8 Homotopies of Circles

Let $k \geq 1$ be an integer. The bending of the k-equator is an explicit homotopy (to be defined below) from a great circle traversed k times to a great circle traversed k + 2 times. It is an "optimal" homotopy of this type, in the following sense: It is possible to deform a circle traversed k times into a circle traversed k + 2 times in $\mathcal{L}_{-\kappa_1}^{+\kappa_1}(I)$ if and only if we may carry out the bending of the k-equator in this space (meaning that the absolute value of the geodesic curvature is bounded by κ_1 throughout the bending). A special case of this construction was considered by Saldanha in [12].

Figure 15:

Let $N = (0, 0, 1) \in \mathbf{S}^2$ be the north pole, let

$$\eta(t) = (\cos(2k\pi t), \sin(2k\pi t), 0) \quad (t \in [0, 1])$$

be a parametrization of the equator traversed $k \ge 1$ times $(k \in \mathbf{N})$ and let

$$P_i = \eta\left(\frac{i}{2k+2}\right), \quad Q_i = \eta\left(\frac{i+\frac{1}{2}}{2k+2}\right) \quad (i = 0, 1, \dots, 2k+1),$$

as illustrated in fig. 15(a) for k = 1. Define $Q_i(\alpha)$ (see fig. 15(b)) to be the unique point in the geodesic through N and Q_i such that

$$\triangleleft Q_i \left(\frac{P_i + P_{i+1}}{2}\right) Q_i(\alpha) = \alpha \quad (-\pi \le \alpha \le \pi, \ i = 0, 1, \dots, 2k+1).$$

Let $A_i(\alpha) \subset \mathbf{S}^2$ be the arc of circle through $P_iQ_i(\alpha)P_{i+1}$, with orientation determined by this ordering of the three points, and define

$$\sigma_{\alpha,i} \colon \left[0, \frac{1}{2k+2}\right] \to \mathbf{S}^2 \quad (0 \le \alpha \le \pi, \ i = 0, \dots, 2k+1)$$

to be a parametrization of $A_i((-1)^i\alpha)$ by a multiple of arc-length, as illustrated in fig. 16 below for k = 1. Note that $A_i(0)$ is just $\frac{k}{2k+2}$ of the equator, while $A_i(\pi)$ is the "complement" of $A_i(0)$, which is $\frac{k+2}{2k+2}$ of the equator.

Let $\sigma_{\alpha} \colon [0,1] \to \mathbf{S}^2$ be the concatenation of all the $\sigma_{\alpha,i}$, for *i* increasing from 0 to 2k + 1 (as in fig. 16). Then σ_0 is the equator traversed *k* times, while σ_{π} is the equator traversed k + 2 times, in the opposite direction. The curve σ_{α} is closed and regular for all $\alpha \in [0, \pi]$. However, its geodesic curvature is a step function, taking the value $(-1)^i \kappa(\alpha)$ for $t \in (\frac{i}{2k+2}, \frac{i+1}{2k+2})$, where $\kappa(\alpha)$ depends only on α . At the points $t = \frac{i}{2k+2}$ the curvature is not defined, except for $\alpha = 0, \pi$, when the curvature vanishes identically.

We are only interested in the maximum value of $\kappa(\alpha)$ for $0 \leq \alpha \leq \pi$, which can be easily determined. For any α , the center of the circle C of which $A_i(\alpha)$ is an arc is contained in the plane Π_1 through 0, Q_i and N, since this plane is the locus of points equidistant from P_i and P_{i+1} (Π_1 is the plane of figures 15 (b) and 15 (c)). By definition, C is contained in the plane Π_2 through P_i , $Q_i(\alpha)$ and P_{i+1} . Thus, the center of C lies in the line $\Pi_1 \cap \Pi_2 = PQ_k(\alpha)$, and the segment of this line bounded by \mathbf{S}^2 is a diameter of C. Clearly, this diameter is shortest when $\alpha = \frac{\pi}{2}$ (see fig. 15 (c)). (More precisely, the shortest chord through a point lying in the interior of a circle is the one which is perpendicular to the diameter through this point; the proof is an exercise in elementary geometry.) The corresponding spherical radius is $\rho = \frac{k\pi}{2k+2}$, hence the maximum value attained by $\kappa(\alpha)$ for $0 \leq \alpha \leq \pi$ is

$$\kappa(\frac{\pi}{2}) = \cot\left(\frac{k\pi}{2k+2}\right) = \tan\left(\frac{\pi}{2k+2}\right),$$

and the minimum value is $-\kappa(\frac{\pi}{2})$.

(8.1) Definition. Let σ_{α} be as in the discussion above $(0 \le \alpha \le \pi)$ and assume that

$$\kappa_1 > \tan\left(\frac{\pi}{2k+2}\right). \tag{1}$$

The bending of the k-equator is the family of curves $\eta_s \in \mathcal{L}^{+\kappa_1}_{-\kappa_1}(I)$ given by:

$$\eta_s(t) = (\Phi_{\sigma_{s\pi}}(0))^{-1} \sigma_{s\pi}(t) \quad (s, t \in [0, 1]).$$

Note that η_0 is the equator of \mathbf{S}^2 traversed k times and η_1 is the equator traversed k+2 times, in the same direction. The following result is an

Figure 16: An illustration of the bending of the 1-equator. The curve σ_{α} is the concatenation of $\sigma_{\alpha,0}, \ldots, \sigma_{\alpha,3}$.

immediate consequence of the discussion above.

(8.2) Proposition. Let $\kappa_0 = \cot \rho_0 \in \mathbf{R}$ and let $\sigma_k, \sigma_{k+2} \in \mathcal{L}_{\kappa_0}^{+\infty}(I)$ be circles traversed k and k+2 times, respectively. Then σ_k lies in the same component of $\mathcal{L}_{\kappa_0}^{+\infty}(I)$ as σ_{k+2} if

$$k \ge \left\lfloor \frac{\pi}{\rho_0} \right\rfloor. \tag{2}$$

Proof. Let $\rho_1 = \frac{\pi - \rho_0}{2}$, so that $\kappa_1 = \cot \rho_1$ satisfies (1). Let γ_s $(s \in [0, 1])$ be the image of the bending η_s of the k-equator under the homeomorphism $\mathcal{L}_{-\kappa_1}^{+\kappa_1}(I) \approx \mathcal{L}_{\kappa_0}^{+\infty}(I)$ of (2.26). Then γ_0 is some circle traversed k times, while γ_1 is a circle traversed k + 2 times. Using (4.4) we deduce that $\sigma_k \simeq \gamma_0 \simeq \gamma_1 \simeq \sigma_{k+2}$, hence σ_k and σ_{k+2} lie in the same component of $\mathcal{L}_{\kappa_0}^{+\infty}(I)$.

(8.3) Corollary. Let $\rho_i = \operatorname{arccot}(\kappa_i)$, i = 1, 2, and suppose that $\rho_1 - \rho_2 > \frac{\pi}{2}$. Let $\sigma_{k_0}, \sigma_{k_1} \in \mathcal{L}_{\kappa_1}^{\kappa_2}(I)$ (resp. $\mathcal{L}_{\kappa_1}^{\kappa_2}$) be two parametrized circles traversed k_0 and k_1 times, respectively. Then σ_{k_0} and σ_{k_1} lie in the same connected component if and only if $k_0 \equiv k_1 \pmod{2}$.

Proof. Under the homeomorphism $\mathcal{L}_{\kappa_1}^{\kappa_2}(I) \approx \mathcal{L}_{\kappa_0}^{+\infty}(I)$ of (2.25), the condition $\rho_1 - \rho_2 > \frac{\pi}{2}$ translates into $\rho_0 > \frac{\pi}{2}$. The result is an immediate consequence of (2.15), (4.4) and (8.2).

Homotopies of condensed curves

The previous corollary settles the question of when two circles in $\mathcal{L}_{\kappa_0}^{+\infty}(I)$ lie in the same component for $\kappa_0 < 0$. Because of this, we will assume for the rest of the section that $\kappa_0 \geq 0$; the following proposition implies the converse to (8.2), and together with it, settles the same question in this case. (8.4) Proposition. Let $\kappa_0 = \cot \rho_0 \ge 0$ and let

$$n = \left\lfloor \frac{\pi}{\rho_0} \right\rfloor + 1.$$

Suppose that $s \mapsto \gamma_s \in \mathcal{L}^{+\infty}_{\kappa_0}(I)$ is a homotopy, with γ_0 condensed and $\nu(\gamma_0) \leq n-2$ ($s \in [0,1]$). Then γ_s is condensed and $\nu(\gamma_s) = \nu(\gamma_0)$ for all $s \in [0,1]$.

In particular, taking γ_0 to be a circle σ_k traversed k times for $k \leq n-2$, we conclude that it is not possible to deform σ_k into a circle traversed k+2times in $\mathcal{L}_{\kappa_0}^{+\infty}$. The proof of (8.4) will be broken into several parts. We start with the definition of an equatorial curve, which is just a borderline case of a condensed curve.

(8.5) Definition. Let $\kappa_0 \geq 0$. We shall say that a curve $\gamma \in \mathcal{L}_{\kappa_0}^{+\infty}$ is equatorial if the image C of its caustic band is contained in a closed hemisphere, but not in any open hemisphere. Let

$$H_{\gamma} = \left\{ p \in \mathbf{S}^2 : \langle p, h_{\gamma} \rangle \ge 0 \right\}$$

be a closed hemisphere containing γ , and let

$$E_{\gamma} = \left\{ p \in \mathbf{S}^2 : \langle p, h_{\gamma} \rangle = 0 \right\}$$

denote the corresponding equator. Also, let $\check{\gamma} \colon [0,1] \to \mathbf{S}^2$ be the curve given by

$$\check{\gamma}(t) = C_{\gamma}(t, \rho_0)$$

(8.6) Lemma. Let $\kappa_0 \geq 0$, let $\gamma \in \mathcal{L}_{\kappa_0}^{+\infty}$ be an equatorial curve of class C^2 . Then:

- (a) The hemisphere H_{γ} and the equator E_{γ} defined above are uniquely determined by γ .
- (b) The geodesic curvature $\check{\kappa}$ of $\check{\gamma}$ is given by:

$$\check{\kappa} = \cot(\rho_0 - \rho) > 0.$$

Proof. Suppose that $C = \text{Im}(C_{\gamma})$ is contained in distinct closed hemispheres H_1 and H_2 . Then it is contained in the closed lune $H_1 \cap H_2$. Since the curves $\gamma, \check{\gamma}$, whose images form the boundary of C, have a unit tangent vector at all points, they cannot pass through either of the points in $E_1 \cap E_2$ (where E_i is

the equator corresponding to H_i). It follows that C is contained in an open hemisphere, a contradiction which establishes (a).

For part (b) we calculate:¹

$$\check{\gamma}'(t) = |\gamma'(t)| \left(\cos\rho_0 - \kappa(t)\sin\rho_0\right) \mathbf{t}(t) \tag{3}$$

$$\check{\gamma}''(t) = \left|\gamma'(t)\right|^2 \left(\cos\rho_0 - \kappa(t)\sin\rho_0\right) \left(-\gamma(t) + \kappa(t)\mathbf{n}(t)\right) + \lambda(t)\mathbf{t}(t), \quad (4)$$

where κ , **t** and **n** denote the geodesic curvature of and unit and normal vectors to γ , respectively, and the value of $\lambda(t)$ is irrelevant to us. Hence,

$$\check{\kappa} = \frac{\langle \check{\gamma}, \check{\gamma}' \times \check{\gamma}'' \rangle}{\left| \check{\gamma}' \right|^3} = \frac{\kappa \cos \rho_0 + \sin \rho_0}{\left| \cos \rho_0 - \kappa \sin \rho_0 \right|} = \frac{\cos(\rho_0 - \rho)}{\left| \sin(\rho - \rho_0) \right|} = \cot(\rho_0 - \rho). \quad \Box$$

(8.7) Lemma. Let $\kappa_0 \geq 0$ and $\gamma \in \mathcal{L}_{\kappa_0}^{+\infty}$ be an equatorial curve of class C^2 . Take $N \in E_{\gamma}$ and define $h, \check{h} : [0, 1] \to \mathbf{R}$ by

$$h(t) = \langle \gamma(t), N \rangle, \quad \check{h}(t) = \langle \check{\gamma}(t), N \rangle.$$
(5)

- (a) The following conditions are equivalent:
 - (i) $\pm N \in \Gamma_{\tau}$ for some $\tau \in [0, 1]$.
 - (ii) $\tau \in [0,1]$ is a critical point of h.
 - (iii) $\tau \in [0, 1]$ is a critical point of \check{h} .
- (b) If τ is a common critical point of h, \check{h} , then $h''(\tau)\check{h}''(\tau) < 0$.
- (c) If $\tau < \bar{\tau}$ are neighboring critical points then $h''(\tau)h''(\bar{\tau}) < 0$ and $\check{h}''(\tau)\check{h}''(\bar{\tau}) < 0$.

Recall that Γ_t is the great circle

$$\Gamma_t = \big\{ \cos \theta \, \gamma(t) + \sin \theta \, \mathbf{n}(t) : \theta \in [-\pi, \pi) \big\}.$$

Part (b) implies in particular that all critical points of h, \check{h} are nondegenerate.

Proof. A straightforward calculation using (3) shows that:

$$h'(t) = |\gamma'(t)| \langle N, \mathbf{t}(t) \rangle, \quad \check{h}'(t) = \frac{\sin(\rho(t) - \rho_0)}{\sin\rho(t)} h'(t) \qquad (t \in [0, 1]).$$
(6)

The equivalence of the conditions in (a) is immediate from this and the definition of Γ_t .

¹For the rest of the section we denote derivatives with respect to t by a ' to unclutter the notation.

From $\pm N \in E_{\gamma}$ and $C = \operatorname{Im}(C_{\gamma}) \subset H_{\gamma}$, it follows that $\pm N \notin C([0,1] \times (0,\rho_0))$. Thus, if τ is a critical point of h, \check{h} , i.e., if $N \in \Gamma_{\tau}$ then we can write

$$N = \cos\theta \,\gamma(\tau) + \sin\theta \,\mathbf{n}(\tau) \quad \text{for some } \theta \in [\rho_0 - \pi, 0] \cup [\rho_0, \pi]. \tag{7}$$

Another calculation, with the help of (4), yields:

$$h''(\tau) = \frac{|\gamma'(\tau)|^2}{\sin\rho(\tau)} \sin\left(\theta - \rho(\tau)\right), \quad \check{h}''(\tau) = \frac{|\gamma'(\tau)|^2}{\sin^2\rho(\tau)} \sin\left(\theta - \rho(\tau)\right) \sin\left(\rho(\tau) - \rho_0\right)$$

Taking the possible values for θ in (7) and $0 < \rho(\tau) < \rho_0$ into account, we deduce that

$$h''(\tau)\check{h}''(\tau) = \frac{|\gamma'(\tau)|^4}{\sin^3\rho(\tau)}\sin^2\left(\theta - \rho(\tau)\right)\sin\left(\rho(\tau) - \rho_0\right) < 0,$$

since all terms here are positive except for $\sin(\rho(\tau) - \rho_0)$. This proves (b).

For part (c), suppose that $\tau < \bar{\tau}$ are neighboring critical points, but $h''(\tau)h''(\bar{\tau}) > 0$. This means that h' vanishes at $\tau, \bar{\tau}$ and takes opposite signs on the intervals $(\tau, \tau + \varepsilon)$ and $(\bar{\tau} - \varepsilon, \bar{\tau})$ for small $\varepsilon > 0$. Hence, it must vanish somewhere in $(\tau, \bar{\tau})$, a contradiction. The proof for \check{h} is the same.

Let $\kappa_0 \geq 0, \ \gamma \in \mathcal{L}_{\kappa_0}^{+\infty}$ be an equatorial curve and pr: $\mathbf{S}^2 \to \mathbf{R}^2$ denote the stereographic projection from $-h_{\gamma}$, where $H_{\gamma} = \{p \in \mathbf{S}^2 : \langle p, h_{\gamma} \rangle \geq 0\}$. As for any condensed curve, we may define a (non-unique) continuous angle function θ by the formula:

$$\exp(i\theta(t)) = \mathbf{t}_{\eta}(t), \quad \eta(t) = \operatorname{pr} \circ \gamma(t) \quad (t \in [0, 1]);$$

here \mathbf{t}_{η} is the unit tangent vector, taking values in \mathbf{S}^{1} , of the plane curve η . The function θ is strictly decreasing since $\kappa_{0} \geq 0$, and

$$2\pi\nu(\gamma) = \theta(0) - \theta(1).$$

(8.8) Lemma. Let $\kappa_0 \geq 0$, $\gamma \in \mathcal{L}_{\kappa_0}^{+\infty}$ be an equatorial curve of class C^2 and

$$n = \left\lfloor \frac{\pi}{\rho_0} \right\rfloor + 1$$

Then $\nu(\gamma) \ge n-1$.

Proof. Let $C = \text{Im}(C_{\gamma})$, $H = H_{\gamma}$ be the closed hemisphere containing γ and $E = E_{\gamma}$ be the corresponding equator, oriented so that H lies to its left. It

Figure 17: Three possibilities for an equatorial curve γ . The circle represents E_{γ} and its interior represents H_{γ} , seen from above.

follows from the combination of (11.1), (11.5) and (11.2) that either we can find two antipodal points in $C \cap E$ or we can choose $t_1 < t_2 < t_3$ and $\theta_i \in \{0, \rho_0\}$ such that 0 is a convex combination of the points $C_{\gamma}(t_i, \theta_i) \in C \cap E$. There are three possibilities, as depicted in fig. 17; the only difference between the first two is the order of the points in the orientation of E.

In cases (i) and (ii), choose N in E so that

$$\langle C_{\gamma}(t_2,\theta_2), N \rangle = - \langle C_{\gamma}(t_1,\theta_1), N \rangle > 0.$$

Let h and \check{h} be as in (5) and define latitude functions $\lambda, \check{\lambda}$ by

$$\lambda(t) = \arcsin(h(t)), \quad \check{\lambda}(t) = \arcsin(\check{h}(t)) \quad (t \in [0, 1]).$$

Let $\tau_1 < \cdots < \tau_{k_1}$ be all the common critical points of these functions in the interval $[t_1, t_2)$, and let

$$m_j = \min\{\lambda(\tau_j), \lambda(\tau_j)\}, \quad M_j = \max\{\lambda(\tau_j), \lambda(\tau_j)\}.$$

From (8.7(a)), we deduce that

$$M_j - m_j = \rho_0 \quad \text{for all } j = 1, \dots, k_1, \tag{8}$$

while from (8.7(b)) and (8.7(c)), we deduce that the τ_j are alternatingly maxima and minima of λ (resp. minima and maxima of $\check{\lambda}$) as j goes from 1 to k_1 , whence

$$M_j > m_{j+1}$$
 for all $j = 1, \dots, k_1 - 1.$ (9)

Let

$$\lambda_2 = \max \left\{ \lambda(t_2), \check{\lambda}(t_2) \right\}$$
 and $\lambda_1 = \min \{\lambda(t_1), \check{\lambda}(t_1)\} = -\lambda_2$

Then $\lambda_2 - \lambda_1$ is just the angle between $C_{\gamma}(t_1, \cdot) \cap E$ and $C_{\gamma}(t_2, \cdot) \cap E$ measured

along E, as depicted in fig. 17(i). For the rest of the proof we consider each case separately.

In case (i),

$$m_1 \le \lambda_1 \quad \text{and} \quad \lambda_2 \le M_{k_1}.$$
 (10)

Combining (8), (9) and (10), we find that

$$k_1 \rho_0 = \sum_{j=1}^{k_1} (M_j - m_j) > \sum_{j=1}^{k_1 - 1} (m_{j+1} - m_j) + M_{k_1} - m_{k_1} = M_{k_1} - m_1 \ge \lambda_2 - \lambda_1.$$
(11)

Let there be k_2 (resp. k_3) critical points of h, \check{h} in the interval $[t_2, t_3)$ (resp. $[t_3, t_1 + 1)$), where for the latter we are considering γ as a 1-periodic curve. Then an analogous result to (11) holds for k_2 and k_3 , and summing all three inequalities we conclude that

$$k_1 + k_2 + k_3 > \frac{2\pi}{\rho_0} \ge 2(n-1).$$

In case (i), the number of half-turns of the tangent vector to the image of γ under stereographic projection through $-h_{\gamma}$ in [0, 1] is given by $k_1 + k_2 + k_3 - 2$. Hence,

$$\nu(\gamma) = \frac{k_1 + k_2 + k_3 - 2}{2} > n - 2$$

as claimed.

In case (ii), a direct calculation using basic trigonometry shows that

$$m_1 < \arcsin(\cos \rho_0 \sin \lambda_1) = -\arcsin(\cos \rho_0 \sin \lambda_2)$$

and $M_{k_1} > \arcsin(\cos \rho_0 \sin \lambda_2).$

Combining this with (8) and (9), we obtain that

$$k_1 \rho_0 = \sum_{j=1}^{k_1} (M_j - m_j) > \sum_{j=1}^{k_1 - 1} (m_{j+1} - m_j) + M_{k_1} - m_{k_1}$$
$$= M_{k_1} - m_1 > 2 \arcsin(\cos \rho_0 \sin \lambda_2),$$

and similarly for k_2 and k_3 , where the latter denote the number of critical points of h, \check{h} in the intervals $[t_2, t_3)$ and $[t_3, t_1 + 1)$, respectively. More precisely, we have $2 - \frac{3}{2}$

$$k_1 + k_2 + k_3 > \frac{2}{\rho_0} \sum_{i=1}^{3} \arcsin(\cos \rho_0 \sin \lambda_{2i}),$$
 (12)

where $\lambda_4 = \max \{\lambda(t_3), \dot{\lambda}(t_3)\}, \lambda_6 = \max \{\lambda(t_1), \dot{\lambda}(t_1)\}$ and these latitudes are measured with respect to the chosen points $\pm N$ corresponding to each of the intervals $[t_2, t_3]$ and $[t_3, t_3 + 1]$. In case (ii), the number of half-turns of the tangent vector to the image of γ under stereographic projection through $-h_{\gamma}$ in [0, 1] is given by $k_1 + k_2 + k_3 - 2$. Hence, it follows from (12) and lemma (8.9) below that

$$\nu(\gamma) = \frac{k_1 + k_2 + k_3 + 2}{2} > \left(\frac{\pi}{\rho_0} - 2\right) + 1 \ge n - 2,$$

as we wished to prove.

Finally, in case (iii), we may choose $\pm N \in E \cap C$, that is, we may find $t_1 < t_2$ and $\theta_i \in \{0, \rho_0\}$ such that

$$N = C_{\gamma}(t_2, \theta_2) = -C_{\gamma}(t_1, \theta_1).$$

In this case $\lambda_2 - \lambda_1 = \pi$ and

$$\nu(\gamma) = \frac{k_1 + k_2 - 2}{2},$$

where k_1 (resp. k_2) is the number of critical points of h, \check{h} in $[t_1, t_2]$ (resp. $[t_2, t_1 + 1]$). Note that t_1, t_2 are critical points of h which are counted twice in the sum $k_1 + k_2$ (under the identification of t_1 with $t_1 + 1$); this is the reason why we need to subtract 2 from $k_1 + k_2$ to calculate the number of half-turns of the tangent vector. Using (9) one more time, we deduce that

$$k_1\rho_0 = \sum_{j=1}^{k_1} (M_j - m_j) > \sum_{j=1}^{k_1 - 1} (m_{j+1} - m_j) + M_{k_1} - m_{k_1} = M_{k_1} - m_1 = \lambda_2 - \lambda_1 = \pi;$$

similarly, $k_2 \rho_0 > \pi$. Therefore,

$$\nu(\gamma) = \frac{k_1 + k_2 - 2}{2} > \frac{\pi}{\rho_0} - 1 \ge n - 2.$$

Here is the technical lemma that was invoked in the proof of (8.8).

- (8.9) Lemma. Let $\lambda_2 + \lambda_4 + \lambda_6 = \pi$, $0 \le \lambda_i \le \frac{\pi}{2}$ and $0 < \rho_0 \le \frac{\pi}{2}$. Then
 - $\arcsin(\cos\rho_0\sin\lambda_2) + \arcsin(\cos\rho_0\sin\lambda_4) + \arcsin(\cos\rho_0\sin\lambda_6) \ge \pi 2\rho_0$

Proof. Let $f: [0, \pi] \to \mathbf{R}$ be the function given by $f(t) = \arcsin(\cos \rho_0 \sin t)$. Then

$$f''(t) = -\frac{\sin^2 \rho_0 \cos \rho_0 \sin t}{\left(1 - \cos^2 \rho_0 \sin^2 t\right)^{\frac{3}{2}}}$$

so that $f''(t) \leq 0$ for all $t \in (0, \pi)$ and f is a concave function. Consequently,

$$f(s_1a + s_2b + s_3c) \ge s_1f(a) + s_2f(b) + s_3f(c)$$
(13)

for any $a, b, c \in [0, \pi], s_i \in [0, 1], s_1 + s_2 + s_3 = 1$. Define $g: T \to \mathbf{R}$ by g(x, y, z) = f(x) + f(y) + f(z), where

$$T = \left\{ (x, y, z) \in \mathbf{R}^3 : x + y + z = \pi, \ x, y, z \in \left[0, \frac{\pi}{2}\right] \right\}$$

In other words, T is the triangle with vertices $A = (0, \frac{\pi}{2}, \frac{\pi}{2}), B = (\frac{\pi}{2}, 0, \frac{\pi}{2})$ and $C = (\frac{\pi}{2}, \frac{\pi}{2}, 0)$. It follows from (13) (applied three times) that

$$g(s_1u + s_2v + s_3w) \ge s_1g(u) + s_2g(v) + s_3g(w) \tag{14}$$

for any $u, v, w \in T$, $s_i \in [0, 1]$, $s_1 + s_2 + s_3 = 1$. Moreover, a direct verification shows that

$$g(A) = g(B) = g(C) = 2 \arcsin(\cos \rho_0) = \pi - 2\rho_0$$

If $p \in T$ then we can write

$$p = s_1A + s_2B + s_3C$$
 for some $s_1, s_2, s_3 \in [0, 1]$ with $s_1 + s_2 + s_3 = 1$.

Therefore, (14) guarantees that

$$g(p) \ge s_1 g(A) + s_2 g(B) + s_3 g(C) = \pi - 2\rho_0.$$

Proof of (8.4). If γ_s is condensed for all $s \in [0, 1]$, then $s \mapsto \nu(\gamma_s)$ is defined and constant, since it can only take on integral values. Thus, if the assertion is false, there must exist $s \in [0, 1]$, say s = 1, such that γ_s is not condensed. By (6.1), γ_0 is homotopic to a circle traversed $\nu(\gamma_0)$ times. Moreover, the set of non-condensed curves is open. Together with (2.10), this shows that there exist C^2 curves γ_{-1}, γ_2 such that:

- (i) There exist a path joining γ_{-1} to γ_0 and a path joining γ_1 to γ_2 in $\mathcal{L}^{+\infty}_{\kappa_0}(I)$;
- (ii) γ_{-1} is condensed and has rotation number $\nu(\gamma_0)$;
- (iii) γ_2 is not condensed.

Consider the map $f: \mathbf{S}^0 \to \mathcal{L}_{\kappa_0}^{+\infty}(I)$ given by $f(-1) = \gamma_{-1}$, $f(1) = \gamma_2$. The existence of the homotopy γ_s ($s \in [0, 1]$) tells us that f is nullhomotopic in $\mathcal{L}_{\kappa_0}^{+\infty}(I)$. By (2.10), f must be nullhomotopic in $\mathcal{C}_{\kappa_0}^{+\infty}(I)$. In other words, we may assume at the outset that each γ_s is of class C^2 ($s \in [0, 1]$).

With this assumption in force, let s_0 be the infimum of all $s \in [0, 1]$ such that γ_s is not condensed, and let $\gamma = \gamma_{s_0}$. Then γ must be condensed by (11.2), and it must be equatorial by our choice of s_0 . In addition, $\nu(\gamma_s)$ must be constant $(s \in [0, s_0])$, since it can only take on integral values. This contradicts (8.8).