
8
Homotopies of Circles

Let k ≥ 1 be an integer. The bending of the k-equator is an explicit

homotopy (to be defined below) from a great circle traversed k times to a

great circle traversed k + 2 times. It is an “optimal” homotopy of this type,

in the following sense: It is possible to deform a circle traversed k times into

a circle traversed k + 2 times in L+κ1
−κ1

(I) if and only if we may carry out the

bending of the k-equator in this space (meaning that the absolute value of the

geodesic curvature is bounded by κ1 throughout the bending). A special case

of this construction was considered by Saldanha in [12].

Figure 15:

Let N = (0, 0, 1) ∈ S2 be the north pole, let

η(t) =
�
cos(2kπt), sin(2kπt), 0

�
(t ∈ [0, 1])

be a parametrization of the equator traversed k ≥ 1 times (k ∈ N) and let

Pi = η
� i

2k + 2

�
, Qi = η

� i+ 1
2

2k + 2

�
(i = 0, 1, . . . , 2k + 1),

as illustrated in fig. 15(a) for k = 1. Define Qi(α) (see fig. 15(b)) to be the

unique point in the geodesic through N and Qi such that

�Qi

�Pi + Pi+1

2

�
Qi(α) = α (−π ≤ α ≤ π, i = 0, 1, . . . , 2k + 1).
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Let Ai(α) ⊂ S2 be the arc of circle through PiQi(α)Pi+1, with orientation

determined by this ordering of the three points, and define

σα,i :
�
0,

1

2k + 2

�
→ S2 (0 ≤ α ≤ π, i = 0, . . . , 2k + 1)

to be a parametrization of Ai((−1)iα) by a multiple of arc-length, as illustrated

in fig. 16 below for k = 1. Note that Ai(0) is just k
2k+2

of the equator, while

Ai(π) is the “complement” of Ai(0), which is k+2
2k+2

of the equator.

Let σα : [0, 1] → S2 be the concatenation of all the σα,i, for i increasing

from 0 to 2k+1 (as in fig. 16). Then σ0 is the equator traversed k times, while

σπ is the equator traversed k + 2 times, in the opposite direction. The curve

σα is closed and regular for all α ∈ [0, π]. However, its geodesic curvature is

a step function, taking the value (−1)iκ(α) for t ∈ ( i
2k+2

, i+1
2k+2

), where κ(α)

depends only on α. At the points t = i
2k+2

the curvature is not defined, except

for α = 0, π, when the curvature vanishes identically.

We are only interested in the maximum value of κ(α) for 0 ≤ α ≤ π,

which can be easily determined. For any α, the center of the circle C of which

Ai(α) is an arc is contained in the plane Π1 through 0, Qi and N , since this

plane is the locus of points equidistant from Pi and Pi+1 (Π1 is the plane of

figures 15(b) and 15(c)). By definition, C is contained in the plane Π2 through

Pi, Qi(α) and Pi+1. Thus, the center of C lies in the line Π1 ∩ Π2 = PQk(α),

and the segment of this line bounded by S2 is a diameter of C. Clearly, this

diameter is shortest when α = π
2
(see fig. 15(c)). (More precisely, the shortest

chord through a point lying in the interior of a circle is the one which is

perpendicular to the diameter through this point; the proof is an exercise in

elementary geometry.) The corresponding spherical radius is ρ = kπ
2k+2

, hence

the maximum value attained by κ(α) for 0 ≤ α ≤ π is

κ(π
2
) = cot

� kπ

2k + 2

�
= tan

� π

2k + 2

�
,

and the minimum value is −κ(π
2
).

(8.1) Definition. Let σα be as in the discussion above (0 ≤ α ≤ π) and

assume that
κ1 > tan

� π

2k + 2

�
. (1)

The bending of the k-equator is the family of curves ηs ∈ L+κ1
−κ1

(I) given by:

ηs(t) =
�
Φσsπ(0)

�−1
σsπ(t) (s, t ∈ [0, 1]).

Note that η0 is the equator of S2 traversed k times and η1 is the

equator traversed k+2 times, in the same direction. The following result is an
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Figure 16: An illustration of the bending of the 1-equator. The curve σα is the
concatenation of σα,0, . . . , σα,3.

immediate consequence of the discussion above.

(8.2) Proposition. Let κ0 = cot ρ0 ∈ R and let σk, σk+2 ∈ L+∞
κ0

(I) be circles

traversed k and k + 2 times, respectively. Then σk lies in the same component

of L+∞
κ0

(I) as σk+2 if

k ≥
�
π

ρ0

�
. (2)

Proof. Let ρ1 =
π−ρ0

2
, so that κ1 = cot ρ1 satisfies (1). Let γs (s ∈ [0, 1]) be the

image of the bending ηs of the k-equator under the homeomorphism L+κ1
−κ1

(I) ≈
L+∞

κ0
(I) of (2.26). Then γ0 is some circle traversed k times, while γ1 is a circle

traversed k + 2 times. Using (4.4) we deduce that σk � γ0 � γ1 � σk+2, hence

σk and σk+2 lie in the same component of L+∞
κ0

(I).

(8.3) Corollary. Let ρi = arccot(κi), i = 1, 2, and suppose that ρ1 − ρ2 > π
2
.

Let σk0 , σk1 ∈ Lκ2
κ1
(I) (resp. Lκ2

κ1
) be two parametrized circles traversed k0 and

k1 times, respectively. Then σk0 and σk1 lie in the same connected component

if and only if k0 ≡ k1 (mod 2).

Proof. Under the homeomorphism Lκ2
κ1
(I) ≈ L+∞

κ0
(I) of (2.25), the condition

ρ1 − ρ2 > π
2
translates into ρ0 > π

2
. The result is an immediate consequence of

(2.15), (4.4) and (8.2).

Homotopies of condensed curves

The previous corollary settles the question of when two circles in L+∞
κ0

(I)

lie in the same component for κ0 < 0. Because of this, we will assume for the

rest of the section that κ0 ≥ 0; the following proposition implies the converse

to (8.2), and together with it, settles the same question in this case.
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(8.4) Proposition. Let κ0 = cot ρ0 ≥ 0 and let

n =

�
π

ρ0

�
+ 1.

Suppose that s �→ γs ∈ L+∞
κ0

(I) is a homotopy, with γ0 condensed and

ν(γ0) ≤ n − 2 (s ∈ [0, 1]). Then γs is condensed and ν(γs) = ν(γ0) for all

s ∈ [0, 1].

In particular, taking γ0 to be a circle σk traversed k times for k ≤ n− 2,

we conclude that it is not possible to deform σk into a circle traversed k + 2

times in L+∞
κ0

. The proof of (8.4) will be broken into several parts. We start

with the definition of an equatorial curve, which is just a borderline case of a

condensed curve.

(8.5) Definition. Let κ0 ≥ 0. We shall say that a curve γ ∈ L+∞
κ0

is equatorial

if the image C of its caustic band is contained in a closed hemisphere, but not

in any open hemisphere. Let

Hγ =
�
p ∈ S2 : �p, hγ� ≥ 0

�

be a closed hemisphere containing γ, and let

Eγ =
�
p ∈ S2 : �p, hγ� = 0

�

denote the corresponding equator. Also, let γ̌ : [0, 1] → S2 be the curve given

by

γ̌(t) = Cγ(t, ρ0).

(8.6) Lemma. Let κ0 ≥ 0, let γ ∈ L+∞
κ0

be an equatorial curve of class C2.

Then:

(a) The hemisphere Hγ and the equator Eγ defined above are uniquely

determined by γ.

(b) The geodesic curvature κ̌ of γ̌ is given by:

κ̌ = cot(ρ0 − ρ) > 0.

Proof. Suppose that C = Im(Cγ) is contained in distinct closed hemispheres

H1 and H2. Then it is contained in the closed lune H1 ∩H2. Since the curves

γ, γ̌, whose images form the boundary of C, have a unit tangent vector at all

points, they cannot pass through either of the points in E1 ∩ E2 (where Ei is
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the equator corresponding to Hi). It follows that C is contained in an open

hemisphere, a contradiction which establishes (a).

For part (b) we calculate:1

γ̌�(t) = |γ�(t)|
�
cos ρ0 − κ(t) sin ρ0

�
t(t) (3)

γ̌��(t) = |γ�(t)|2
�
cos ρ0 − κ(t) sin ρ0

��
− γ(t) + κ(t)n(t)

�
+ λ(t)t(t), (4)

where κ, t and n denote the geodesic curvature of and unit and normal vectors

to γ, respectively, and the value of λ(t) is irrelevant to us. Hence,

κ̌ =
�γ̌ , γ̌ � × γ̌���

|γ̌�|3
=

κ cos ρ0 + sin ρ0
|cos ρ0 − κ sin ρ0|

=
cos(ρ0 − ρ)

|sin(ρ− ρ0)|
= cot(ρ0 − ρ).

(8.7) Lemma. Let κ0 ≥ 0 and γ ∈ L+∞
κ0

be an equatorial curve of class C2.

Take N ∈ Eγ and define h, ȟ : [0, 1] → R by

h(t) = �γ(t), N� , ȟ(t) = �γ̌(t), N� . (5)

(a) The following conditions are equivalent:

(i) ±N ∈ Γτ for some τ ∈ [0, 1].

(ii) τ ∈ [0, 1] is a critical point of h.

(iii) τ ∈ [0, 1] is a critical point of ȟ.

(b) If τ is a common critical point of h, ȟ, then h��(τ)ȟ��(τ) < 0.

(c) If τ < τ̄ are neighboring critical points then h��(τ)h��(τ̄) < 0 and

ȟ��(τ)ȟ��(τ̄) < 0.

Recall that Γt is the great circle

Γt =
�
cos θ γ(t) + sin θ n(t) : θ ∈ [−π, π)

�
.

Part (b) implies in particular that all critical points of h, ȟ are nondegenerate.

Proof. A straightforward calculation using (3) shows that:

h�(t) = |γ�(t)| �N, t(t)� , ȟ�(t) =
sin(ρ(t)− ρ0)

sin ρ(t)
h�(t) (t ∈ [0, 1]). (6)

The equivalence of the conditions in (a) is immediate from this and the

definition of Γt.

1For the rest of the section we denote derivatives with respect to t by a � to unclutter the
notation.
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From ±N ∈ Eγ and C = Im(Cγ) ⊂ Hγ, it follows that ±N /∈
C
�
[0, 1]× (0, ρ0)

�
. Thus, if τ is a critical point of h, ȟ, i.e., if N ∈ Γτ then we

can write

N = cos θ γ(τ) + sin θ n(τ) for some θ ∈ [ρ0 − π, 0] ∪ [ρ0, π]. (7)

Another calculation, with the help of (4), yields:

h��(τ) =
|γ�(τ)|2
sin ρ(τ)

sin
�
θ−ρ(τ)

�
, ȟ��(τ) =

|γ�(τ)|2
sin2 ρ(τ)

sin
�
θ−ρ(τ)

�
sin

�
ρ(τ)−ρ0

�

Taking the possible values for θ in (7) and 0 < ρ(τ) < ρ0 into account, we

deduce that

h��(τ)ȟ��(τ) =
|γ�(τ)|4
sin3 ρ(τ)

sin2
�
θ − ρ(τ)

�
sin

�
ρ(τ)− ρ0

�
< 0,

since all terms here are positive except for sin
�
ρ(τ)− ρ0

�
. This proves (b).

For part (c), suppose that τ < τ̄ are neighboring critical points, but

h��(τ)h��(τ̄) > 0. This means that h� vanishes at τ, τ̄ and takes opposite signs

on the intervals (τ, τ + ε) and (τ̄ − ε, τ̄) for small ε > 0. Hence, it must vanish

somewhere in (τ, τ̄), a contradiction. The proof for ȟ is the same.

Let κ0 ≥ 0, γ ∈ L+∞
κ0

be an equatorial curve and pr : S2 → R2 denote

the stereographic projection from −hγ, where Hγ =
�
p ∈ S2 : �p, hγ� ≥ 0

�
.

As for any condensed curve, we may define a (non-unique) continuous angle

function θ by the formula:

exp(iθ(t)) = tη(t), η(t) = pr ◦γ(t) (t ∈ [0, 1]);

here tη is the unit tangent vector, taking values in S1, of the plane curve η.

The function θ is strictly decreasing since κ0 ≥ 0, and

2πν(γ) = θ(0)− θ(1).

(8.8) Lemma. Let κ0 ≥ 0, γ ∈ L+∞
κ0

be an equatorial curve of class C2 and

n =

�
π

ρ0

�
+ 1.

Then ν(γ) ≥ n− 1.

Proof. Let C = Im(Cγ), H = Hγ be the closed hemisphere containing γ and

E = Eγ be the corresponding equator, oriented so that H lies to its left. It
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Figure 17: Three possibilities for an equatorial curve γ. The circle represents
Eγ and its interior represents Hγ, seen from above.

follows from the combination of (11.1), (11.5) and (11.2) that either we can find

two antipodal points in C ∩ E or we can choose t1 < t2 < t3 and θi ∈ {0, ρ0}
such that 0 is a convex combination of the points Cγ(ti, θi) ∈ C ∩E. There are

three possibilities, as depicted in fig. 17; the only difference between the first

two is the order of the points in the orientation of E.

In cases (i) and (ii), choose N in E so that

�Cγ(t2, θ2), N� = −�Cγ(t1, θ1), N� > 0.

Let h and ȟ be as in (5) and define latitude functions λ, λ̌ by

λ(t) = arcsin(h(t)), λ̌(t) = arcsin(ȟ(t)) (t ∈ [0, 1]).

Let τ1 < · · · < τk1 be all the common critical points of these functions in the

interval [t1, t2), and let

mj = min{λ(τj), λ̌(τj)}, Mj = max{λ(τj), λ̌(τj)}.

From (8.7(a)), we deduce that

Mj −mj = ρ0 for all j = 1, . . . , k1, (8)

while from (8.7(b)) and (8.7(c)), we deduce that the τj are alternatingly

maxima and minima of λ (resp. minima and maxima of λ̌) as j goes from

1 to k1, whence

Mj > mj+1 for all j = 1, . . . , k1 − 1. (9)

Let

λ2 = max
�
λ(t2), λ̌(t2)

�
and λ1 = min{λ(t1), λ̌(t1)} = −λ2.

Then λ2−λ1 is just the angle between Cγ(t1, ·)∩E and Cγ(t2, ·)∩E measured

DBD
PUC-Rio - Certificação Digital Nº 0812265/CA



Homotopies of Curves on the 2-Sphere with
Geodesic Curvature in a Prescribed Interval 90

along E, as depicted in fig. 17(i). For the rest of the proof we consider each

case separately.

In case (i),
m1 ≤ λ1 and λ2 ≤ Mk1 . (10)

Combining (8), (9) and (10), we find that

k1ρ0 =

k1�

j=1

(Mj −mj) >

k1−1�

j=1

(mj+1 −mj) +Mk1 −mk1 = Mk1 −m1 ≥ λ2 − λ1.

(11)
Let there be k2 (resp. k3) critical points of h, ȟ in the interval [t2, t3)

(resp. [t3, t1 + 1)), where for the latter we are considering γ as a 1-periodic

curve. Then an analogous result to (11) holds for k2 and k3, and summing all

three inequalities we conclude that

k1 + k2 + k3 >
2π

ρ0
≥ 2(n− 1).

In case (i), the number of half-turns of the tangent vector to the image of γ

under stereographic projection through −hγ in [0, 1] is given by k1+k2+k3−2.

Hence,

ν(γ) =
k1 + k2 + k3 − 2

2
> n− 2,

as claimed.

In case (ii), a direct calculation using basic trigonometry shows that

m1 < arcsin(cos ρ0 sinλ1) = − arcsin(cos ρ0 sinλ2)

and Mk1 > arcsin(cos ρ0 sinλ2).

Combining this with (8) and (9), we obtain that

k1ρ0 =

k1�

j=1

(Mj −mj) >

k1−1�

j=1

(mj+1 −mj) +Mk1 −mk1

= Mk1 −m1 > 2 arcsin(cos ρ0 sinλ2),

and similarly for k2 and k3, where the latter denote the number of critical points

of h, ȟ in the intervals [t2, t3) and [t3, t1 + 1), respectively. More precisely, we

have

k1 + k2 + k3 >
2

ρ0

3�

i=1

arcsin(cos ρ0 sinλ2i), (12)

where λ4 = max
�
λ(t3), λ̌(t3)

�
, λ6 = max

�
λ(t1), λ̌(t1)

�
and these latitudes

are measured with respect to the chosen points ±N corresponding to each of

the intervals [t2, t3] and [t3, t3 +1]. In case (ii), the number of half-turns of the
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tangent vector to the image of γ under stereographic projection through −hγ

in [0, 1] is given by k1 + k2 + k3 − 2. Hence, it follows from (12) and lemma

(8.9) below that

ν(γ) =
k1 + k2 + k3 + 2

2
>

� π

ρ0
− 2

�
+ 1 ≥ n− 2,

as we wished to prove.

Finally, in case (iii), we may choose ±N ∈ E ∩ C, that is, we may find

t1 < t2 and θi ∈ {0, ρ0} such that

N = Cγ(t2, θ2) = −Cγ(t1, θ1).

In this case λ2 − λ1 = π and

ν(γ) =
k1 + k2 − 2

2
,

where k1 (resp. k2) is the number of critical points of h, ȟ in [t1, t2] (resp. [t2, t1+

1]). Note that t1, t2 are critical points of h which are counted twice in the sum

k1 + k2 (under the identification of t1 with t1 + 1); this is the reason why we

need to subtract 2 from k1 + k2 to calculate the number of half-turns of the

tangent vector. Using (9) one more time, we deduce that

k1ρ0 =

k1�

j=1

(Mj−mj) >

k1−1�

j=1

(mj+1−mj)+Mk1−mk1 = Mk1−m1 = λ2−λ1 = π;

similarly, k2ρ0 > π. Therefore,

ν(γ) =
k1 + k2 − 2

2
>

π

ρ0
− 1 ≥ n− 2.

Here is the technical lemma that was invoked in the proof of (8.8).

(8.9) Lemma. Let λ2 + λ4 + λ6 = π, 0 ≤ λi ≤ π
2

and 0 < ρ0 ≤ π
2
. Then

arcsin(cos ρ0 sinλ2) + arcsin(cos ρ0 sinλ4) + arcsin(cos ρ0 sinλ6) ≥ π − 2ρ0

Proof. Let f : [0, π] → R be the function given by f(t) = arcsin(cos ρ0 sin t).

Then

f ��(t) = − sin2 ρ0 cos ρ0 sin t
�
1− cos2 ρ0 sin

2 t
� 3

2

,

so that f ��(t) ≤ 0 for all t ∈ (0, π) and f is a concave function. Consequently,

f(s1a+ s2b+ s3c) ≥ s1f(a) + s2f(b) + s3f(c) (13)

DBD
PUC-Rio - Certificação Digital Nº 0812265/CA



Homotopies of Curves on the 2-Sphere with
Geodesic Curvature in a Prescribed Interval 92

for any a, b, c ∈ [0, π], si ∈ [0, 1], s1 + s2 + s3 = 1. Define g : T → R by

g(x, y, z) = f(x) + f(y) + f(z), where

T =
�
(x, y, z) ∈ R3 : x+ y + z = π, x, y, z ∈

�
0, π

2

��
.

In other words, T is the triangle with vertices A = (0, π
2
, π
2
), B = (π

2
, 0, π

2
) and

C = (π
2
, π
2
, 0). It follows from (13) (applied three times) that

g(s1u+ s2v + s3w) ≥ s1g(u) + s2g(v) + s3g(w) (14)

for any u, v, w ∈ T, si ∈ [0, 1], s1 + s2 + s3 = 1. Moreover, a direct verification

shows that

g(A) = g(B) = g(C) = 2 arcsin(cos ρ0) = π − 2ρ0.

If p ∈ T then we can write

p = s1A+ s2B + s3C for some s1, s2, s3 ∈ [0, 1] with s1 + s2 + s3 = 1.

Therefore, (14) guarantees that

g(p) ≥ s1g(A) + s2g(B) + s3g(C) = π − 2ρ0.

Proof of (8.4). If γs is condensed for all s ∈ [0, 1], then s �→ ν(γs) is defined

and constant, since it can only take on integral values. Thus, if the assertion

is false, there must exist s ∈ [0, 1], say s = 1, such that γs is not condensed.

By (6.1), γ0 is homotopic to a circle traversed ν(γ0) times. Moreover, the set

of non-condensed curves is open. Together with (2.10), this shows that there

exist C2 curves γ−1, γ2 such that:

(i) There exist a path joining γ−1 to γ0 and a path joining γ1 to γ2 in L+∞
κ0

(I);

(ii) γ−1 is condensed and has rotation number ν(γ0);

(iii) γ2 is not condensed.

Consider the map f : S0 → L+∞
κ0

(I) given by f(−1) = γ−1, f(1) = γ2. The

existence of the homotopy γs (s ∈ [0, 1]) tells us that f is nullhomotopic in

L+∞
κ0

(I). By (2.10), f must be nullhomotopic in C+∞
κ0

(I). In other words, we

may assume at the outset that each γs is of class C2 (s ∈ [0, 1]).

With this assumption in force, let s0 be the infimum of all s ∈ [0, 1]

such that γs is not condensed, and let γ = γs0 . Then γ must be condensed by

(11.2), and it must be equatorial by our choice of s0. In addition, ν(γs) must be
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constant (s ∈ [0, s0]), since it can only take on integral values. This contradicts

(8.8).
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