7
 Non-diffuse Curves

In this section we define a notion of rotation number for any non-diffuse curve in $\mathcal{L}_{\kappa_{0}}^{+\infty}$ and prove a bound on the total curvature of such a curve which depends only on its rotation number and κ_{0} (prop. (7.8)).
(7.1) Lemma. Suppose X is a connected, locally connected topological space and $C \neq \emptyset$ is a closed connected subspace. Let $\bigsqcup_{\alpha \in J} B_{\alpha}$ be the decomposition of $X \backslash C$ into connected components. Then:
(a) $\partial B_{\alpha} \subset C$ for all $\alpha \in J$.
(b) For any $J_{0} \subset J$, the union $C \cup \bigcup_{\beta \in J_{0}} B_{\beta}$ is also connected.

Proof. Assume (a) is false, and let $p \in \partial B_{\alpha} \backslash C$ for some α. Since C is closed and X locally connected, we can find a connected neighborhood $U \ni p$ which is disjoint from C. But $U \cap B_{\alpha} \neq \emptyset$ and B_{α} is a connected component of $X \backslash C$, hence $U \subset B_{\alpha}$, contradicting the fact that $p \in \partial B_{\alpha}$. Therefore $\partial B_{\alpha} \subset C$ as claimed. Moreover, $\partial B_{\alpha} \neq \emptyset$, otherwise $X=B_{\alpha} \sqcup\left(X \backslash B_{\alpha}\right)$ would be a decomposition of the connected space X into two open sets. Now, for $\beta \in J$, set $A_{\beta}=C \cup B_{\beta}=C \cup \bar{B}_{\beta}$. Each A_{β} is a union of two connected sets with nonempty intersection, hence is itself connected. Similarly, $C \cup \bigcup_{\beta \in J} B_{\beta}=\bigcup_{\beta \in J} A_{\beta}$ is connected as the union of a family of connected sets with a point in common.

We will also need the following well-known results. ${ }^{1}$
(7.2) Theorem. Let $A \subset \mathbf{S}^{2}$ be a connected open set.
(a) A is simply-connected if and only if $\mathbf{S}^{2} \backslash A$ is connected.
(b) If A is simply-connected and $\mathbf{S}^{2} \backslash A \neq \emptyset$, then A is homeomorphic to an open disk.
(c) Let $S_{ \pm} \subset \mathbf{S}^{2}$ be disjoint and homeomorphic to \mathbf{S}^{1}. Then the closure of the region bounded by S_{-}and S_{+}is homeomorphic to $\mathbf{S}^{1} \times[-1,1]$.

[^0](7.3) Lemma. Let $U_{ \pm} \subset \mathbf{S}^{2}$ be homeomorphic to open disks, $U_{-} \cup U_{+}=\mathbf{S}^{2}$. Then
$$
U_{-} \cap U_{+} \approx \mathbf{S}^{1} \times(-1,1)
$$

Proof. We first make two claims:
(a) Suppose $C \approx \mathbf{S}^{1} \times[-1,1]$ and $h: \partial C_{-} \rightarrow \mathbf{S}^{1} \times\{-1\}$ is a homeomorphism, where ∂C_{-}is one of the boundary circles of C. Then h may be extended to a homeomorphism $H: C \rightarrow \mathbf{S}^{1} \times[-1,1]$.
(b) Let M be a tower of cylinders, in the sense that:
(i) $M_{i} \approx \mathbf{S}^{1} \times[-1,1]$ for each $i \in \mathbf{Z}$;
(ii) $M=\bigcup_{i \in \mathbf{Z}} M_{i}$ and M has the weak topology determined by the M_{i};
(iii) $M_{i} \cap M_{j}=\emptyset$ for $j \neq i \pm 1$ and $M_{i} \cap M_{i+1}=S_{i}^{+}=S_{i+1}^{-}$, where $S_{i}^{ \pm}$ are the boundary circles of M_{i}.

Then $M \approx \mathbf{S}^{1} \times(-1,1)$.
Claim (a) is obviously true if $C=\mathbf{S}^{1} \times[-1,1]$: Just set $H(z, t)=(h(z), t)$. In the general case let $F: C \rightarrow \mathbf{S}^{1} \times[-1,1]$ be a homeomorphism. Note that ∂C is well-defined as the inverse image of $\mathbf{S}^{1} \times\{ \pm 1\}(p \in \partial C$ if and only if $U \backslash\{p\}$ is contractible whenever U is a sufficiently small neighborhood of p). Hence ∂C consists of two topological circles, $\partial C_{ \pm}=F^{-1}\left(\mathbf{S}^{1} \times\{ \pm 1\}\right)$. Let $f=\left.F\right|_{\partial C_{-}}$ and let $g=h \circ f^{-1}: \mathbf{S}^{1} \rightarrow \mathbf{S}^{1}$. As we have just seen, we can extend g to a self-homeomorphism G of $\mathbf{S}^{1} \times[-1,1]$. Now define $H: C \rightarrow \mathbf{S}^{1} \times[-1,1]$ by $H=G \circ F$. Then $\left.H\right|_{\partial C_{-}}=g \circ f=h$, as desired.

To prove claim (b), let $H_{0}: M_{0} \rightarrow \mathbf{S}^{1} \times\left[-\frac{1}{2}, \frac{1}{2}\right]$ be any homeomorphism. By applying (a) to $M_{ \pm 1}$ and $h_{ \pm 1}=\left.H_{0}\right|_{S_{0}^{ \pm}}$, we can extend H_{0} to a homeomorphism

$$
H_{1}: M_{0} \cup M_{ \pm 1} \rightarrow \mathbf{S}^{1} \times\left[-\frac{2}{3}, \frac{2}{3}\right]
$$

and, inductively, to a homeomorphism

$$
H_{k}: \bigcup_{|i| \leq k} M_{i} \rightarrow \mathbf{S}^{1} \times\left[-1+\frac{1}{k+2}, 1-\frac{1}{k+2}\right] \quad(k \in \mathbf{N})
$$

Finally, let $H: M \rightarrow \mathbf{S}^{1} \times(-1,1)$ be defined by $H(p)=H_{i}(p)$ if $p \in M_{i}$. Then H is bijective, continuous and proper, so it is the desired homeomorphism.

Returning to the statement of the lemma, note first that $\partial U_{ \pm} \subset U_{\mp}$. Indeed, if $p \in \partial U_{-} \cap\left(\mathbf{S}^{2} \backslash U_{+}\right)$then $p \notin U_{-} \cup U_{+}=\mathbf{S}^{2}$, hence no such p exists. Let $h_{ \pm}: B(0 ; 1) \rightarrow U_{ \pm}$be homeomorphisms, and define $f_{ \pm}:[0,1) \rightarrow \mathbf{R}$ by

$$
f_{ \pm}(r)=\sup \left\{d\left(p, \partial U_{ \pm}\right): p \in h_{ \pm}\left(r \mathbf{S}^{1}\right)\right\}
$$

where d denotes the distance on \mathbf{S}^{2}. We claim that $\lim _{r \rightarrow 1} f_{ \pm}(r)=0$. Observe first that $f_{ \pm}$is strictly decreasing, for if $q \in h_{ \pm}\left(r_{0} \mathbf{S}^{1}\right), r_{0}<r$, then any geodesic joining q to $\partial U_{ \pm}$intersects $h\left(r \mathbf{S}^{1}\right)$. Hence the limit exists; if it were positive, then $U_{ \pm}$would be at a positive distance from $\partial U_{ \pm}$, which is absurd.

Now choose $n \in \mathbf{N}$ such that

$$
f_{ \pm}(t)<\frac{1}{2} \min \left\{d\left(\partial U_{-}, \mathbf{S}^{2} \backslash U_{+}\right), d\left(\partial U_{+}, \mathbf{S}^{2} \backslash U_{-}\right)\right\}
$$

for any $t>1-\frac{1}{n}$. Set

$$
S_{i}=h_{+}\left(\left(1-\frac{1}{n+i}\right) \mathbf{S}^{1}\right) \text { for } i>0 \text { and } S_{i}=h_{-}\left(\left(1-\frac{1}{n-i}\right) \mathbf{S}^{1}\right) \text { for } i<0
$$

Finally, let M_{0} be the region of $U_{-} \cap U_{+}$bounded by S_{1} and S_{-1} and, for $i>0($ resp. $<0)$, let M_{i} the region bounded by S_{i} and S_{i+1} (resp. S_{i-1}). Using (7.2(c)) we see that $U_{-} \cap U_{+}=\bigcup M_{i}$ is a tower of cylinders as in claim (b), and we conclude that $U_{-} \cap U_{+} \approx \mathbf{S}^{1} \times(-1,1)$.

Remark. Another proof of the previous result can be obtained as follows: Since $U_{ \pm}$are each contractible, the Mayer-Vietoris sequence yields immediately that $U_{-} \cap U_{+}$has the homology of \mathbf{S}^{1}. Together with a little more work it then follows from the classification of noncompact surfaces that $U_{-} \cap U_{+} \approx \mathbf{S}^{1} \times(-1,1)$.

We now return to spaces of curves.
(7.4) Definitions. For fixed $\kappa_{0} \in \mathbf{R}$ and $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$, let C denote the image of C_{γ} and $D=-C$. Assuming γ non-diffuse (meaning that $C \cap D=\emptyset$), let \hat{C} (resp. \hat{D}) be the connected component of $\mathbf{S}^{2} \backslash D$ containing C (resp. the component of $\mathbf{S}^{2} \backslash C$ containing $\left.D\right)$ and let $B=\hat{C} \cap \hat{D}$.

Figure 13: A sketch of the sets defined in (7.4) for a non-diffuse curve $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$. The lightly shaded region is C and the darkly shaded region is $D=-C$; both are closed. The dotted region represents B, which is homeomorphic to $\mathbf{S}^{1} \times(-1,1)$ by (7.5(c)).
(7.5) Lemma. Let the notation be as in (7.4).
(a) C and D are at a positive distance from each other.
(b) $B \subset \mathbf{S}^{2} \backslash(C \cup D)$ is open and consists of all $p \in \mathbf{S}^{2}$ such that: there exists a path $\eta:[-1,1] \rightarrow \mathbf{S}^{2}$ with
$\eta(-1) \in D, \quad \eta(1) \in C, \quad \eta(0)=p \quad$ and $\quad \eta(-1,1) \subset \mathbf{S}^{2} \backslash(C \cup D)$.
(c) The set B is homeomorphic to $\mathbf{S}^{1} \times(-1,1)$.

Proof. The proof of each item will be given separately.
(a) This is clear, since C and D are compact sets which, by hypothesis, do not intersect.
(b) Being components of open sets, \hat{C} and \hat{D} are open, hence so is B. Suppose $p \in B$. Since $p \in \hat{C}$, there exists $\eta_{+}:[0,1] \rightarrow \mathbf{S}^{2}$ such that

$$
\eta_{+}(0)=p, \quad \eta_{+}(1) \in C \quad \text { and } \quad \eta_{+}[0,1] \subset \mathbf{S}^{2} \backslash D .
$$

We can actually arrange that $\eta_{+}[0,1) \subset \mathbf{S}^{2} \backslash(C \cup D)$ by restricting the domain of η_{+}to $\left[0, t_{0}\right]$, where $t_{0}=\inf \left\{t \in[0,1]: \eta_{+}(t) \in C\right\}$ and reparametrizing; note that $t_{0}>0$ because B is open and disjoint from C. Similarly, there exists $\eta_{-}:[-1,0] \rightarrow \mathbf{S}^{2}$ such that

$$
\eta_{-}(-1) \in D, \quad \eta_{-}(0)=p \quad \text { and } \quad \eta_{-}(-1,0] \subset \mathbf{S}^{2} \backslash(C \cup D)
$$

Thus, $\eta=\eta_{-} * \eta_{+}$satisfies all the requirements stated in (b).
Conversely, suppose that such a path η exists. Then $p \in \hat{C}$, for there is a path $\eta_{+}=\left.\eta\right|_{[0,1]}$ joining p to a point of C while staying outside of D at all times. Similarly, $p \in \hat{D}$, whence $p \in B$.
(c) The set \hat{C} is open and connected by definition. Its complement is also connected by $(7.1(\mathrm{~b}))$, as it consists of D and the components of $\mathbf{S}^{2} \backslash D$ distinct from \hat{C}. From (7.2(a)) it follows that \hat{C} is simply-connected. Further, $\hat{C} \cap D=\emptyset$, hence the complement of \hat{C} is non-empty and (7.2(b)) tells us that \hat{C} is homeomorphic to an open disk. By symmetry, the same is true of \hat{D}.

We claim that $\hat{C} \cup \hat{D}=\mathbf{S}^{2}$. To see this suppose $p \notin C$, and let A be the component of $\mathbf{S}^{2} \backslash C$ containing p. If $A \cap D \neq \emptyset$ then $A=\hat{D}$ by definition. Otherwise $A \cap D=\emptyset$, hence there exists a path in $\mathbf{S}^{2} \backslash D$
joining p to ∂A. By (7.1(a)), $\partial A \subset C$, consequently $A \subset \hat{C}$. In either case, $p \in \hat{C} \cup \hat{D}$.

We are thus in the setting of (7.3), and the conclusion is that

$$
B=\hat{C} \cap \hat{D} \approx \mathbf{S}^{1} \times(-1,1) .
$$

In what follows let ∂B_{γ} be the restriction of B_{γ} to $[0,1] \times\left\{0, \rho_{0}-\pi\right\}$, let

$$
\hat{B}=\operatorname{Im}\left(B_{\gamma}\right) \backslash \operatorname{Im}\left(\partial B_{\gamma}\right)
$$

and let

$$
\bar{B}_{\gamma}: \mathbf{S}^{1} \times\left[\rho_{0}-\pi, 0\right] \rightarrow \mathbf{S}^{2}
$$

be the unique map satisfying $\bar{B}_{\gamma} \circ(\operatorname{pr} \times \mathrm{id})=B_{\gamma}, \operatorname{pr}(t)=\exp (2 \pi i t)$.
(7.6) Lemma. Let $\kappa_{0} \in \mathbf{R}$ and suppose that $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ is non-diffuse. Then:
(a) For any $t \in[0,1], B_{\gamma}\left(\{t\} \times\left(\rho_{0}-\pi, 0\right)\right)$ intersects B.
(b) $B \subset \hat{B}$.
(c) $\bar{B}_{\gamma}^{-1}(q)$ is a finite set for any $q \in \mathbf{S}^{2}$ and $\bar{B}_{\gamma}: \bar{B}_{\gamma}^{-1}(\hat{B}) \rightarrow \hat{B}$ is a covering map.

Proof. We split the proof into parts.
(a) Note first that $B_{\gamma}(t, 0) \in C$ and $B_{\gamma}\left(t, \rho_{0}-\pi\right) \in D$ for any $t \in[0,1]$ by definition. Let

$$
\begin{aligned}
& \theta_{1}=\inf \left\{\theta \in\left[\rho_{0}-\pi, 0\right]: B_{\gamma}(t, \theta) \in C\right\} \\
& \theta_{0}=\sup \left\{\theta \in\left[\rho_{0}-\pi, \theta_{1}\right]: B_{\gamma}(t, \theta) \in D\right\} .
\end{aligned}
$$

Then $\theta_{0}<\theta_{1}$ by (7.5(a)). Let $\eta=\left.B_{\gamma}\right|_{\{t\} \times\left[\theta_{0}, \theta_{1}\right]}$. Then

$$
\eta\left(\theta_{0}\right) \in D, \quad \eta\left(\theta_{1}\right) \in C \quad \text { and } \quad \eta\left(\theta_{0}, \theta_{1}\right) \subset \mathbf{S}^{2} \backslash(C \cup D)
$$

by construction. Therefore, any point $\eta(\theta)$ for $\theta \in\left(\theta_{0}, \theta_{1}\right)$ satisfies the characterization of B given in (7.5(b)), and we conclude that

$$
B_{\gamma}\left(\{t\} \times\left(\theta_{0}, \theta_{1}\right)\right) \subset B
$$

(b) Let $B_{0}=B \cap \operatorname{Im}\left(B_{\gamma}\right)$. By part (a), $B_{0} \neq \emptyset$. Since $\operatorname{Im}\left(\partial B_{\gamma}\right) \subset C \cup D$, while $B \cap(C \cup D)=\emptyset$ by definition, $B \cap \operatorname{Im}\left(\partial B_{\gamma}\right)=\emptyset$. Hence,

$$
B_{0}=B \cap \bar{B}_{\gamma}\left(\mathbf{S}^{1} \times\left(\rho_{0}-\pi, 0\right)\right),
$$

which is an open set because \bar{B}_{γ} is an immersion, by (4.7(a)). Since $\operatorname{Im}\left(B_{\gamma}\right)$ is compact, B_{0} is also closed in B. But B is connected by (7.5(c)), consequently $B_{0}=B$ and $B \subset \hat{B}$.
(c) Let $q \in \mathbf{S}^{2}$ be arbitrary. The set $\bar{B}_{\gamma}^{-1}(q)$ is discrete because \bar{B}_{γ} is an immersion, and it is compact as a closed subset of \mathbf{S}^{2}. Hence, it must be finite. Now suppose $q \in \hat{B}$. Let $\bar{B}_{\gamma}^{-1}(q)=\left\{p_{i}\right\}_{i=1}^{n}$ and choose disjoint open sets $U_{i} \ni p_{i}$ restricted to which \bar{B}_{γ} is a diffeomorphism. Let $U=\bigcup_{i=1}^{n} U_{i}$ and

$$
W=\bar{B}_{\gamma}\left(U_{1}\right) \cap \cdots \cap \bar{B}_{\gamma}\left(U_{n}\right) \backslash \bar{B}_{\gamma}\left(\mathbf{S}^{1} \times\left[\rho_{0}-\pi, 0\right] \backslash U\right) .
$$

Then W is a distinguished neighborhood of q, in the sense that $\bar{B}_{\gamma}^{-1}(W)=$ $\bigsqcup_{i=1}^{n} V_{i}$ and $\bar{B}_{\gamma}: V_{i} \rightarrow W$ is a diffeomorphism for each i, where

$$
V_{i}=\bar{B}_{\gamma}^{-1}(W) \cap U_{i} .
$$

Parts (b) and (c) of (7.6) allow us to introduce a useful notion which essentially counts how many times a non-diffuse curve winds around \mathbf{S}^{2}.
(7.7) Definition. Let $\kappa_{0} \in \mathbf{R}$ and suppose that $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ is non-diffuse. We define the rotation number $\nu(\gamma)$ of γ to be the number of sheets of the covering $\operatorname{map} \bar{B}_{\gamma}: \bar{B}_{\gamma}^{-1}(B) \rightarrow B$.

Remark. Suppose now that $\kappa_{0}>0$ and $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ is not only non-diffuse but also condensed (meaning that C is contained in a closed hemisphere). In this case, a "more natural" notion of the rotation number of γ is available, as described on p. 55 . Let us temporarily denote by $\bar{\nu}(\gamma)$ the latter rotation number. We claim that $\bar{\nu}(\gamma)=\nu(\gamma)$ for any condensed and non-diffuse curve γ. It is easy to check that this holds whenever γ is a circle traversed a number of times. If $\gamma_{s}(s \in[0,1])$ is a continuous family of curves of this type then $\nu\left(\gamma_{s}\right)=\nu\left(\gamma_{0}\right)$ and $\bar{\nu}\left(\gamma_{s}\right)=\bar{\nu}\left(\gamma_{0}\right)$ for any s, since ν and $\bar{\nu}$ can only take on integral values and every element in their definitions depends continuously on s. Moreover, it follows from (6.2) that any condensed and non-diffuse curve is homotopic through curves of this type to a circle traversed a number of times.
(7.8) Proposition. Let $\kappa_{0} \in \mathbf{R}$ and suppose that $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ is non-diffuse. Then there exists a constant K depending only on κ_{0} such that

$$
\operatorname{tot}(\gamma) \leq K \nu(\gamma)
$$

Proof. It is easy to check that being non-diffuse is an open condition. Using (2.8), we deduce that the closure of the subset of all C^{2} non-diffuse curves in $\mathcal{L}_{\kappa_{0}}^{+\infty}$ contains the set of all (admissible) non-diffuse curves. Therefore, we lose no generality in restricting our attention to C^{2} curves.

Let $b \in B$ be arbitrary; we have $B=-B$, hence $-b \in B$ also. Let $\hat{\gamma}$ be the other boundary curve of B_{γ} :

$$
\hat{\gamma}(t)=B_{\gamma}\left(t, \rho_{0}-\pi\right)=-\cos \rho_{0} \gamma(t)-\sin \rho_{0} \mathbf{n}(t) \quad(t \in[0,1])
$$

Then

$$
\begin{equation*}
\hat{\gamma}^{\prime}(t)=\left(\kappa(t) \sin \rho_{0}-\cos \rho_{0}\right) \gamma^{\prime}(t)=\frac{\sin \left(\rho_{0}-\rho(t)\right)}{\sin \rho(t)} \gamma^{\prime}(t) \quad(t \in[0,1]) .^{2} \tag{1}
\end{equation*}
$$

(Here, as always, $\kappa=\cot \rho$ is the geodesic curvature of γ.) In particular, the unit tangent vector $\hat{\mathbf{t}}$ to $\hat{\gamma}$ satisfies $\hat{\mathbf{t}}=\mathbf{t}$. By (2.21), the geodesic curvature $\hat{\kappa}$ of $\hat{\gamma}$ is given by

$$
\begin{equation*}
\hat{\kappa}(t)=\cot \left(\rho(t)-\left(\rho_{0}-\pi\right)\right)=\cot \left(\rho(t)-\rho_{0}\right) \quad(t \in[0,1]) . \tag{2}
\end{equation*}
$$

Define $h, \hat{h}:[0,1] \rightarrow(-1,1)$ by

$$
\begin{equation*}
h(t)=\langle\gamma(t), b\rangle \quad \text { and } \quad \hat{h}(t)=\langle\hat{\gamma}(t), b\rangle . \tag{3}
\end{equation*}
$$

These functions measure the "height" of γ and $\hat{\gamma}$ with respect to $\pm b$. We cannot have $|h(t)|=1$ nor $|\hat{h}(t)|=1$ because the images of γ and $\hat{\gamma}$ are contained in C and D respectively, which are disjoint from B (by definition (7.4)). Also,

$$
\begin{equation*}
h^{\prime}(t)=\left|\gamma^{\prime}(t)\right|\langle b, \mathbf{t}(t)\rangle, \quad \hat{h}^{\prime}(t)=\frac{\sin \left(\rho_{0}-\rho(t)\right)}{\sin \rho(t)} h^{\prime}(t) . \tag{4}
\end{equation*}
$$

Let Γ_{t} be the great circle whose center on \mathbf{S}^{2} is $\mathbf{t}(t)$,

$$
\Gamma_{t}=\{\cos \theta \gamma(t)+\sin \theta \mathbf{n}(t): \theta \in[-\pi, \pi)\} .
$$

We have $\gamma(t), \hat{\gamma}(t) \in \Gamma_{t}$ by definition. Moreover, the following conditions are equivalent:
(i) $b \in \Gamma_{t}$.
${ }^{2}$ In this proof, derivatives with respect to t are denoted using a' to simplify the notation.
(ii) $h^{\prime}(t)=0$.
(iii) $\hat{h}^{\prime}(t)=0$.
(iv) The segment $B_{\gamma}\left(\{t\} \times\left(\rho_{0}-\pi, 0\right)\right)$ contains either b or $-b$.

The equivalence of the first three conditions follows from (4). The equivalence (i) \leftrightarrow (iv) follows from the facts that $b \notin C \cap D$ and that Γ_{t} is the union of the segments $\pm B_{\gamma}\left(\{t\} \times\left(\rho_{0}-\pi, 0\right)\right)$ and $\pm C_{\gamma}\left(\{t\} \times\left[0, \rho_{0}\right]\right)$ (see fig. 6, p. 37). The equivalence of the last three conditions tells us that h and \hat{h} have exactly $2 \nu(\gamma)$ critical points, for each of $B_{\gamma}^{-1}(b)$ and $B_{\gamma}^{-1}(-b)$ has cardinality $\nu(\gamma)$, by definition (7.7).

Suppose that τ is a critical point of h and \hat{h}. Because $b \in \Gamma_{\tau} \backslash(C \cup D)$, we can write

$$
\begin{equation*}
b=\cos \theta \gamma(\tau)+\sin \theta \mathbf{n}(\tau), \text { for some } \theta \in\left(\rho_{0}-\pi, 0\right) \cup\left(\rho_{0}, \pi\right) \tag{5}
\end{equation*}
$$

A straightforward calculation shows that:

$$
h^{\prime \prime}(\tau)=\left\langle\gamma^{\prime \prime}(\tau), b\right\rangle=\frac{\left|\gamma^{\prime}(\tau)\right|^{2}}{\sin \rho(\tau)} \sin (\theta-\rho(\tau))
$$

Using (5) and $0<\rho(\tau)<\rho_{0}$ we obtain that either

$$
-\pi<\theta-\rho(\tau)<0 \text { or } 0<\theta-\rho(\tau)<\pi .
$$

In any case, we deduce that $h^{\prime \prime}(\tau) \neq 0$. The proof that τ is a nondegenerate critical point of \hat{h} is analogous: one obtains by another calculation that

$$
\hat{h}^{\prime \prime}(\tau)=\frac{\left|\gamma^{\prime}(\tau)\right|^{2}}{\sin ^{2}(\rho(\tau))} \sin \left(\rho_{0}-\rho(\tau)\right) \sin (\theta-\rho(\tau))
$$

and it follows from the above inequalities that $\hat{h}^{\prime \prime}(\tau) \neq 0$. In particular, two neighboring critical points $\tau_{0}<\tau_{1}$ of h (and \hat{h}) cannot be both maxima or both minima for h (and \hat{h}). We will prove the proposition by obtaining an upper bound for tot $\left(\left.\gamma\right|_{\left[\tau_{0}, \tau_{1}\right]}\right)$.

We first claim that $\left.B_{\gamma}\right|_{\left[\tau_{0}, \tau_{1}\right] \times\left[\rho_{0}-\pi, 0\right]}$ is injective. Suppose for concreteness that $h^{\prime}<0$ throughout $\left(\tau_{0}, \tau_{1}\right)$ and that $b=B_{\gamma}\left(\tau_{0}, \theta_{0}\right),-b=B_{\gamma}\left(\tau_{1}, \theta_{1}\right)$, where $\theta_{0}, \theta_{1} \in\left(\rho_{0}-\pi, 0\right)$. Let $\alpha=\alpha_{1} * \alpha_{2} * \alpha_{3}$ be the concatenation of the curves $\alpha_{i}:[0,1] \rightarrow \mathbf{S}^{2}$ given by

$$
\begin{aligned}
& \alpha_{1}(t)=B_{\gamma}\left(\tau_{0},(1-t) \theta_{0}\right), \quad \alpha_{2}(t)=\gamma\left((1-t) \tau_{0}+t \tau_{1}\right), \\
& \alpha_{3}(t)=B_{\gamma}\left(\tau_{1}, t \theta_{1}\right),
\end{aligned}
$$

Figure 14: An illustration of the boundary of the rectangle $R=\left.B_{\gamma}\right|_{\left[\tau_{0}, \tau_{1}\right] \times\left[\rho_{0}-\pi, 0\right]}$ considered in the proof of (7.8).
as sketched in fig. 14. Similarly, let $\hat{\alpha}$ be the concatenation of the curves $\hat{\alpha}_{i}:[0,1] \rightarrow \mathbf{S}^{2}$,

$$
\begin{aligned}
& \hat{\alpha}_{1}(t)=B_{\gamma}\left(\tau_{0},(1-t) \theta_{0}+t\left(\rho_{0}-\pi\right)\right), \quad \hat{\alpha}_{2}(t)=\hat{\gamma}\left((1-t) \tau_{0}+t \tau_{1}\right), \\
& \hat{\alpha}_{3}(t)=B_{\gamma}\left(\tau_{1},(1-t)\left(\rho_{0}-\pi\right)+t \theta_{1}\right)
\end{aligned}
$$

Define six functions $h_{i}, \hat{h}_{i}:[0,1] \rightarrow[-1,1]$ by the formulas

$$
h_{i}(t)=\left\langle\alpha_{i}(t), b\right\rangle \quad \text { and } \quad \hat{h}_{i}(t)=\left\langle\hat{\alpha}_{i}(t), b\right\rangle \quad(i=1,2,3) .
$$

Note that h_{2} is essentially the restriction of h to $\left[\tau_{0}, \tau_{1}\right]$ and similarly for \hat{h}_{2} (see (3)). Moreover, all of these functions are monotone decreasing. For $i=2$ this is immediate from (4) and the hypothesis that $h^{\prime}<0$ on $\left(\tau_{0}, \tau_{1}\right)$. For $i=1,3$ this follows from the fact that $\alpha_{i}, \hat{\alpha}_{i}$ are geodesic arcs through $\pm b$, and our choice of orientations for these curves.

Because the map $\left.B_{\gamma}\right|_{\left[\tau_{0}, \tau_{1}\right] \times\left[\rho_{0}-\pi, 0\right]}$ is an immersion, if B_{γ} is not injective then either α and $\hat{\alpha}$ intersect each other, or one of them has a self-intersection. We can discard the possibility that either curve has a self-intersection from the fact that all functions h_{i}, \hat{h}_{i} are monotone decreasing. Further, since $B \approx \mathbf{S}^{1} \times(-1,1)$, we can find a Jordan curve $\beta:[0,1] \rightarrow B$ through $\pm b$ winding once around the \mathbf{S}^{1} factor. If α and $\hat{\alpha}$ intersect (at some point other than $\alpha(0)=\hat{\alpha}(0)$ or $\alpha(1)=\hat{\alpha}(1))$, then this must be an intersection of γ and $\hat{\gamma}$. This is impossible because β, which has image in B, separates C and D, which contain the images of γ and $\hat{\gamma}$, respectively.

Thus, $R=\left.B_{\gamma}\right|_{\left[\tau_{0}, \tau_{1}\right] \times\left[\rho_{0}-\pi, 0\right]}$ is diffeomorphic to a rectangle, and its boundary consists of $\left.\hat{\gamma}\right|_{\left[\tau_{0}, \tau_{1}\right]},\left.\gamma\right|_{\left[\tau_{0}, \tau_{1}\right]}$ (the latter with reversed orientation) and the two geodesic arcs $B_{\gamma}\left(\left\{\tau_{0}\right\} \times\left[\rho_{0}-\pi, 0\right]\right)$ and $B_{\gamma}\left(\left\{\tau_{1}\right\} \times\left[\rho_{0}-\pi, 0\right]\right)$. Recall from (4.7) that $\frac{\partial B_{\gamma}}{\partial t}$ is always orthogonal to $\frac{\partial B_{\gamma}}{\partial \theta}$. Using Gauss-Bonnet we deduce
that

$$
\left(\frac{\pi}{2}+\frac{\pi}{2}+\frac{\pi}{2}+\frac{\pi}{2}\right)+\int_{\tau_{0}}^{\tau_{1}} \hat{\kappa}(t)\left|\hat{\gamma}^{\prime}(t)\right| d t-\int_{\tau_{0}}^{\tau_{1}} \kappa(t)\left|\gamma^{\prime}(t)\right| d t+\operatorname{Area}(R)=2 \pi
$$

Using (1), (2) and the fact that Area $(R)<\operatorname{Area}\left(\mathbf{S}^{2}\right)=4 \pi$ we obtain:

$$
\begin{equation*}
\int_{\tau_{0}}^{\tau_{1}}\left(\cot \rho(t)+\frac{\sin \left(\rho_{0}-\rho(t)\right)}{\sin \rho(t)} \cot \left(\rho_{0}-\rho(t)\right)\right)\left|\gamma^{\prime}(t)\right| d t<4 \pi \tag{6}
\end{equation*}
$$

Let us see how this yields an upper bound for tot $\left(\left.\gamma\right|_{\left[\tau_{0}, \tau_{1}\right]}\right)$. From $\cos (x)+$ $\cos (y)=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$ and $\left|\rho(t)-\frac{\rho_{0}}{2}\right|<\frac{\rho_{0}}{2}$ we deduce that

$$
\begin{aligned}
& \sin \rho(t)\left(\cot \rho(t)+\frac{\sin \left(\rho_{0}-\rho(t)\right)}{\sin \rho(t)} \cot \left(\rho_{0}-\rho(t)\right)\right) \\
= & \cos \rho(t)+\cos \left(\rho_{0}-\rho(t)\right)=2 \cos \left(\frac{\rho_{0}}{2}\right) \cos \left(\rho(t)-\frac{\rho_{0}}{2}\right) \geq 2 \cos ^{2}\left(\frac{\rho_{0}}{2}\right) .
\end{aligned}
$$

The Euclidean curvature K of γ thus satisfies

$$
\begin{align*}
K(t) & =\sqrt{1+\kappa(t)^{2}}=\sqrt{1+\cot \rho(t)^{2}}=\csc \rho(t) \tag{7}\\
& \leq \frac{1}{2 \cos ^{2}\left(\frac{\rho_{0}}{2}\right)}\left(\cot \rho(t)+\frac{\sin \left(\rho_{0}-\rho(t)\right)}{\sin \rho(t)} \cot \left(\rho_{0}-\rho(t)\right)\right) .
\end{align*}
$$

Combining (6) and (7) we obtain:

$$
\operatorname{tot}\left(\left.\gamma\right|_{\left[\tau_{0}, \tau_{1}\right]}\right)=\int_{\tau_{0}}^{\tau_{1}} K(t)\left|\gamma^{\prime}(t)\right| d t<\frac{2 \pi}{\cos ^{2}\left(\frac{\rho_{0}}{2}\right)}
$$

Extending γ to all of \mathbf{R} by declaring it to be 1-periodic and choosing consecutive critical points $\tau_{0}<\tau_{1}<\cdots<\tau_{2 \nu(\gamma)-1}<\tau_{2 \nu(\gamma)}$, so that $\tau_{2 \nu(\gamma)}=\tau_{0}+1$, we finally conclude from the previous estimate (with $\left[\tau_{i-1}, \tau_{i}\right]$ in place of $\left[\tau_{0}, \tau_{1}\right]$) that

$$
\operatorname{tot}(\gamma)=\sum_{i=1}^{2 \nu(\gamma)} \operatorname{tot}\left(\left.\gamma\right|_{\left[\tau_{i-1}, \tau_{i}\right]}\right)<\frac{4 \pi}{\cos ^{2}\left(\frac{\rho_{0}}{2}\right)} \nu(\gamma)
$$

[^0]: ${ }^{1}$ Part (b) of (7.2) is an immediate corollary of the Riemann mapping theorem and part (c) is the 2-dimensional case of the annulus theorem.

