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7
Non-diffuse Curves

In this section we define a notion of rotation number for any non-diffuse
curve in £ and prove a bound on the total curvature of such a curve which

depends only on its rotation number and kg (prop. (7.8)).

(7.1) Lemma. Suppose X is a connected, locally connected topological space
and C' # 0 is a closed connected subspace. Let | |, ; Ba be the decomposition

of X \ C into connected components. Then:
(a) OB, C C for all a € J.
(b) For any Jo C J, the union C' Uy, Bg is also connected.

Proof. Assume (a) is false, and let p € 9B, \ C for some a. Since C' is closed
and X locally connected, we can find a connected neighborhood U > p which is
disjoint from C. But U N B, # () and B,, is a connected component of X . C,
hence U C B,, contradicting the fact that p € 0B,. Therefore 0B, C C
as claimed. Moreover, 0B, # (), otherwise X = B, U (X \ B,) would be a
decomposition of the connected space X into two open sets. Now, for 5 € J,
set A3 = CUBg = CUBg. Each Ag is a union of two connected sets with non-
empty intersection, hence is itself connected. Similarly, CU( J ses Bs = U sed Ap
is connected as the union of a family of connected sets with a point in

common. O
We will also need the following well-known results.*
(7.2) Theorem. Let A C S? be a connected open set.
(a) A is simply-connected if and only if S* . A is connected.

(b) If A is simply-connected and S*> . A # (), then A is homeomorphic to an
open disk.

(c) Let Sy C S? be disjoint and homeomorphic to S'. Then the closure of
the region bounded by S_ and S, is homeomorphic to S* x [-1,1]. O

'Part (b) of (7.2) is an immediate corollary of the Riemann mapping theorem and part
(c) is the 2-dimensional case of the annulus theorem.
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(7.3) Lemma. Let Uy C S? be homeomorphic to open disks, U_ U U, = S2.
Then
U.NU; ~S"x (~1,1).

Proof. We first make two claims:

(a) Suppose C' =~ S'x[—1,1] and h: dC_ — S' x {—1} is a homeomorphism,
where 0C'"_ is one of the boundary circles of C'. Then h may be extended
to a homeomorphism H: C' — S x [—1,1].

(b) Let M be a tower of cylinders, in the sense that:

(i) M; ~ S x [-1,1] for each i € Z;
(ii) M = U,ez M; and M has the weak topology determined by the M;;
(ili) M; N M; =0 for j # i+ 1 and M; N My = S; = S;;,, where SF°

(2

are the boundary circles of M;.
Then M ~ S' x (—1,1).

Claim (a) is obviously true if C'= S' x [—1,1]: Just set H(z,t) = (h(2),t). In
the general case let [': C — S! x [—1, 1] be a homeomorphism. Note that 0C
is well-defined as the inverse image of S x {1} (p € 9C if and only if U \ {p}
is contractible whenever U is a sufficiently small neighborhood of p). Hence
dC consists of two topological circles, 9Cy = F~1(S! x {£1} ). Let f = F|oc_
and let ¢ = ho f~': S* — S!. As we have just seen, we can extend g to a
self-homeomorphism G of S' x [—1,1]. Now define H: C — S' x [—1,1] by
H=GoF. Then H|sc_ = go f = h, as desired.

To prove claim (b), let Hy: My — S* x [—3, 3] be any homeomorphism.
By applying (a) to My, and hyy = H()’SOi, we can extend H, to a homeomor-
phism

Hy: MyU M, — S x [—2 2},

and, inductively, to a homeomorphism

| 1
He: || M8 x| -1 - ] ke N).
¥ |L<Jk e T2 k+2 ( )

Finally, let H: M — S' x (—1,1) be defined by H(p) = H,(p) if p € M;. Then
H is bijective, continuous and proper, so it is the desired homeomorphism.
Returning to the statement of the lemma, note first that OUL C Ux.

Indeed, if p € OU_N(S? 2\ U, ) then p ¢ U_UU, = S?, hence no such p exists.
Let hy: B(0;1) — Uy be homeomorphisms, and define fi: [0,1) — R by

fi(r) = sup {d(p, 8Ui) ‘pe€E hi(rSI)},
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where d denotes the distance on S?. We claim that lim,_,; f+(r) = 0. Observe
first that fy is strictly decreasing, for if ¢ € h(roS!), ro < r, then any geodesic
joining ¢ to OUy intersects h(rS'). Hence the limit exists; if it were positive,
then Uy would be at a positive distance from 0U.., which is absurd.

Now choose n € N such that

1 .
Fult) < 5 min {d(OU_,$* \ U,),d(0U,, $* ~ U-)}

for any ¢t > 1—%. Set

1
n—1

Si :h+(<1— n}i—i>81> for ¢ > 0 and Si:h,<(1—

)Sl) for i < 0.

Finally, let M, be the region of U_ N U, bounded by S; and S_; and, for
i > 0 (resp. < 0), let M; the region bounded by S; and S; 41 (resp. S;_1). Using
(7.2(c)) we see that U_ N U, = |JM; is a tower of cylinders as in claim (b),

and we conclude that U_ N U, ~ S' x (—1,1). O

Remark. Another proof of the previous result can be obtained as follows: Since
UL are each contractible, the Mayer-Vietoris sequence yields immediately that
U_NU, has the homology of S'. Together with a little more work it then follows

from the classification of noncompact surfaces that U_ N U, ~ S' x (—1,1).
We now return to spaces of curves.

(7.4) Definitions. For fixed ko € R and v € £, let C denote the image
of C;, and D = —C'. Assuming v non-diffuse (meaning that C'N D = (), let
C' (resp. D) be the connected component of S2~. D containing C' (resp. the

component of % \. C' containing D) and let B = C'N D.

Figure 13: A sketch of the sets defined in (7.4) for a non-diffuse curve v € £
The lightly shaded region is C' and the darkly shaded region is D = —C;
both are closed. The dotted region represents B, which is homeomorphic to
St x (=1,1) by (7.5(c)).
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(7.5) Lemma. Let the notation be as in (7.4).

(a) C and D are at a positive distance from each other.

(b) B C S* \ (C U D) is open and consists of all p € S* such that: there

exists a path n: [—1,1] — S? with

n(-1)e D, n(1)eC, n0)=p and n(-1,1) C S*~ (CUD).

(c) The set B is homeomorphic to S' x (—1,1).

Proof. The proof of each item will be given separately.

(a)

(b)

This is clear, since C' and D are compact sets which, by hypothesis, do

not intersect.

Being components of open sets, C' and D are open, hence so is B.

Suppose p € B. Since p € C, there exists 7., : [0,1] — S? such that
n:(0)=p, (1) €C and n4[0,1] CS*\ D.

We can actually arrange that 7,[0,1) € S? \ (C U D) by restricting
the domain of ;. to [0,%], where to = inf {t € [0,1] : 1, (t) € C} and
reparametrizing; note that ¢ty > 0 because B is open and disjoint from
C. Similarly, there exists n_: [—1,0] — S? such that

n-(-1)€D, n_(0)=p and 7_(—1,0]C S*~ (CUD).

Thus, n = n_ * 1, satisfies all the requirements stated in (b).

Conversely, suppose that such a path n exists. Then p € C , for there is a
path 7, = 7|1 joining p to a point of C' while staying outside of D at
all times. Similarly, p € D, whence p € B.

The set C' is open and connected by definition. Its complement is also
connected by (7.1(b)), as it consists of D and the components of S? \. D
distinct from C. From (7.2(a)) it follows that C' is simply-connected.
Further, CND = (), hence the complement of C' is non-empty and (7.2 (b))
tells us that C' is homeomorphic to an open disk. By symmetry, the same

is true of D.

We claim that C U D = S2. To see this suppose p ¢ C, and let A be
the component of S? \ C containing p. If AN D # () then A = D by
definition. Otherwise A N D = (), hence there exists a path in S? \ D
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joining p to A. By (7.1(a)), A C C, consequently A C C. In either
case, p € CuD.

We are thus in the setting of (7.3), and the conclusion is that

B=CnD~S"x(-1,1). O

In what follows let 0B, be the restriction of B, to [0, 1] x {0, pg — 7}, let

A

B =Im(B,) \ Im(dB,),

and let

B,: S' x [py — 7, 0] — S

be the unique map satisfying B, o (pr x id) = B,, pr(t) = exp(2rit).

(7.6) Lemma. Let kg € R and suppose that v € L is non-diffuse. Then:
(a) For anyt € [0,1], B, ({t} x (po — m,0)) intersects B.
(b) B C B.

(¢) B;'(q) is a finite set for any q € S* and B, : B;l(é) — B is a covering

map.
Proof. We split the proof into parts.

(a) Note first that B,(t,0) € C and B,(t,po — m) € D for any t € [0,1] by
definition. Let

6, =inf {6 € [po — 7,0] : B,(t,0) € C},

0o =sup {0 € [po — 7,01 : B,(t,0) € D}.
Then 60 < b by (75(&)) Let n = B'y‘{t}x[aoﬂﬂ' Then
n(0) € D, n(0,) € C and n(,0,) C S*~ (CUD)

by construction. Therefore, any point 7(0) for 0 € (6y,0;) satisfies the

characterization of B given in (7.5(b)), and we conclude that

B, ({t} x (6,61)) C B.
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(b) Let By = B NIm(B,). By part (a), By # 0. Since Im(9B,) C C U D,
while BN (C U D) = by definition, BN Im(dB,) = (. Hence,

By = BN B,(S" x (po — 7,0)),

which is an open set because B, is an immersion, by (4.7(a)). Since
Im(B,) is compact, By is also closed in B. But B is connected by (7.5(c)),
consequently By = B and B C B.

(¢) Let ¢ € S? be arbitrary. The set B;'(q) is discrete because B, is an
immersion, and it is compact as a closed subset of S2. Hence, it must be
finite. Now suppose ¢ € B. Let B;l(q) = {pi},_, and choose disjoint open
sets U; 2 p; restricted to which B’,y is a diffeomorphism. Let U = U?:l U;

and

W = B,(U)Nn---NBy(U,) \ By(S' x [pg — m,0] \ U).

Then W is a distinguished neighborhood of ¢, in the sense that B; Lw) =
LI~ V; and B,: V; = W is a diffeomorphism for each i, where

Vi =B} (W)NU,. O

Parts (b) and (c) of (7.6) allow us to introduce a useful notion which

essentially counts how many times a non-diffuse curve winds around S2.

(7.7) Definition. Let ko € R and suppose that v € £ is non-diffuse. We
define the rotation number v(7y) of v to be the number of sheets of the covering
map B,: B;'(B) — B.

Remark. Suppose now that o > 0 and v € £;> is not only non-diffuse but also
condensed (meaning that C' is contained in a closed hemisphere). In this case,
a “more natural” notion of the rotation number of ~ is available, as described
on p. 55. Let us temporarily denote by v(7) the latter rotation number. We
claim that 7(vy) = v(y) for any condensed and non-diffuse curve . It is easy
to check that this holds whenever ~ is a circle traversed a number of times. If
vs (s € ]0,1]) is a continuous family of curves of this type then v(v;) = v(7o)
and v(vs) = v(7) for any s, since v and v can only take on integral values
and every element in their definitions depends continuously on s. Moreover,
it follows from (6.2) that any condensed and non-diffuse curve is homotopic

through curves of this type to a circle traversed a number of times.
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7.8) Proposition. Let kg € R and suppose that v € L1 is non-diffuse.
Y Ko

Then there exists a constant K depending only on ko such that
tot(y) < Kv(y).

Proof. 1t is easy to check that being non-diffuse is an open condition. Using
(2.8), we deduce that the closure of the subset of all C? non-diffuse curves in
L2 contains the set of all (admissible) non-diffuse curves. Therefore, we lose
no generality in restricting our attention to C? curves.

Let b € B be arbitrary; we have B = —B, hence —b € B also. Let 4 be

the other boundary curve of B,:

A(t) = B,(t, po — ™) = —cos pyy(t) —sinpon(t) (t € [0, 1]).
Then

. . sin(po — p(t)) 2

') = (k(t — () = ==Ly (e [0,1)). 1
(1) = (r(t) sin po — cos po)7/(t) sin p(1) Y(t) (tel0,1]) (1)
(Here, as always, k = cot p is the geodesic curvature of 7.) In particular, the
unit tangent vector t to 4 satisfies t = t. By (2.21), the geodesic curvature &

of 4 is given by

A(t) = cot(p(t) — (po — m)) = cot(p(t) — po) (t € [0,1]). (2)
Define h, h: [0,1] = (=1,1) by
h(t) = (y(t),0) and h(t) = (3(t),b). (3)

These functions measure the “height” of v and 4 with respect to £b. We cannot
have |h(t)] = 1 nor |A(t)| = 1 because the images of v and 4 are contained in
C' and D respectively, which are disjoint from B (by definition (7.4)). Also,

~

v = Ol een), o =0 B,

Let T'; be the great circle whose center on S? is t(t),
Iy ={cosf(t) +sinfn(t) : 0 € [-m,7)}.

We have v(t), 4(t) € T'; by definition. Moreover, the following conditions are

equivalent:

(i) beTly.

2In this proof, derivatives with respect to t are denoted using a ’ to simplify the notation.
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(i) A'(t) =0.
(iii) A/(t) = 0.
(iv) The segment B, ({t} x (py — m,0)) contains either b or —b.

The equivalence of the first three conditions follows from (4). The equivalence
(i) > (iv) follows from the facts that b ¢ C'N D and that I'; is the union of
the segments +B., ( {t} x (po —7,0)) and £C, ({t} x [0, po]) (see fig. 6, p. 37).
The equivalence of the last three conditions tells us that h and h have exactly
2v(y) critical points, for each of B7'(b) and B;'(—b) has cardinality v(y), by
definition (7.7).

Suppose that 7 is a critical point of A and h. Because b € T'; (CuUD),

we can write
b= cosf~(r) +sinfn(r), for some 0 € (pyg — m,0) U (po, 7). (5)

A straightforward calculation shows that:

()

h//(T) = <7//(7—)7 b> - sin P(T)

sin(0 — p(7)).
Using (5) and 0 < p(7) < po we obtain that either
—m<O0—p(t)<0 or 0<0—p(r) <m.

In any case, we deduce that h”(7) # 0. The proof that 7 is a nondegenerate
critical point of h is analogous: one obtains by another calculation that

D' (1) = —W(T”Q sin(pg — p(7)) sin(6 — p(7
h (7_) - sin2(p(7')) (pO p( )) (9 p( ))7

and it follows from the above inequalities that h” (1) # 0. In particular, two
neighboring critical points 79 < 71 of h (and iL) cannot be both maxima or both
minima for h (and lAz) We will prove the proposition by obtaining an upper
bound for t0t (7|fr.r))-

We first claim that B |z ]x[po—=,0] 1S injective. Suppose for concreteness
that b’ < 0 throughout (79, 71) and that b = B, (79, 6y), —b = B, (71, 6,), where
00,01 € (po — m,0). Let @« = a1 % ag % a3 be the concatenation of the curves

a;: [0,1] — S? given by

a;(t) =B, (7’0, (1-— t)@o), as(t) = 7((1 — )70 + tTl),
Oég(t) :BV (7'1, t@l),
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B»Y(T(],Ho) =b

b= B'y(7—1791)

Figure 14: An illustration of the boundary of the rectangle R = B[z, 7]x[po—.0]
considered in the proof of (7.8).

as sketched in fig. 14. Similarly, let & be the concatenation of the curves
Q;: [0, 1] — Sz,

a1(t) =B, (10, (L =)0 +t(po — 1)),  da(t) =5((1 —t)m0 + t71),
G3(t) =By (11, (1 = t)(po — ) + t61).

Define six functions hy, h;: [0,1] — [—1,1] by the formulas
hi(t) = (ai(t),b) and  hi(t) = (@(t),b) (i=1,2,3).

Note that ks is essentially the restriction of & to [y, 71] and similarly for Ay (see
(3)). Moreover, all of these functions are monotone decreasing. For i = 2 this
is immediate from (4) and the hypothesis that A’ < 0 on (79, 7). For i = 1,3
this follows from the fact that «;, &; are geodesic arcs through +b, and our
choice of orientations for these curves.

Because the map B, |(r ~]x[po—r,0 1S an immersion, if B, is not injective
then either o and & intersect each other, or one of them has a self-intersection.
We can discard the possibility that either curve has a self-intersection from
the fact that all functions h;, iLZ are monotone decreasing. Further, since
B =~ S' x (=1,1), we can find a Jordan curve §: [0,1] — B through +b
winding once around the S! factor. If a and & intersect (at some point other
than «(0) = &(0) or a(1) = &(1)), then this must be an intersection of v and
4. This is impossible because 5, which has image in B, separates C' and D,
which contain the images of v and 74, respectively.

Thus, R = B,|irn]x[po—m0 is diffeomorphic to a rectangle, and its
boundary consists of 4|7y -1, Y|, (the latter with reversed orientation) and
the two geodesic arcs B, ({70} x [po — m,0]) and B, ({7} X [po — m,0]). Recall

from (4.7) that 88% is always orthogonal to 86%. Using Gauss-Bonnet we deduce
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that

(G+3+5+3)+ [ AOROId— [ o)) e+ Asea(r) = 2n

70 70

Using (1), (2) and the fact that Area(R) < Area(S?) = 47 we obtain:

| (cotott) + 2D corg, - i) /0] e < 4m. (0

. sin (1)

Let us see how this yields an upper bound for tot (7|j.~)). From cos(z) +
cos(y) = 2cos () cos () and }p(t) — %0‘ < £ we deduce that

. sin(po — p(t))
sin p(t) < cot p(t) + " sinplt) cot(pog — P(O))

=cos p(t) + cos(po — p(t)) = 2 cos <%> cos <p(t) p20> > 2 cos? <p20>.

The Euclidean curvature K of v thus satisfies

— TH R0 = /T G0t 70 = eseplt) g

sin(po — p(t))
cot p(t) + “enplt) cot(po — P(ﬂ))-

1
< e () (
~ 2cos? (2)
Combining (6) and (7) we obtain:

m 21
tot (7‘[70,‘&}) = / K<t) ”Y/(t)’ dt < ﬁ'
0 COS (3>

Extending v to all of R by declaring it to be 1-periodic and choosing
consecutive critical points 79 < 71 < -+ < Touq)—1 < Toy(y), SO that
Tou(y) = To + 1, we finally conclude from the previous estimate (with [7,_1, 7;]

in place of [y, 71]) that

2v(y)

47
tOt Z tOt [7—1 1, 7—1 W l/(’}/) ]
2



DBD
PUC-Rio - Certificação Digital Nº 0812265/CA




