
7
Non-diffuse Curves

In this section we define a notion of rotation number for any non-diffuse

curve in L+∞
κ0

and prove a bound on the total curvature of such a curve which

depends only on its rotation number and κ0 (prop. (7.8)).

(7.1) Lemma. Suppose X is a connected, locally connected topological space

and C �= ∅ is a closed connected subspace. Let
�

α∈J Bα be the decomposition

of X � C into connected components. Then:

(a) ∂Bα ⊂ C for all α ∈ J .

(b) For any J0 ⊂ J , the union C ∪�
β∈J0 Bβ is also connected.

Proof. Assume (a) is false, and let p ∈ ∂Bα � C for some α. Since C is closed

and X locally connected, we can find a connected neighborhood U � p which is

disjoint from C. But U ∩Bα �= ∅ and Bα is a connected component of X �C,

hence U ⊂ Bα, contradicting the fact that p ∈ ∂Bα. Therefore ∂Bα ⊂ C

as claimed. Moreover, ∂Bα �= ∅, otherwise X = Bα � (X � Bα) would be a

decomposition of the connected space X into two open sets. Now, for β ∈ J ,

set Aβ = C∪Bβ = C∪Bβ. Each Aβ is a union of two connected sets with non-

empty intersection, hence is itself connected. Similarly, C∪�β∈J Bβ =
�

β∈J Aβ

is connected as the union of a family of connected sets with a point in

common.

We will also need the following well-known results.1

(7.2) Theorem. Let A ⊂ S2 be a connected open set.

(a) A is simply-connected if and only if S2 � A is connected.

(b) If A is simply-connected and S2 �A �= ∅, then A is homeomorphic to an

open disk.

(c) Let S± ⊂ S2 be disjoint and homeomorphic to S1. Then the closure of

the region bounded by S− and S+ is homeomorphic to S1 × [−1, 1].

1Part (b) of (7.2) is an immediate corollary of the Riemann mapping theorem and part
(c) is the 2-dimensional case of the annulus theorem.
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(7.3) Lemma. Let U± ⊂ S2 be homeomorphic to open disks, U− ∪ U+ = S2.

Then

U− ∩ U+ ≈ S1 × (−1, 1).

Proof. We first make two claims:

(a) Suppose C ≈ S1×[−1, 1] and h : ∂C− → S1×{−1} is a homeomorphism,

where ∂C− is one of the boundary circles of C. Then h may be extended

to a homeomorphism H : C → S1 × [−1, 1].

(b) Let M be a tower of cylinders, in the sense that:

(i) Mi ≈ S1 × [−1, 1] for each i ∈ Z;

(ii) M =
�

i∈ZMi and M has the weak topology determined by the Mi;

(iii) Mi ∩Mj = ∅ for j �= i ± 1 and Mi ∩Mi+1 = S+
i = S−

i+1, where S±
i

are the boundary circles of Mi.

Then M ≈ S1 × (−1, 1).

Claim (a) is obviously true if C = S1 × [−1, 1]: Just set H(z, t) = (h(z), t). In

the general case let F : C → S1 × [−1, 1] be a homeomorphism. Note that ∂C

is well-defined as the inverse image of S1×{±1} (p ∈ ∂C if and only if U�{p}
is contractible whenever U is a sufficiently small neighborhood of p). Hence

∂C consists of two topological circles, ∂C± = F−1
�
S1×{±1}

�
. Let f = F |∂C−

and let g = h ◦ f−1 : S1 → S1. As we have just seen, we can extend g to a

self-homeomorphism G of S1 × [−1, 1]. Now define H : C → S1 × [−1, 1] by

H = G ◦ F . Then H|∂C− = g ◦ f = h, as desired.

To prove claim (b), let H0 : M0 → S1 × [−1
2
, 1
2
] be any homeomorphism.

By applying (a) to M±1 and h±1 = H0|S±
0

, we can extend H0 to a homeomor-

phism

H1 : M0 ∪M±1 → S1 ×
�
−2

3
, 2
3

�
,

and, inductively, to a homeomorphism

Hk :
�

|i|≤k

Mi → S1 ×
�
− 1 +

1

k + 2
, 1 − 1

k + 2

�
(k ∈ N).

Finally, let H : M → S1 × (−1, 1) be defined by H(p) = Hi(p) if p ∈ Mi. Then

H is bijective, continuous and proper, so it is the desired homeomorphism.

Returning to the statement of the lemma, note first that ∂U± ⊂ U∓.

Indeed, if p ∈ ∂U− ∩ (S2�U+) then p /∈ U− ∪U+ = S2, hence no such p exists.

Let h± : B(0; 1) → U± be homeomorphisms, and define f± : [0, 1) → R by

f±(r) = sup
�
d
�
p, ∂U±

�
: p ∈ h±(rS1)

�
,
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where d denotes the distance on S2. We claim that limr→1 f±(r) = 0. Observe

first that f± is strictly decreasing, for if q ∈ h±(r0S
1), r0 < r, then any geodesic

joining q to ∂U± intersects h(rS1). Hence the limit exists; if it were positive,

then U± would be at a positive distance from ∂U±, which is absurd.

Now choose n ∈ N such that

f±(t) <
1

2
min

�
d
�
∂U−,S

2 � U+

�
, d
�
∂U+,S

2 � U−
��

for any t > 1 − 1
n
. Set

Si = h+

��
1 − 1

n + i

�
S1

�
for i > 0 and Si = h−

��
1 − 1

n− i

�
S1

�
for i < 0.

Finally, let M0 be the region of U− ∩ U+ bounded by S1 and S−1 and, for

i > 0 (resp. < 0), let Mi the region bounded by Si and Si+1 (resp. Si−1). Using

(7.2(c)) we see that U− ∩ U+ =
�
Mi is a tower of cylinders as in claim (b),

and we conclude that U− ∩ U+ ≈ S1 × (−1, 1).

Remark. Another proof of the previous result can be obtained as follows: Since

U± are each contractible, the Mayer-Vietoris sequence yields immediately that

U−∩U+ has the homology of S1. Together with a little more work it then follows

from the classification of noncompact surfaces that U− ∩ U+ ≈ S1 × (−1, 1).

We now return to spaces of curves.

(7.4) Definitions. For fixed κ0 ∈ R and γ ∈ L+∞
κ0

, let C denote the image

of Cγ and D = −C. Assuming γ non-diffuse (meaning that C ∩ D = ∅), let

Ĉ (resp. D̂) be the connected component of S2 � D containing C (resp. the

component of S2 � C containing D) and let B = Ĉ ∩ D̂.

Figure 13: A sketch of the sets defined in (7.4) for a non-diffuse curve γ ∈ L+∞
κ0

.
The lightly shaded region is C and the darkly shaded region is D = −C;
both are closed. The dotted region represents B, which is homeomorphic to
S1 × (−1, 1) by (7.5(c)).
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(7.5) Lemma. Let the notation be as in (7.4).

(a) C and D are at a positive distance from each other.

(b) B ⊂ S2 � (C ∪ D) is open and consists of all p ∈ S2 such that: there

exists a path η : [−1, 1] → S2 with

η(−1) ∈ D, η(1) ∈ C, η(0) = p and η(−1, 1) ⊂ S2 � (C ∪D).

(c) The set B is homeomorphic to S1 × (−1, 1).

Proof. The proof of each item will be given separately.

(a) This is clear, since C and D are compact sets which, by hypothesis, do

not intersect.

(b) Being components of open sets, Ĉ and D̂ are open, hence so is B.

Suppose p ∈ B. Since p ∈ Ĉ, there exists η+ : [0, 1] → S2 such that

η+(0) = p, η+(1) ∈ C and η+[0, 1] ⊂ S2 �D.

We can actually arrange that η+[0, 1) ⊂ S2 � (C ∪ D) by restricting

the domain of η+ to [0, t0], where t0 = inf
�
t ∈ [0, 1] : η+(t) ∈ C

�
and

reparametrizing; note that t0 > 0 because B is open and disjoint from

C. Similarly, there exists η− : [−1, 0] → S2 such that

η−(−1) ∈ D, η−(0) = p and η−(−1, 0] ⊂ S2 � (C ∪D).

Thus, η = η− ∗ η+ satisfies all the requirements stated in (b).

Conversely, suppose that such a path η exists. Then p ∈ Ĉ, for there is a

path η+ = η|[0,1] joining p to a point of C while staying outside of D at

all times. Similarly, p ∈ D̂, whence p ∈ B.

(c) The set Ĉ is open and connected by definition. Its complement is also

connected by (7.1(b)), as it consists of D and the components of S2 �D

distinct from Ĉ. From (7.2(a)) it follows that Ĉ is simply-connected.

Further, Ĉ∩D = ∅, hence the complement of Ĉ is non-empty and (7.2(b))

tells us that Ĉ is homeomorphic to an open disk. By symmetry, the same

is true of D̂.

We claim that Ĉ ∪ D̂ = S2. To see this suppose p /∈ C, and let A be

the component of S2 � C containing p. If A ∩ D �= ∅ then A = D̂ by

definition. Otherwise A ∩ D = ∅, hence there exists a path in S2 � D
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joining p to ∂A. By (7.1(a)), ∂A ⊂ C, consequently A ⊂ Ĉ. In either

case, p ∈ Ĉ ∪ D̂.

We are thus in the setting of (7.3), and the conclusion is that

B = Ĉ ∩ D̂ ≈ S1 × (−1, 1).

In what follows let ∂Bγ be the restriction of Bγ to [0, 1]×{0, ρ0 − π}, let

B̂ = Im(Bγ) � Im(∂Bγ),

and let

B̄γ : S1 × [ρ0 − π, 0] → S2

be the unique map satisfying B̄γ ◦ (pr× id) = Bγ, pr(t) = exp(2πit).

(7.6) Lemma. Let κ0 ∈ R and suppose that γ ∈ L+∞
κ0

is non-diffuse. Then:

(a) For any t ∈ [0, 1], Bγ

�
{t} × (ρ0 − π, 0)

�
intersects B.

(b) B ⊂ B̂.

(c) B̄−1
γ (q) is a finite set for any q ∈ S2 and B̄γ : B̄−1

γ (B̂) → B̂ is a covering

map.

Proof. We split the proof into parts.

(a) Note first that Bγ(t, 0) ∈ C and Bγ(t, ρ0 − π) ∈ D for any t ∈ [0, 1] by

definition. Let

θ1 = inf
�
θ ∈ [ρ0 − π, 0] : Bγ(t, θ) ∈ C

�
,

θ0 = sup
�
θ ∈ [ρ0 − π, θ1] : Bγ(t, θ) ∈ D

�
.

Then θ0 < θ1 by (7.5(a)). Let η = Bγ|{t}×[θ0,θ1]. Then

η(θ0) ∈ D, η(θ1) ∈ C and η(θ0, θ1) ⊂ S2 � (C ∪D)

by construction. Therefore, any point η(θ) for θ ∈ (θ0, θ1) satisfies the

characterization of B given in (7.5(b)), and we conclude that

Bγ

�
{t} × (θ0, θ1)

�
⊂ B.
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(b) Let B0 = B ∩ Im(Bγ). By part (a), B0 �= ∅. Since Im(∂Bγ) ⊂ C ∪ D,

while B ∩ (C ∪D) = ∅ by definition, B ∩ Im(∂Bγ) = ∅. Hence,

B0 = B ∩ B̄γ

�
S1 × (ρ0 − π, 0)

�
,

which is an open set because B̄γ is an immersion, by (4.7(a)). Since

Im(Bγ) is compact, B0 is also closed in B. But B is connected by (7.5(c)),

consequently B0 = B and B ⊂ B̂.

(c) Let q ∈ S2 be arbitrary. The set B̄−1
γ (q) is discrete because B̄γ is an

immersion, and it is compact as a closed subset of S2. Hence, it must be

finite. Now suppose q ∈ B̂. Let B̄−1
γ (q) = {pi}ni=1 and choose disjoint open

sets Ui � pi restricted to which B̄γ is a diffeomorphism. Let U =
�n

i=1 Ui

and

W = B̄γ(U1) ∩ · · · ∩ B̄γ(Un) � B̄γ

�
S1 × [ρ0 − π, 0] � U

�
.

Then W is a distinguished neighborhood of q, in the sense that B̄−1
γ (W ) =�n

i=1 Vi and B̄γ : Vi → W is a diffeomorphism for each i, where

Vi = B̄−1
γ (W ) ∩ Ui.

Parts (b) and (c) of (7.6) allow us to introduce a useful notion which

essentially counts how many times a non-diffuse curve winds around S2.

(7.7) Definition. Let κ0 ∈ R and suppose that γ ∈ L+∞
κ0

is non-diffuse. We

define the rotation number ν(γ) of γ to be the number of sheets of the covering

map B̄γ : B̄−1
γ (B) → B.

Remark. Suppose now that κ0 > 0 and γ ∈ L+∞
κ0

is not only non-diffuse but also

condensed (meaning that C is contained in a closed hemisphere). In this case,

a “more natural” notion of the rotation number of γ is available, as described

on p. 55. Let us temporarily denote by ν̄(γ) the latter rotation number. We

claim that ν̄(γ) = ν(γ) for any condensed and non-diffuse curve γ. It is easy

to check that this holds whenever γ is a circle traversed a number of times. If

γs (s ∈ [0, 1]) is a continuous family of curves of this type then ν(γs) = ν(γ0)

and ν̄(γs) = ν̄(γ0) for any s, since ν and ν̄ can only take on integral values

and every element in their definitions depends continuously on s. Moreover,

it follows from (6.2) that any condensed and non-diffuse curve is homotopic

through curves of this type to a circle traversed a number of times.
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(7.8) Proposition. Let κ0 ∈ R and suppose that γ ∈ L+∞
κ0

is non-diffuse.

Then there exists a constant K depending only on κ0 such that

tot(γ) ≤ Kν(γ).

Proof. It is easy to check that being non-diffuse is an open condition. Using

(2.8), we deduce that the closure of the subset of all C2 non-diffuse curves in

L+∞
κ0

contains the set of all (admissible) non-diffuse curves. Therefore, we lose

no generality in restricting our attention to C2 curves.

Let b ∈ B be arbitrary; we have B = −B, hence −b ∈ B also. Let γ̂ be

the other boundary curve of Bγ:

γ̂(t) = Bγ(t, ρ0 − π) = − cos ρ0 γ(t) − sin ρ0 n(t) (t ∈ [0, 1]).

Then

γ̂�(t) =
�
κ(t) sin ρ0 − cos ρ0

�
γ�(t) =

sin(ρ0 − ρ(t))

sin ρ(t)
γ�(t) (t ∈ [0, 1]).2 (1)

(Here, as always, κ = cot ρ is the geodesic curvature of γ.) In particular, the

unit tangent vector t̂ to γ̂ satisfies t̂ = t. By (2.21), the geodesic curvature κ̂

of γ̂ is given by

κ̂(t) = cot(ρ(t) − (ρ0 − π)) = cot(ρ(t) − ρ0) (t ∈ [0, 1]). (2)

Define h, ĥ : [0, 1] → (−1, 1) by

h(t) = �γ(t), b� and ĥ(t) = �γ̂(t), b� . (3)

These functions measure the“height”of γ and γ̂ with respect to ±b. We cannot

have |h(t)| = 1 nor |ĥ(t)| = 1 because the images of γ and γ̂ are contained in

C and D respectively, which are disjoint from B (by definition (7.4)). Also,

h�(t) = |γ�(t)| �b, t(t)� , ĥ�(t) =
sin(ρ0 − ρ(t))

sin ρ(t)
h�(t). (4)

Let Γt be the great circle whose center on S2 is t(t),

Γt =
�

cos θ γ(t) + sin θ n(t) : θ ∈ [−π, π)
�
.

We have γ(t), γ̂(t) ∈ Γt by definition. Moreover, the following conditions are

equivalent:

(i) b ∈ Γt.

2In this proof, derivatives with respect to t are denoted using a � to simplify the notation.

DBD
PUC-Rio - Certificação Digital Nº 0812265/CA



Homotopies of Curves on the 2-Sphere with
Geodesic Curvature in a Prescribed Interval 80

(ii) h�(t) = 0.

(iii) ĥ�(t) = 0.

(iv) The segment Bγ

�
{t} × (ρ0 − π, 0)

�
contains either b or −b.

The equivalence of the first three conditions follows from (4). The equivalence

(i)↔(iv) follows from the facts that b /∈ C ∩ D and that Γt is the union of

the segments ±Bγ

�
{t}× (ρ0−π, 0)

�
and ±Cγ

�
{t}× [0, ρ0]

�
(see fig. 6, p. 37).

The equivalence of the last three conditions tells us that h and ĥ have exactly

2ν(γ) critical points, for each of B−1
γ (b) and B−1

γ (−b) has cardinality ν(γ), by

definition (7.7).

Suppose that τ is a critical point of h and ĥ. Because b ∈ Γτ � (C ∪D),

we can write

b = cos θ γ(τ) + sin θ n(τ), for some θ ∈ (ρ0 − π, 0) ∪ (ρ0, π). (5)

A straightforward calculation shows that:

h��(τ) = �γ��(τ), b� =
|γ�(τ)|2
sin ρ(τ)

sin(θ − ρ(τ)).

Using (5) and 0 < ρ(τ) < ρ0 we obtain that either

−π < θ − ρ(τ) < 0 or 0 < θ − ρ(τ) < π.

In any case, we deduce that h��(τ) �= 0. The proof that τ is a nondegenerate

critical point of ĥ is analogous: one obtains by another calculation that

ĥ��(τ) =
|γ�(τ)|2

sin2(ρ(τ))
sin(ρ0 − ρ(τ)) sin(θ − ρ(τ)),

and it follows from the above inequalities that ĥ��(τ) �= 0. In particular, two

neighboring critical points τ0 < τ1 of h (and ĥ) cannot be both maxima or both

minima for h (and ĥ). We will prove the proposition by obtaining an upper

bound for tot
�
γ|[τ0,τ1]

�
.

We first claim that Bγ|[τ0,τ1]×[ρ0−π,0] is injective. Suppose for concreteness

that h� < 0 throughout (τ0, τ1) and that b = Bγ(τ0, θ0), −b = Bγ(τ1, θ1), where

θ0, θ1 ∈ (ρ0 − π, 0). Let α = α1 ∗ α2 ∗ α3 be the concatenation of the curves

αi : [0, 1] → S2 given by

α1(t) =Bγ

�
τ0 , (1 − t)θ0

�
, α2(t) = γ

�
(1 − t)τ0 + tτ1

�
,

α3(t) =Bγ

�
τ1 , tθ1

�
,
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Figure 14: An illustration of the boundary of the rectangle R = Bγ|[τ0,τ1]×[ρ0−π,0]

considered in the proof of (7.8).

as sketched in fig. 14. Similarly, let α̂ be the concatenation of the curves

α̂i : [0, 1] → S2,

α̂1(t) =Bγ

�
τ0 , (1 − t)θ0 + t(ρ0 − π)

�
, α̂2(t) = γ̂

�
(1 − t)τ0 + tτ1

�
,

α̂3(t) =Bγ

�
τ1 , (1 − t)(ρ0 − π) + tθ1

�
.

Define six functions hi, ĥi : [0, 1] → [−1, 1] by the formulas

hi(t) = �αi(t), b� and ĥi(t) = �α̂i(t), b� (i = 1, 2, 3).

Note that h2 is essentially the restriction of h to [τ0, τ1] and similarly for ĥ2 (see

(3)). Moreover, all of these functions are monotone decreasing. For i = 2 this

is immediate from (4) and the hypothesis that h� < 0 on (τ0, τ1). For i = 1, 3

this follows from the fact that αi, α̂i are geodesic arcs through ±b, and our

choice of orientations for these curves.

Because the map Bγ|[τ0,τ1]×[ρ0−π,0] is an immersion, if Bγ is not injective

then either α and α̂ intersect each other, or one of them has a self-intersection.

We can discard the possibility that either curve has a self-intersection from

the fact that all functions hi, ĥi are monotone decreasing. Further, since

B ≈ S1 × (−1, 1), we can find a Jordan curve β : [0, 1] → B through ±b
winding once around the S1 factor. If α and α̂ intersect (at some point other

than α(0) = α̂(0) or α(1) = α̂(1)), then this must be an intersection of γ and

γ̂. This is impossible because β, which has image in B, separates C and D,

which contain the images of γ and γ̂, respectively.

Thus, R = Bγ|[τ0,τ1]×[ρ0−π,0] is diffeomorphic to a rectangle, and its

boundary consists of γ̂|[τ0,τ1], γ|[τ0,τ1] (the latter with reversed orientation) and

the two geodesic arcs Bγ

�
{τ0}× [ρ0− π, 0]

�
and Bγ

�
{τ1}× [ρ0− π, 0]

�
. Recall

from (4.7) that ∂Bγ

∂t
is always orthogonal to ∂Bγ

∂θ
. Using Gauss-Bonnet we deduce
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that

�π
2

+
π

2
+
π

2
+
π

2

�
+

� τ1

τ0

κ̂(t) |γ̂ �(t)| dt−
� τ1

τ0

κ(t) |γ �(t)| dt + Area(R) = 2π.

Using (1), (2) and the fact that Area(R) < Area(S2) = 4π we obtain:
� τ1

τ0

�
cot ρ(t) +

sin(ρ0 − ρ(t))

sin ρ(t)
cot(ρ0 − ρ(t))

�
|γ�(t)| dt < 4π. (6)

Let us see how this yields an upper bound for tot
�
γ|[τ0,τ1]

�
. From cos(x) +

cos(y) = 2 cos
�
x+y
2

�
cos

�
x−y
2

�
and

��ρ(t) − ρ0
2

�� < ρ0
2

we deduce that

sin ρ(t)
�

cot ρ(t) +
sin(ρ0 − ρ(t))

sin ρ(t)
cot(ρ0 − ρ(t))

�

= cos ρ(t) + cos(ρ0 − ρ(t)) = 2 cos
�ρ0

2

�
cos

�
ρ(t) − ρ0

2

�
≥ 2 cos2

�ρ0
2

�
.

The Euclidean curvature K of γ thus satisfies

K(t) =
�

1 + κ(t)2 =
�

1 + cot ρ(t)2 = csc ρ(t) (7)

≤ 1

2 cos2
�
ρ0
2

�
�

cot ρ(t) +
sin(ρ0 − ρ(t))

sin ρ(t)
cot(ρ0 − ρ(t))

�
.

Combining (6) and (7) we obtain:

tot
�
γ|[τ0,τ1]

�
=

� τ1

τ0

K(t) |γ �(t)| dt < 2π

cos2
�

ρ0
2

� .

Extending γ to all of R by declaring it to be 1-periodic and choosing

consecutive critical points τ0 < τ1 < · · · < τ2ν(γ)−1 < τ2ν(γ), so that

τ2ν(γ) = τ0 + 1, we finally conclude from the previous estimate (with [τi−1, τi]

in place of [τ0, τ1]) that

tot(γ) =

2ν(γ)�

i=1

tot
�
γ|[τi−1,τi]

�
<

4π

cos2
�

ρ0
2

� ν(γ).
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