ∈ (0, r0).

Proof. Suppose that γ ∈ L+∞
κ0

is parametrized by its arc-length and let σ be

a parametrization, also by arc-length, of an arc of the osculating circle to γ at

γ(s0), i.e., let σ satisfy:

σ(s0) = γ(s0), σ�(s0) = γ�(s0), σ��(s0) = γ��(s0).

(It makes sense to speak of γ �� (as an L2 map) because γ � = t is H1 by

hypothesis.) Then Tr ◦ σ has contact of order 3 with Tr ◦ γ at s0, hence their

geodesic curvatures at the corresponding point agree. Therefore, it suffices to

prove the result for a circle C whose center χ lies in H. Let ρi = arccotκi,

i = 0, 1, and ρ be the radius of curvature of C, ρ < ρ0 < π
2
. If d denotes the

distance function on S2, then C ⊂ Bd

�
h; π

2
+ ρ0

�
(where the latter denotes the

set of q ∈ S2 such that d(h, q) < π
2
+ ρ0). Choose r0 such that

Tr

�
Bd

�
h; π

2
+ ρ0

��
⊂ Bd

�
h; ρ1

�
for all r ∈ (0, r0).

Then Tr(C) is a circle, for a Möbius transformation such as Tr maps circles to

circles, and its diameter is at most 2ρ1. Thus, its geodesic curvature must be

greater than κ1. Moreover, it is clear that the choice of r0 does not depend on

h or on C.

Proof of (6.1). Let γa denote f(a) and let ha be the barycenter of the set of

closed hemispheres which contain Im(Cγa); by (4.10), the map h : A → S2 so

defined is continuous.
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Let pra denote stereographic projection S2 → C from −ha, so that

ha is projected to the origin, and define a family T s
a : S

2 → S2 of Möbius

transformations by:

T s
a (q) = pr−1

a (s pra(q)) (q ∈ S2, s ∈ (0, 1], a ∈ A).

Set γs
a = T s

aγa. From (6.5) it follows that we can choose δ > 0 so small that

the geodesic curvature of γδ
a is greater than κ0 + 2 a.e. for any a ∈ A.

Now choose ε > 0 as in (6.4), with κ1 = κ0+1, κ2 = κ0+2. By reducing

δ if necessary, we can guarantee that the curves γδ
a have image contained in

Bd(ha; ε), for each a. Let ηa be the orthogonal projection of γδ
a onto ThaS

2. We

are then in the setting of (6.3). The conclusion is that we can deform all ηa

to a single circle σν , modulo the starting point of the parametrization, in such

a way that the curves have image contained in B(0; ε) and curvature greater

than κ0 + 1 throughout the deformation. By (6.4) again, when we project this

homotopy back to S2, the geodesic curvature of the curves is always greater

than κ0.

To sum up, we have described a homotopy H : [0, 1]×A → S2 such that

H(0, a) = γa and H(1, a) is a circle traversed ν times for all a ∈ A; further,

the geodesic curvature κs
a of H(s, a) satisfies κs

a(t) > κ0 for all s, t ∈ [0, 1].

These curves H(a, s) do not satisfy Φ(0) = I = Φ(1), but we can correct this

by setting

γ̄s
a = ΦH(a,s)(0)

−1H(a, s)

and using γ̄s
a instead; this has no effect on the geodesic curvature and finishes

the proof that f is null-homotopic, since γ̄1
a is the same parametrized circle for

all a.

We now provide a proof of (6.2). This result will be used to show that

a notion of rotation number for non-diffuse curves, which will be introduced

in the next section, coincides with the one presented at the beginning of this

section.

Proof of (6.2). Let hγ be the barycenter of the set of closed hemispheres which

contain Im(Cγ) and, as in the proof of (6.1), define γs = T s ◦ γ, where

T s(q) = pr−1(s pr(q)) (q ∈ S2, s ∈ (0, 1]) (3)

and pr denotes stereographic projection from−hγ. LetH =
�
p ∈ S2 : �p, hγ� >

0
�
. We claim that Im(Cγs) ⊂ H for all s ∈ (0, 1). This follows from the

following two assertions:
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(i) If Im(Cγs) ⊂ H̄, then there exists ε > 0 such that Im(Cγσ) ⊂ H for all

σ ∈ (s− ε, s);

(ii) If Im(Cγs) �⊂ H, then there exists ε > 0 such that Im(Cγσ) �⊂ H̄ for all

σ ∈ (s, s+ ε).

For any s, the boundary of Im(Cγs) is contained in the union of the images of

γs = Cγs(·, 0) and γ̌s = Cγs(·, ρ0). Moreover, γ has positive geodesic curvature

by hypothesis, and a straightforward calculation shows that γ̌ also does (the

details may be found in (8.6)).

If Im(Cγs) ⊂ H then (i) is obviously true, since H is an open hemisphere;

similarly, (ii) holds if Im(Cγs) �⊂ H̄. Suppose then that Im(Cγs) ⊂ H̄, but

Im(Cγs) �⊂ H for some s > 0. This means that there exists t0 ∈ [0, 1] such that

either γs or γ̌s is tangent to ∂H at γs(t0) or γ̌s(t0), respectively. In the first case,

nγs(t0) = hγ, and in the second nγs(t0) = −hγ. In either case, Cγs

�
{t0}×[0, ρ0]

�

is an arc of the geodesic through γs(t0) and hγ. Such geodesics through hγ are

mapped to lines through the origin by pr, hence (3) implies that there exists

ε > 0 such that Cγ(t, σ) ⊂ H for any t ∈ (t0 − ε, t0 + ε) and σ ∈ (s− ε, s) and

Cγ(t0, σ) �⊂ H̄ for any σ ∈ (s, s+ε). Furthermore, since the geodesic curvatures

of γ, γ̌ are positive and ∂H is a geodesic, the set of t0 ∈ [0, 1] where they are

tangent to ∂H must be finite. This implies (i) and (ii).

Now let S =
�
s ∈ (0, 1) : Im(Cγs) �⊂ H

�
. Assume that S �= ∅ and let

s0 = supS. Applying (i) to γ1 = γ we conclude that there exists ε > 0 with

S ∩ (1 − ε, 1) = ∅. Hence, s0 < 1 and Im(Cγs0
) �⊂ H by construction. An

application of (ii) yields a contradiction. Thus, S = ∅.
Let ρ0 = arccotκ0 and r = π

2
− ρ0. Choosing δ > 0 so that Im(γδ) ⊂

Bd(hγ; r), and proceeding as in the proof of (6.1), we can extend s �→ γs (s ∈
[δ, 1]) to all of [0, 1] so that γ0 is a parametrized circle and Im(γs) ⊂ Bd(hγ; r)

for all s ∈ [0, δ] (where d denotes the distance function on S2). The inequality

d(η(t), Cη(t, θ)) = θ < ρ0, which holds for any η ∈ L+∞
κ0

, implies that

d(hγ, Cγs(t, θ)) <
π

2
for any t ∈ [0, 1], θ ∈ [0, ρ0] and s ∈ [0, δ].

Hence Im(Cγs) ⊂ H for all s ∈ [0, δ]. The same inclusion for s ∈ [δ, 1) was

established above, so the proof is complete.

(6.6) Corollary. Let κ0 > 0 and 1 ≤ ν ∈ N.

(a) The set O (resp. Oν) of all condensed curves (resp. all condensed curves

having rotation number ν) in L+∞
κ0

(I) is the closure of an open set.

(b) If γ ∈ Oν and U ⊂ L+∞
κ0

(I) is any open set containing γ, then γ is

homotopic to a smooth curve within Oν ∩ U.
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Proof. Let S ⊂ O be the subset consisting of all curves γ ∈ L+∞
κ0

(I) such that

Im(Cγ) is contained in an open hemisphere. Then S is open, because if the

compact set C = Im(Cγ) is such that �c, h� > 0 for some h ∈ S2 and all

c ∈ C, then the same inequality holds for all c ∈ Im(Cη) whenever η ∈ L+∞
κ0

(I)

is sufficiently close to γ. Similarly, O is closed. For if γ /∈ O, then, by (11.2)

and (11.5), we can find a 3-dimensional simplex Δγ with vertices in Im(Cγ)

containing 0 ∈ R3 in its interior. If η ∈ L+∞
κ0

(I) is sufficiently close to γ then

we can also find a simplex Δη with vertices in Im(Cη) such that 0 ∈ IntΔη. It

follows that S̄ ⊂ O.

Let γ ∈ O. Define a family T s : S2 → S2 of Möbius transformations by

(3), where pr : S2 → R2 denotes stereographic projection from −hγ, and hγ

is the barycenter of the set of closed hemispheres which contain C = Im(Cγ)

(cf. (4.10)). Then γs = T s ◦ γ ∈ S for all s ∈ (0, 1) by (6.2), which shows that

S̄ ⊃ O. The proof of the assertion about Oν is analogous and will be omitted.

To prove (b), let ε > 0 be such that γs = T s ◦ γ ∈ U for all s ∈ [1− ε, 1].

Choose a path-connected neighborhood V ⊂ S∩U of γ1−ε, and, for s ∈ [0, 1−ε],

let γs be a path in V joining a smooth curve γ0 to γ1−ε. As each γs is condensed

(s ∈ [0, 1]), ν(γs) is defined for all s; since it can only take on integral values,

it must be independent of s. Thus, s �→ γs (s ∈ [0, 1]) is the desired path.

Condensed curves in L+∞
κ0

for κ0 < 0

The purpose of this subsection is to prove the following result.

(6.7) Proposition. Let κ0 < 0 and γ ∈ L+∞
κ0

(I) be a condensed curve. Then γ

lies in the same connected component of L+∞
κ0

(I) as a circle traversed a number

of times.

Let 1 ≤ ν ∈ N and let S2
ν denote the ν-sheeted connected covering of

S2 � {±point}, where we may assume that the point is the north pole N .

We will identify S1 × (−π
2
, π
2
) with S2 � {±N} through the homeomorphism

h given by h(z, φ) = (cosφz, sinφ). This, in turn, yields an identification of

S2
ν with S1

ν × (−π
2
, π
2
), where S1

ν is the ν-sheeted connected covering space of

S1. We will prefer to work with the space S1
ν × (−π

2
, π
2
) instead of S2

ν , but its

Riemannian metric is the one induced on the latter space by S2 through the

covering map.

(6.8) Definition.3 Let 0 < R < π
2
. An acceptable band A : [0, 1] × [0, 1] →

S1
ν × (−π

2
, π
2
) ≡ S2

ν is a map given by

3These notions will only be used in this subsection.
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A(t, u) =
�
exp(2πνit) , (1− u)θ−(t) + uθ+(t)

�
(t, u ∈ [0, 1]) (4)

and satisfying the following conditions:

(i) θ± : [0, 1] → (−π
2
, π
2
) are continuous, 0 ≤ θ+ ≤ R and −R ≤ θ− ≤ 0.

(ii) Let ∂A+ (resp. ∂A−) denote the image of [0, 1]× {1} (resp. [0, 1]× {0})
under A. Then d(p, ∂A−) ≥ R and d(q, ∂A+) ≥ R for every p ∈ ∂A+ and

every q ∈ ∂A−.4

The interior Å of A is simply the interior of the image of A. The set of all

acceptable bands (for fixed R) will be denoted by A and furnished with the

C0 (uniform) topology. Finally, we denote by G the subspace of A consisting of

all acceptable bands A such that d(p, ∂A−) = R = d(q, ∂A+) for any p ∈ ∂A+

and q ∈ ∂A−. Such a band will be called good and R its width.

The motivation for this definition comes from the following lemma.

(6.9) Lemma. Let κ0 = cot ρ0 < 0 and γ ∈ L+∞
κ0

be a condensed curve

having rotation number ν. Then the image of the lift of the regular band

Bγ : [0, 1] × [ρ0 − π, 0] → S2 of γ to S2
ν is the image of a good band of width

π − ρ0.

Proof. By hypothesis, the image of the caustic band Cγ is contained in a

hemisphere, say,

H =
�
p ∈ S2 : �p,N� ≥ 0

�
.

Let γ̂ be the other boundary curve of Bγ, γ̂(t) = Bγ(t, ρ0 − π). Then

γ̂(t) = −Cγ(t, ρ0) ∈ −H for all t ∈ [0, 1]. Since d(γ(t), γ̂(t)) = π − ρ0 < π
2
,

Im(γ) ⊂ H and Im(γ̂) ⊂ −H, the image of the regular band is actually

contained in S1 × [ρ0 − π, π − ρ0] (where we are identifying S2 � {±N} with

S1 × (−π
2
, π
2
)).

Let B̃γ : [0, 1]× [ρ0−π, 0] → S2
ν be the lift of Bγ to S

2
ν ≡ S1

ν×(−π
2
, π
2
). For

each z ∈ S1
ν , let the meridian µz be the geodesic parametrized by µz(t) = (z, t),

t ∈ (−π
2
, π
2
). By what we have just proved and the fact that γ has rotation

number ν, we may define continuous functions θ± : S1
ν → (−π

2
, π
2
) by the

relations

µz(θ+(z)) ∈ B̃γ([0, 1]× {0}) and µz(θ−(z)) ∈ B̃γ([0, 1]× {ρ0 − π}).

Then the map A : [0, 1]× [0, 1] → S1
ν × (−π

2
, π
2
) ≡ S2

ν given by

A(t, u) =
�
exp(2πνit) , (1− u)θ−(t) + uθ+(t)

�
(t, u ∈ [0, 1])

4Here and in what follows, d denotes the distance function on S2
ν (or on S2).
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defines an acceptable band whose image coincides with that of B̃γ. Further-

more, the equality d(γ(t), γ̂(t)) = π − ρ0 implies that d(p, ∂A±) ≤ π − ρ0 for

any p ∈ ∂A∓. We claim that A is a good band of width π − ρ0. To see this,

suppose η : [0, 1] → S2
ν is a piecewise C

1 curve of length less than π−ρ0 joining

∂A− to ∂A+ and write η(u) = B̃γ(t(u), θ(u)). Then the length is minimized

when θ is monotone and ṫ(u) = 0 for all u ∈ [0, 1], hence the minimal length

is π − ρ0; we omit the details since an entirely similar argument is presented

in the proof of (10.5).

(6.10) Lemma. The space A is contractible.

Proof. Let A ∈ A be given by (4) and let s ∈ [0, 1]. Define a family of

acceptable bands As by

As(t, u) =
�
exp(2πνit) , (1− u)θs−(t) + uθs+(t)

�
,

where

θs+(t) = (1− s)θ+(t) + sR and θs−(t) = (1− s)θ−(t)− sR

Then the map A× [0, 1] → A given by (A, s) �→ As is a contraction of A.

(6.11) Lemma. The subspace G is a retract of A.

Proof. Let A ∈ A be given by (4). Define A1 = Im(A), θ1± = θ± and

A2 =
�
p ∈ A1 : d(p, ∂A1

−) ≤ R + 1
2

�
.

We will call a geodesic µz in S2
ν ≡ S1

ν × (−π
2
, π
2
) of the form {z} × (−π

2
, π
2
) a

meridian, and parametrize it by µz(t) = (z, t). We begin by establishing the

following facts:

(a) Each meridian µz intersects ∂A2 at exactly two points µz(θ
2
−(z)) and

µz(θ
2
+(z)), with θ2+ ≥ 0 and θ2− ≤ 0. We define ∂A2

± as the set of all

µz(θ
2
±(z)) for z ∈ S1

ν .

(b) ∂A2
− = ∂A1

−.

(c) p ∈ ∂A2
+ if and only if one of the following holds:

p ∈ ∂A1
+ and d(p, ∂A1

−) ≤ R + 1
2
, or

p ∈ Å1 and d(p, ∂A1
−) = R + 1

2
.
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(d) The boundary ∂A2 of A2 is the disjoint union of ∂A2
+ and ∂A2

−. Moreover,

R ≤ d(p, ∂A2
−) ≤ R +

1

2
and R ≤ d(q, ∂A2

+) ≤ d(q, ∂A1
+)

for any p ∈ ∂A2
+ and q ∈ ∂A2

−.

(e) A2 is the (image of) an acceptable band, and the functions in (6.8(i))

corresponding to A2 are θ2±. Moreover,

0 ≤ θ2+ ≤ min{R + 1
2
, θ1+} and −R ≤ θ2− = θ1− ≤ 0. (5)

The inclusion ∂A1
− ⊂ S1

ν × [−R, 0] implies, firstly, that

A2 ∩
�
S1
ν × [−R, 0]) = A1 ∩

�
S1
ν × [−R, 0]), (6)

as every point of A1 ∩
�
S1
ν × [−R, 0]) lies at a distance less than or equal to R

from ∂A1
−. Secondly, it implies that

t �→ d(µz(t), ∂A
1
−)

is a monotone decreasing function of t when t ≥ 0.

It follows from (6) and the properties of A1 that, for any z ∈ S1
ν , there

exists a unique θ2−(z) ∈ [−R, 0] such that µz(θ
2
−(z)) ∈ ∂A2, unless µz(0) ∈ ∂A1

+.

In the latter case, d(µz(0), ∂A
1
−) = R, θ2−(z) = −R and θ2+(z) = 0. If µz(0) /∈

∂A1
+, let θ2+(z) > 0 be the smallest t ∈ (0, R] such that either µz(t) ∈ ∂A1

+ or

d(µz(t), ∂A
1
−) = R + 1

2
. Suppose µz(θ

2
+(z)) ∈ ∂A1

+. Then µz(θ
2
+(z)) ∈ A2

(because it lies a distance ≤ R + 1
2
from ∂A1

−), while µz(t) /∈ A1 ⊃ A2

for t > θ2+(z). Thus, µz(θ
2
+(z)) ∈ ∂A2. If d(µz(θ

2
+(z)), ∂A

1
−) = R + 1

2
, then

again µz(θ
2
+(z)) ∈ A2 while µz(t) /∈ A2 for t > θ2+(z), since, for such t,

d(µz(t), ∂A
1
−) > R + 1

2
by the second consequence. Moreover, in both cases

µz(t) does not intersect ∂A
2 again for t > 0. This proves (a), (b), (c) and also

establishes (5).

Since

∂A2 =
�

z∈S1
ν

µz ∩ ∂A2,

(a) implies the first assertion of (d). In turn, (b) and (c) together immediately

imply that

R ≤ d(p, ∂A2
−) = d(p, ∂A1

−) ≤ R +
1

2

for any p ∈ ∂A2
+. That d(q, ∂A2

+) ≤ d(q, ∂A1
+) for any q ∈ ∂A2

− follows from

the fact that ∂A2
+ lies below ∂A1

+, in the sense that any geodesic joining ∂A1
−

to ∂A1
+ must first intersect a point of ∂A2

+. Indeed, θ
2
+(z) ≤ θ1+(z) for any
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z ∈ S1
ν , as we have already seen in (5). Thus, (d) holds.

By construction,

A2 =
�
p ∈ S2

ν ≡ S1
ν × (−π

2
, π
2
) : p = (z, θ) for some θ ∈ [θ2−(z), θ

2
+(z)]

�
.

Hence, A2 is the image of the acceptable band given by

(t, u) �→
�
exp(2πνit) , (1− u)θ2−(t) + uθ2+(t)

�
(t, u ∈ [0, 1]).

Using induction and the corresponding versions of items (a)–(e) (whose

proofs are the same in the general case), define

An+1 =
�
p ∈ An : d(p, ∂An

(−1)n) ≤ R + 2−n
�

(n ∈ N).

Finally, let B =
�+∞

n=1 A
n. We claim that B is the image of a good band.

Given N ∈ N and m,n > N , we have

��θn±(z)− θm± (z)
�� ≤ 2−N+1 for any z ∈ S1

ν

by construction. Therefore, θn+�θ+ and θn−�θ− for some functions θ± : S1
ν →

[−R,R], which are continuous as the uniform limit of continuous functions.

Moreover, B is the image of the map

(t, u) �→
�
exp(2πνit) , (1− u)θ−(t) + uθ+(t)

�
(t, u ∈ [0, 1]),

again by construction. We claim that d(x, ∂B±) = R for any x ∈ ∂B∓. Suppose

for a contradiction that d(p, ∂B−) < R for some p ∈ ∂B+, and let pq be a

geodesic of length d(p, ∂B−), with q ∈ ∂B−. Choose neighborhoods U � p

and V � q such that d(x, y) > R for any x ∈ U , y ∈ V . Since p, q ∈ ∂B±, by

choosing a sufficiently large n ∈ N, we may find x ∈ ∂An
+∩U and y ∈ ∂An

−∩V

with d(x, y) < R, a contradiction. Similarly, if d(p, ∂B−) = R+ε for some ε > 0,

choose neighborhoods U � p and V � q such that d(x, y) ≥ R+ ε
2
for any x ∈ U

and V � q. Let N ∈ N be so large that 2−N < ε
2
. Since p, q ∈ ∂B±, we may find

some n > N and x ∈ ∂An
+∩U , y ∈ ∂An

−∩V . Then d(x, y) ≥ R+ ε
2
> R+2−N ,

again a contradiction. The assumption that d(q, ∂B+) �= R for some q ∈ ∂B−

also yields a contradiction. We conclude that B is a good band of width R.

If r : A → G is the map which associates to an acceptable band A the

good band B obtained by the process described above, then r(A) = A whenever

A ∈ G. In addition, we see by induction that the map A �→ An is continuous

on A for every n ∈ N. Given ε > 0, we can arrange that �An − Am�C0 < ε

for any A ∈ A by choosing m, n ≥ N and a sufficiently large N ∈ N. Hence,
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r : A → G is a retraction.

(6.12) Corollary. The space G is contractible.

Proof. This is an immediate consequence of (6.10) and (6.11).

(6.13) Definition. Let B be a good band of width R. A track of B is a curve

on S2
ν of length R joining a point of ∂B+ to a point of ∂B−.

In other words, a track is a length-minimizing geodesic joining ∂B+ to

∂B−; in particular, it is a smooth curve. Also, if Γ1, Γ2 are two tracks through

p ∈ ∂B+ and q ∈ ∂B− then Γ1 = Γ2, since two geodesics on S2 intersect at a

pair of antipodal points, and p and q do not map to the same point nor to a

pair of antipodal points on S2 under the covering map.

(6.14) Lemma. Let B be a good band. Then two tracks of B cannot intersect

at a point lying in B̊.

Proof. Suppose for the sake of obtaining a contradiction that two tracks p1q1

and p2q2, with pi ∈ ∂B+ and qi ∈ ∂B−, intersect at a point x ∈ B̊ (see fig. 10).

Then one of the following must occur:5

Figure 10:

(i) xq1 = xq2;

(ii) xq1 > xq2;

(iii) xq1 < xq2.

If (i) holds, let p̄1, q̄2 be points on p1x and xq2, respectively, which lie in

a normal neighborhood of x. Then, by the triangle inequality,

R = p1q1 = p1x+ xq2 > p1p̄1 + p̄1q̄2 + q̄2q2.

This contradicts the fact that B is a good band of width R.

5Here ab denotes the segment of the corresponding geodesic and also its length.
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If (ii) holds then R = p1q1 > p1x + xq2. Again, this contradicts the fact

that p1q1 is a path of minimal length joining p1 to ∂B−. Similarly, if (iii) holds

then R = p2q2 > p2x+xq1, contradicting the fact that p2q2 is a path of minimal

length joining p2 to ∂B−.

Remark. Note that this result may be false for an acceptable band. In the

proof, we have implicitly used the fact that if pq is a path of minimal length

joining p ∈ ∂B+ to ∂B− then pq is also a path of minimal length joining q to

∂B+, and this is not necessarily true for an acceptable band.

(6.15) Lemma. Every point in the image of a good band B lies in a unique

track of B.

Figure 11:

Proof. Let R be the width of B and let T ⊂ Im(B) consist of all points which

lie on some track of B. It is clear from the definitions that ∂B± ⊂ T . We claim

that a ∈ T if and only if

d(a, ∂B+) + d(a, ∂B−) = R (7)

The existence of a track through a implies that d(a, ∂B+) + d(a, ∂B−) ≤ R. If

the inequality were strict, then there would exist a path of length less than R

joining ∂B+ to ∂B−, which is impossible. Conversely, suppose (7) holds, and

let p ∈ ∂B+, q ∈ ∂B− be the points of ∂B+ (resp. ∂B−) which are closest to

a. Then the concatenation of the geodesics pa and aq is a path of length R

joining ∂B+ to ∂B−, i.e., a track. Hence, a ∈ T .

The characterization of T that we have established implies that the latter

is a closed set. Now suppose that x /∈ T , let V be the component of B̊ � T

containing x (see fig. 11, where V is depicted as a gray open ball). Since T is

closed, any point in ∂V lies in T . Choose points a1, a2 ∈ ∂V �(∂B+∪∂B−) such

that the (unique) tracks piqi going through ai do not coincide, where pi ∈ ∂B+

and qi ∈ ∂B− (i = 1, 2). Such points ai exist because otherwise V = B̊, which
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is absurd since any point on a track lies in T . Because the tracks are distinct,

at least one of p1 �= p2 or q1 �= q2 must hold. Assume without loss of generality

that q1 �= q2, and let q ∈ ∂B− be such that it is possible to join q to x in Im(B)

without crossing p1q1 nor p2q2. Let Γ be a track through q. Then Γ joins q to

∂B+, but it does not intersect p1q1 nor p2q2 by (6.14). It follows that Γ must

contain points of V , a contradiction which shows that T = Im(B). In other

words, every point of Im(B) lies in a track of B; uniqueness has already been

established in (6.14).

(6.16) Corollary. Let B be a good band of width R. Then d(a, ∂B+) +

d(a, ∂B−) = R for any a ∈ Im(B).

(6.17) Lemma. Let B be a good band of width R and let 0 < r < R.

Then the set γr consisting of all those points in B̊ at distance r from ∂B+ is

(the image of) a closed admissible curve whose radius of curvature ρ satisfies

r ≤ ρ ≤ π −R + r almost everywhere.

Proof. For p ∈ B̊, let Γp : [0, R] → S2
ν denote the unique track through p,

parametrized by arc-length, with Γp(0) ∈ ∂B− and Γp(1) ∈ ∂B+. Define

vector fields n and t in B̊ by letting n(p) be the unit tangent vector to Γp

at p and t(p) = n(p)× p. We claim that the restriction of n (and consequently

that of t) to any compact subset K of B̊ satisfies a Lipschitz condition. Let

d0 < min{d(K, ∂B+) , d(K, ∂B−)}, let a0, a1 ∈ K, with a1 close to a0, and

consider the (spherical) triangle having Γa0 , Γa1 , a0a1 as sides and a0, a1, a2

as vertices (see fig. 12). The point a2 must lie outside of B̊ by (6.14). Let p0

be the point where the geodesic segment a0a2 intersects ∂B±. Then

a0a2 ≥ a0p0 ≥ d0.

Hence, by the law of sines (for spherical triangles) applied to �a0a1a2,

sin a2
sin(a0a1)

=
sin a1

sin(a0a2)
≤ 1

sin d0
,

Using parallel transport we may compare

∠(n(a0),n(a1))
a0a1

with
�a2
a0a1

≈ sin a2
sin(a0a1)

to obtain a Lipschitz condition satisfied by the former, but we omit the

computations.

Now given p ∈ B̊ at distance r from ∂B+, 0 < r < R, let γr be the integral

curve through p of the vector field t. Then γr is parametrized by arc-length
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Figure 12:

and its frame is given by

Φγr(t) =




| | |
γr(t) t(γr(t)) n(γr(t))

| | |




by construction. If d(t) = d(γr(t), ∂B+) then ḋ ≡ 0, since t(γr(t)) is orthogonal

to the track through γr(t) for every t. Hence d is constant, equal to r, and γr

is a closed curve. Moreover, since t and n satisfy a Lipschitz condition when

restricted to the image of γr, we see that the entries of Φγr are absolutely

continuous with bounded derivative. In particular, these derivatives belong to

L2. We conclude that γr is admissible.

For r−R < θ < r, the curve γr−θ is the translation of γr by θ (as defined

on p. 24, eq. (8)) by construction. Since this curve is regular, we deduce from

(6) in (4.7) that the radius of curvature ρ of γr satisfies

0 < ρ(t)− θ < π

for all t at which ρ is defined and all θ in (r−R, r). Therefore, r ≤ ρ ≤ π−R+r

a.e..

(6.18) Corollary. Let B be a good band of width R and let 0 < r < R.

Then the central curve γR
2
is an admissible curve whose radius of curvature is

restricted to
�
R
2
, π − R

2

�
.

Before finally presenting a proof of (6.7), we extend the definition of the

regular band of a curve to any space Lκ2
κ1
.

(6.19) Definition. Let γ ∈ Lκ2
κ1
. The (regular) band Bγ spanned by γ is the

map:

Bγ : [0, 1]× [ρ1 − π, ρ2] → S2, Bγ(t, θ) = cos θ γ(t) + sin θ n(t).

The statement and proof of (4.7) still hold, except for obvious modifica-

tions.

DBD
PUC-Rio - Certificação Digital Nº 0812265/CA



Homotopies of Curves on the 2-Sphere with
Geodesic Curvature in a Prescribed Interval 72

Proof of (6.7). By (2.10), we may assume that γ ∈ L+∞
κ0

(I) (κ0 < 0) is of class

C2. Let ργ denote its radius of curvature, ρ0 = arccotκ0,

ρ1 =
π − ρ0

2
, κ1 = cot ρ1 (8)

(compare (2.26)) and let η be the translation of γ by ρ1. Then the radius of

curvature ρη of η satisfies ρ1 < ρη < π−ρ1. Since ρη is continuous, there exists

ρ̄1 with ρ1 < ρ̄1 < π
2
such that

ρ̄1 < ρη < π − ρ̄1.

In particular, the regular band of η may be extended from [0, 1]× [−ρ1, ρ1] to

[0, 1]× [−ρ̄1, ρ̄1]. Consider the space G of good bands of width R = 2ρ̄1 and the

corresponding space A ⊃ G of acceptable bands. Let B0 the regular band of η

(whose image is the same that of the regular band of γ), and B1 be the regular

band of a condensed circle in L+∞
κ0

traversed ν times, where ν is the rotation

number of γ. The combination of (6.9), (6.12) and (6.18) yields a homotopy

s �→ ηs from η = η0 to a circle η1, where ηs is the central curve of a good band

Bs, s ∈ [0, 1]. Moreover, (6.18) guarantees that the radius of curvature ρηs of

ηs satisfies ρ̄1 ≤ ρηs ≤ π − ρ̄1 for each s ∈ [0, 1]. Consequently,

ρ1 < ρηs < π − ρ1 for each s ∈ [0, 1]

and it follows that s �→ ηs is a path in L+κ1
−κ1

from η to a circle. If we let γs be

the translation of ηs by −ρ1, then γ0 is the original curve γ, and s �→ γs is a

path in L+∞
κ0

from γ to a circle γ1 traversed ν times.

We have proved that γ ∈ L+∞
κ0

(I) lies in the same component of L+∞
κ0

as a circle traversed a number of times. The latter space may be replaced by

L+∞
κ0

(I) without altering the conclusion by the usual trick of substituting γs

by Φγs(0)
−1γs (s ∈ [0, 1]).
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