8
 Homotopies of Circles

Let $k \geq 1$ be an integer. The bending of the k-equator is an explicit homotopy (to be defined below) from a great circle traversed k times to a great circle traversed $k+2$ times. It is an "optimal" homotopy of this type, in the following sense: It is possible to deform a circle traversed k times into a circle traversed $k+2$ times in $\mathcal{L}_{-\kappa_{1}}^{+\kappa_{1}}(I)$ if and only if we may carry out the bending of the k-equator in this space (meaning that the absolute value of the geodesic curvature is bounded by κ_{1} throughout the bending). A special case of this construction was considered by Saldanha in [12].

Figure 15:

Let $N=(0,0,1) \in \mathbf{S}^{2}$ be the north pole, let

$$
\eta(t)=(\cos (2 k \pi t), \sin (2 k \pi t), 0) \quad(t \in[0,1])
$$

be a parametrization of the equator traversed $k \geq 1$ times $(k \in \mathbf{N})$ and let

$$
P_{i}=\eta\left(\frac{i}{2 k+2}\right), \quad Q_{i}=\eta\left(\frac{i+\frac{1}{2}}{2 k+2}\right) \quad(i=0,1, \ldots, 2 k+1),
$$

as illustrated in fig. 15 (a) for $k=1$. Define $Q_{i}(\alpha)$ (see fig. $15(\mathrm{~b})$) to be the unique point in the geodesic through N and Q_{i} such that

$$
\varangle Q_{i}\left(\frac{P_{i}+P_{i+1}}{2}\right) Q_{i}(\alpha)=\alpha \quad(-\pi \leq \alpha \leq \pi, i=0,1, \ldots, 2 k+1) .
$$

Let $A_{i}(\alpha) \subset \mathbf{S}^{2}$ be the arc of circle through $P_{i} Q_{i}(\alpha) P_{i+1}$, with orientation determined by this ordering of the three points, and define

$$
\sigma_{\alpha, i}:\left[0, \frac{1}{2 k+2}\right] \rightarrow \mathbf{S}^{2} \quad(0 \leq \alpha \leq \pi, i=0, \ldots, 2 k+1)
$$

to be a parametrization of $A_{i}\left((-1)^{i} \alpha\right)$ by a multiple of arc-length, as illustrated in fig. 16 below for $k=1$. Note that $A_{i}(0)$ is just $\frac{k}{2 k+2}$ of the equator, while $A_{i}(\pi)$ is the "complement" of $A_{i}(0)$, which is $\frac{k+2}{2 k+2}$ of the equator.

Let $\sigma_{\alpha}:[0,1] \rightarrow \mathbf{S}^{2}$ be the concatenation of all the $\sigma_{\alpha, i}$, for i increasing from 0 to $2 k+1$ (as in fig. 16). Then σ_{0} is the equator traversed k times, while σ_{π} is the equator traversed $k+2$ times, in the opposite direction. The curve σ_{α} is closed and regular for all $\alpha \in[0, \pi]$. However, its geodesic curvature is a step function, taking the value $(-1)^{i} \kappa(\alpha)$ for $t \in\left(\frac{i}{2 k+2}, \frac{i+1}{2 k+2}\right)$, where $\kappa(\alpha)$ depends only on α. At the points $t=\frac{i}{2 k+2}$ the curvature is not defined, except for $\alpha=0, \pi$, when the curvature vanishes identically.

We are only interested in the maximum value of $\kappa(\alpha)$ for $0 \leq \alpha \leq \pi$, which can be easily determined. For any α, the center of the circle C of which $A_{i}(\alpha)$ is an arc is contained in the plane Π_{1} through $0, Q_{i}$ and N, since this plane is the locus of points equidistant from P_{i} and $P_{i+1}\left(\Pi_{1}\right.$ is the plane of figures $15(\mathrm{~b})$ and $15(\mathrm{c})$). By definition, C is contained in the plane Π_{2} through $P_{i}, Q_{i}(\alpha)$ and P_{i+1}. Thus, the center of C lies in the line $\Pi_{1} \cap \Pi_{2}=P Q_{k}(\alpha)$, and the segment of this line bounded by \mathbf{S}^{2} is a diameter of C. Clearly, this diameter is shortest when $\alpha=\frac{\pi}{2}$ (see fig. $15(\mathrm{c})$). (More precisely, the shortest chord through a point lying in the interior of a circle is the one which is perpendicular to the diameter through this point; the proof is an exercise in elementary geometry.) The corresponding spherical radius is $\rho=\frac{k \pi}{2 k+2}$, hence the maximum value attained by $\kappa(\alpha)$ for $0 \leq \alpha \leq \pi$ is

$$
\kappa\left(\frac{\pi}{2}\right)=\cot \left(\frac{k \pi}{2 k+2}\right)=\tan \left(\frac{\pi}{2 k+2}\right)
$$

and the minimum value is $-\kappa\left(\frac{\pi}{2}\right)$.
(8.1) Definition. Let σ_{α} be as in the discussion above ($0 \leq \alpha \leq \pi$) and assume that

$$
\begin{equation*}
\kappa_{1}>\tan \left(\frac{\pi}{2 k+2}\right) \tag{1}
\end{equation*}
$$

The bending of the k-equator is the family of curves $\eta_{s} \in \mathcal{L}_{-\kappa_{1}}^{+\kappa_{1}}(I)$ given by:

$$
\eta_{s}(t)=\left(\Phi_{\sigma_{s \pi}}(0)\right)^{-1} \sigma_{s \pi}(t) \quad(s, t \in[0,1]) .
$$

Note that η_{0} is the equator of \mathbf{S}^{2} traversed k times and η_{1} is the equator traversed $k+2$ times, in the same direction. The following result is an

Figure 16: An illustration of the bending of the 1-equator. The curve σ_{α} is the concatenation of $\sigma_{\alpha, 0}, \ldots, \sigma_{\alpha, 3}$.
immediate consequence of the discussion above.
(8.2) Proposition. Let $\kappa_{0}=\cot \rho_{0} \in \mathbf{R}$ and let $\sigma_{k}, \sigma_{k+2} \in \mathcal{L}_{\kappa_{0}}^{+\infty}(I)$ be circles traversed k and $k+2$ times, respectively. Then σ_{k} lies in the same component of $\mathcal{L}_{\kappa_{0}}^{+\infty}(I)$ as σ_{k+2} if

$$
\begin{equation*}
k \geq\left\lfloor\frac{\pi}{\rho_{0}}\right\rfloor \tag{2}
\end{equation*}
$$

Proof. Let $\rho_{1}=\frac{\pi-\rho_{0}}{2}$, so that $\kappa_{1}=\cot \rho_{1}$ satisfies (1). Let $\gamma_{s}(s \in[0,1])$ be the image of the bending η_{s} of the k-equator under the homeomorphism $\mathcal{L}_{-\kappa_{1}}^{+\kappa_{1}}(I) \approx$ $\mathcal{L}_{\kappa_{0}}^{+\infty}(I)$ of (2.26). Then γ_{0} is some circle traversed k times, while γ_{1} is a circle traversed $k+2$ times. Using (4.4) we deduce that $\sigma_{k} \simeq \gamma_{0} \simeq \gamma_{1} \simeq \sigma_{k+2}$, hence σ_{k} and σ_{k+2} lie in the same component of $\mathcal{L}_{\kappa_{0}}^{+\infty}(I)$.
(8.3) Corollary. Let $\rho_{i}=\operatorname{arccot}\left(\kappa_{i}\right), i=1,2$, and suppose that $\rho_{1}-\rho_{2}>\frac{\pi}{2}$. Let $\sigma_{k_{0}}, \sigma_{k_{1}} \in \mathcal{L}_{\kappa_{1}}^{\kappa_{2}}(I)\left(\right.$ resp. $\left.\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}\right)$ be two parametrized circles traversed k_{0} and k_{1} times, respectively. Then $\sigma_{k_{0}}$ and $\sigma_{k_{1}}$ lie in the same connected component if and only if $k_{0} \equiv k_{1}(\bmod 2)$.

Proof. Under the homeomorphism $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}(I) \approx \mathcal{L}_{\kappa_{0}}^{+\infty}(I)$ of (2.25), the condition $\rho_{1}-\rho_{2}>\frac{\pi}{2}$ translates into $\rho_{0}>\frac{\pi}{2}$. The result is an immediate consequence of (2.15), (4.4) and (8.2).

Homotopies of condensed curves

The previous corollary settles the question of when two circles in $\mathcal{L}_{\kappa_{0}}^{+\infty}(I)$ lie in the same component for $\kappa_{0}<0$. Because of this, we will assume for the rest of the section that $\kappa_{0} \geq 0$; the following proposition implies the converse to (8.2), and together with it, settles the same question in this case.
(8.4) Proposition. Let $\kappa_{0}=\cot \rho_{0} \geq 0$ and let

$$
n=\left\lfloor\frac{\pi}{\rho_{0}}\right\rfloor+1
$$

Suppose that $s \mapsto \gamma_{s} \in \mathcal{L}_{\kappa_{0}}^{+\infty}(I)$ is a homotopy, with γ_{0} condensed and $\nu\left(\gamma_{0}\right) \leq n-2(s \in[0,1])$. Then γ_{s} is condensed and $\nu\left(\gamma_{s}\right)=\nu\left(\gamma_{0}\right)$ for all $s \in[0,1]$.

In particular, taking γ_{0} to be a circle σ_{k} traversed k times for $k \leq n-2$, we conclude that it is not possible to deform σ_{k} into a circle traversed $k+2$ times in $\mathcal{L}_{\kappa_{0}}^{+\infty}$. The proof of (8.4) will be broken into several parts. We start with the definition of an equatorial curve, which is just a borderline case of a condensed curve.
(8.5) Definition. Let $\kappa_{0} \geq 0$. We shall say that a curve $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ is equatorial if the image C of its caustic band is contained in a closed hemisphere, but not in any open hemisphere. Let

$$
H_{\gamma}=\left\{p \in \mathbf{S}^{2}:\left\langle p, h_{\gamma}\right\rangle \geq 0\right\}
$$

be a closed hemisphere containing γ, and let

$$
E_{\gamma}=\left\{p \in \mathbf{S}^{2}:\left\langle p, h_{\gamma}\right\rangle=0\right\}
$$

denote the corresponding equator. Also, let $\check{\gamma}:[0,1] \rightarrow \mathbf{S}^{2}$ be the curve given by

$$
\check{\gamma}(t)=C_{\gamma}\left(t, \rho_{0}\right) .
$$

(8.6) Lemma. Let $\kappa_{0} \geq 0$, let $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ be an equatorial curve of class C^{2}. Then:
(a) The hemisphere H_{γ} and the equator E_{γ} defined above are uniquely determined by γ.
(b) The geodesic curvature $\check{\kappa}$ of $\check{\gamma}$ is given by:

$$
\check{\kappa}=\cot \left(\rho_{0}-\rho\right)>0 .
$$

Proof. Suppose that $C=\operatorname{Im}\left(C_{\gamma}\right)$ is contained in distinct closed hemispheres H_{1} and H_{2}. Then it is contained in the closed lune $H_{1} \cap H_{2}$. Since the curves $\gamma, \check{\gamma}$, whose images form the boundary of C, have a unit tangent vector at all points, they cannot pass through either of the points in $E_{1} \cap E_{2}$ (where E_{i} is
the equator corresponding to H_{i}). It follows that C is contained in an open hemisphere, a contradiction which establishes (a).

For part (b) we calculate: ${ }^{1}$

$$
\begin{align*}
& \check{\gamma}^{\prime}(t)=\left|\gamma^{\prime}(t)\right|\left(\cos \rho_{0}-\kappa(t) \sin \rho_{0}\right) \mathbf{t}(t) \tag{3}\\
& \check{\gamma}^{\prime \prime}(t)=\left|\gamma^{\prime}(t)\right|^{2}\left(\cos \rho_{0}-\kappa(t) \sin \rho_{0}\right)(-\gamma(t)+\kappa(t) \mathbf{n}(t))+\lambda(t) \mathbf{t}(t) \tag{4}
\end{align*}
$$

where κ, \mathbf{t} and \mathbf{n} denote the geodesic curvature of and unit and normal vectors to γ, respectively, and the value of $\lambda(t)$ is irrelevant to us. Hence,

$$
\check{\kappa}=\frac{\left\langle\check{\gamma}, \check{\gamma}^{\prime} \times \check{\gamma}^{\prime \prime}\right\rangle}{\left|\check{\gamma}^{\prime}\right|^{3}}=\frac{\kappa \cos \rho_{0}+\sin \rho_{0}}{\left|\cos \rho_{0}-\kappa \sin \rho_{0}\right|}=\frac{\cos \left(\rho_{0}-\rho\right)}{\left|\sin \left(\rho-\rho_{0}\right)\right|}=\cot \left(\rho_{0}-\rho\right) .
$$

(8.7) Lemma. Let $\kappa_{0} \geq 0$ and $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ be an equatorial curve of class C^{2}. Take $N \in E_{\gamma}$ and define $h, \check{h}:[0,1] \rightarrow \mathbf{R}$ by

$$
\begin{equation*}
h(t)=\langle\gamma(t), N\rangle, \quad \check{h}(t)=\langle\check{\gamma}(t), N\rangle . \tag{5}
\end{equation*}
$$

(a) The following conditions are equivalent:
(i) $\pm N \in \Gamma_{\tau}$ for some $\tau \in[0,1]$.
(ii) $\tau \in[0,1]$ is a critical point of h.
(iii) $\tau \in[0,1]$ is a critical point of h.
(b) If τ is a common critical point of h, \check{h}, then $h^{\prime \prime}(\tau) \check{h}^{\prime \prime}(\tau)<0$.
(c) If $\tau<\bar{\tau}$ are neighboring critical points then $h^{\prime \prime}(\tau) h^{\prime \prime}(\bar{\tau})<0$ and $\check{h}^{\prime \prime}(\tau) \check{h}^{\prime \prime}(\bar{\tau})<0$.

Recall that Γ_{t} is the great circle

$$
\Gamma_{t}=\{\cos \theta \gamma(t)+\sin \theta \mathbf{n}(t): \theta \in[-\pi, \pi)\} .
$$

Part (b) implies in particular that all critical points of h, \check{h} are nondegenerate.
Proof. A straightforward calculation using (3) shows that:

$$
\begin{equation*}
h^{\prime}(t)=\left|\gamma^{\prime}(t)\right|\langle N, \mathbf{t}(t)\rangle, \quad \check{h}^{\prime}(t)=\frac{\sin \left(\rho(t)-\rho_{0}\right)}{\sin \rho(t)} h^{\prime}(t) \quad(t \in[0,1]) \tag{6}
\end{equation*}
$$

The equivalence of the conditions in (a) is immediate from this and the definition of Γ_{t}.
${ }^{1}$ For the rest of the section we denote derivatives with respect to t by a' to unclutter the notation.

From $\pm N \in E_{\gamma}$ and $C=\operatorname{Im}\left(C_{\gamma}\right) \subset H_{\gamma}$, it follows that $\pm N \notin$ $C\left([0,1] \times\left(0, \rho_{0}\right)\right)$. Thus, if τ is a critical point of h, h, i.e., if $N \in \Gamma_{\tau}$ then we can write

$$
\begin{equation*}
N=\cos \theta \gamma(\tau)+\sin \theta \mathbf{n}(\tau) \text { for some } \theta \in\left[\rho_{0}-\pi, 0\right] \cup\left[\rho_{0}, \pi\right] . \tag{7}
\end{equation*}
$$

Another calculation, with the help of (4), yields:
$h^{\prime \prime}(\tau)=\frac{\left|\gamma^{\prime}(\tau)\right|^{2}}{\sin \rho(\tau)} \sin (\theta-\rho(\tau)), \quad \check{h}^{\prime \prime}(\tau)=\frac{\left|\gamma^{\prime}(\tau)\right|^{2}}{\sin ^{2} \rho(\tau)} \sin (\theta-\rho(\tau)) \sin \left(\rho(\tau)-\rho_{0}\right)$
Taking the possible values for θ in (7) and $0<\rho(\tau)<\rho_{0}$ into account, we deduce that

$$
h^{\prime \prime}(\tau) \check{h}^{\prime \prime}(\tau)=\frac{\left|\gamma^{\prime}(\tau)\right|^{4}}{\sin ^{3} \rho(\tau)} \sin ^{2}(\theta-\rho(\tau)) \sin \left(\rho(\tau)-\rho_{0}\right)<0
$$

since all terms here are positive except for $\sin \left(\rho(\tau)-\rho_{0}\right)$. This proves (b).
For part (c), suppose that $\tau<\bar{\tau}$ are neighboring critical points, but $h^{\prime \prime}(\tau) h^{\prime \prime}(\bar{\tau})>0$. This means that h^{\prime} vanishes at $\tau, \bar{\tau}$ and takes opposite signs on the intervals $(\tau, \tau+\varepsilon)$ and $(\bar{\tau}-\varepsilon, \bar{\tau})$ for small $\varepsilon>0$. Hence, it must vanish somewhere in $(\tau, \bar{\tau})$, a contradiction. The proof for \check{h} is the same.

Let $\kappa_{0} \geq 0, \gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ be an equatorial curve and pr: $\mathbf{S}^{2} \rightarrow \mathbf{R}^{2}$ denote the stereographic projection from $-h_{\gamma}$, where $H_{\gamma}=\left\{p \in \mathbf{S}^{2}:\left\langle p, h_{\gamma}\right\rangle \geq 0\right\}$. As for any condensed curve, we may define a (non-unique) continuous angle function θ by the formula:

$$
\exp (i \theta(t))=\mathbf{t}_{\eta}(t), \quad \eta(t)=\operatorname{pr} \circ \gamma(t) \quad(t \in[0,1]) ;
$$

here \mathbf{t}_{η} is the unit tangent vector, taking values in \mathbf{S}^{1}, of the plane curve η. The function θ is strictly decreasing since $\kappa_{0} \geq 0$, and

$$
2 \pi \nu(\gamma)=\theta(0)-\theta(1)
$$

(8.8) Lemma. Let $\kappa_{0} \geq 0, \gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ be an equatorial curve of class C^{2} and

$$
n=\left\lfloor\frac{\pi}{\rho_{0}}\right\rfloor+1
$$

Then $\nu(\gamma) \geq n-1$.
Proof. Let $C=\operatorname{Im}\left(C_{\gamma}\right), H=H_{\gamma}$ be the closed hemisphere containing γ and $E=E_{\gamma}$ be the corresponding equator, oriented so that H lies to its left. It

(i)

(ii)

(iii)

Figure 17: Three possibilities for an equatorial curve γ. The circle represents E_{γ} and its interior represents H_{γ}, seen from above.
follows from the combination of (11.1), (11.5) and (11.2) that either we can find two antipodal points in $C \cap E$ or we can choose $t_{1}<t_{2}<t_{3}$ and $\theta_{i} \in\left\{0, \rho_{0}\right\}$ such that 0 is a convex combination of the points $C_{\gamma}\left(t_{i}, \theta_{i}\right) \in C \cap E$. There are three possibilities, as depicted in fig. 17; the only difference between the first two is the order of the points in the orientation of E.

In cases (i) and (ii), choose N in E so that

$$
\left\langle C_{\gamma}\left(t_{2}, \theta_{2}\right), N\right\rangle=-\left\langle C_{\gamma}\left(t_{1}, \theta_{1}\right), N\right\rangle>0
$$

Let h and \check{h} be as in (5) and define latitude functions $\lambda, \check{\lambda}$ by

$$
\lambda(t)=\arcsin (h(t)), \quad \check{\lambda}(t)=\arcsin (\check{h}(t)) \quad(t \in[0,1])
$$

Let $\tau_{1}<\cdots<\tau_{k_{1}}$ be all the common critical points of these functions in the interval $\left[t_{1}, t_{2}\right)$, and let

$$
m_{j}=\min \left\{\lambda\left(\tau_{j}\right), \check{\lambda}\left(\tau_{j}\right)\right\}, \quad M_{j}=\max \left\{\lambda\left(\tau_{j}\right), \check{\lambda}\left(\tau_{j}\right)\right\}
$$

From (8.7(a)), we deduce that

$$
\begin{equation*}
M_{j}-m_{j}=\rho_{0} \quad \text { for all } j=1, \ldots, k_{1} \tag{8}
\end{equation*}
$$

while from $(8.7(\mathrm{~b}))$ and $(8.7(\mathrm{c}))$, we deduce that the τ_{j} are alternatingly maxima and minima of λ (resp. minima and maxima of $\check{\lambda}$) as j goes from 1 to k_{1}, whence

$$
\begin{equation*}
M_{j}>m_{j+1} \quad \text { for all } j=1, \ldots, k_{1}-1 \tag{9}
\end{equation*}
$$

Let

$$
\lambda_{2}=\max \left\{\lambda\left(t_{2}\right), \check{\lambda}\left(t_{2}\right)\right\} \quad \text { and } \quad \lambda_{1}=\min \left\{\lambda\left(t_{1}\right), \check{\lambda}\left(t_{1}\right)\right\}=-\lambda_{2}
$$

Then $\lambda_{2}-\lambda_{1}$ is just the angle between $C_{\gamma}\left(t_{1}, \cdot\right) \cap E$ and $C_{\gamma}\left(t_{2}, \cdot\right) \cap E$ measured
along E, as depicted in fig. 17 (i). For the rest of the proof we consider each case separately.

In case (i),

$$
\begin{equation*}
m_{1} \leq \lambda_{1} \quad \text { and } \quad \lambda_{2} \leq M_{k_{1}} . \tag{10}
\end{equation*}
$$

Combining (8), (9) and (10), we find that

$$
\begin{equation*}
k_{1} \rho_{0}=\sum_{j=1}^{k_{1}}\left(M_{j}-m_{j}\right)>\sum_{j=1}^{k_{1}-1}\left(m_{j+1}-m_{j}\right)+M_{k_{1}}-m_{k_{1}}=M_{k_{1}}-m_{1} \geq \lambda_{2}-\lambda_{1} . \tag{11}
\end{equation*}
$$

Let there be k_{2} (resp. k_{3}) critical points of h, \check{h} in the interval $\left[t_{2}, t_{3}\right)$ (resp. $\left[t_{3}, t_{1}+1\right)$), where for the latter we are considering γ as a 1 -periodic curve. Then an analogous result to (11) holds for k_{2} and k_{3}, and summing all three inequalities we conclude that

$$
k_{1}+k_{2}+k_{3}>\frac{2 \pi}{\rho_{0}} \geq 2(n-1)
$$

In case (i), the number of half-turns of the tangent vector to the image of γ under stereographic projection through $-h_{\gamma}$ in $[0,1]$ is given by $k_{1}+k_{2}+k_{3}-2$. Hence,

$$
\nu(\gamma)=\frac{k_{1}+k_{2}+k_{3}-2}{2}>n-2,
$$

as claimed.
In case (ii), a direct calculation using basic trigonometry shows that

$$
\begin{array}{ll}
& m_{1}<\arcsin \left(\cos \rho_{0} \sin \lambda_{1}\right)=-\arcsin \left(\cos \rho_{0} \sin \lambda_{2}\right) \\
\text { and } & M_{k_{1}}>\arcsin \left(\cos \rho_{0} \sin \lambda_{2}\right) .
\end{array}
$$

Combining this with (8) and (9), we obtain that

$$
\begin{aligned}
k_{1} \rho_{0}=\sum_{j=1}^{k_{1}}\left(M_{j}-m_{j}\right) & >\sum_{j=1}^{k_{1}-1}\left(m_{j+1}-m_{j}\right)+M_{k_{1}}-m_{k_{1}} \\
& =M_{k_{1}}-m_{1}>2 \arcsin \left(\cos \rho_{0} \sin \lambda_{2}\right)
\end{aligned}
$$

and similarly for k_{2} and k_{3}, where the latter denote the number of critical points of h, \breve{h} in the intervals $\left[t_{2}, t_{3}\right)$ and $\left[t_{3}, t_{1}+1\right)$, respectively. More precisely, we have

$$
\begin{equation*}
k_{1}+k_{2}+k_{3}>\frac{2}{\rho_{0}} \sum_{i=1}^{3} \arcsin \left(\cos \rho_{0} \sin \lambda_{2 i}\right) \tag{12}
\end{equation*}
$$

where $\lambda_{4}=\max \left\{\lambda\left(t_{3}\right), \check{\lambda}\left(t_{3}\right)\right\}, \lambda_{6}=\max \left\{\lambda\left(t_{1}\right), \check{\lambda}\left(t_{1}\right)\right\}$ and these latitudes are measured with respect to the chosen points $\pm N$ corresponding to each of the intervals $\left[t_{2}, t_{3}\right]$ and $\left[t_{3}, t_{3}+1\right]$. In case (ii), the number of half-turns of the
tangent vector to the image of γ under stereographic projection through $-h_{\gamma}$ in $[0,1]$ is given by $k_{1}+k_{2}+k_{3}-2$. Hence, it follows from (12) and lemma (8.9) below that

$$
\nu(\gamma)=\frac{k_{1}+k_{2}+k_{3}+2}{2}>\left(\frac{\pi}{\rho_{0}}-2\right)+1 \geq n-2,
$$

as we wished to prove.
Finally, in case (iii), we may choose $\pm N \in E \cap C$, that is, we may find $t_{1}<t_{2}$ and $\theta_{i} \in\left\{0, \rho_{0}\right\}$ such that

$$
N=C_{\gamma}\left(t_{2}, \theta_{2}\right)=-C_{\gamma}\left(t_{1}, \theta_{1}\right)
$$

In this case $\lambda_{2}-\lambda_{1}=\pi$ and

$$
\nu(\gamma)=\frac{k_{1}+k_{2}-2}{2}
$$

where k_{1} (resp. k_{2}) is the number of critical points of h, \check{h} in $\left[t_{1}, t_{2}\right]$ (resp. $\left[t_{2}, t_{1}+\right.$ 1]). Note that t_{1}, t_{2} are critical points of h which are counted twice in the sum $k_{1}+k_{2}$ (under the identification of t_{1} with $t_{1}+1$); this is the reason why we need to subtract 2 from $k_{1}+k_{2}$ to calculate the number of half-turns of the tangent vector. Using (9) one more time, we deduce that
$k_{1} \rho_{0}=\sum_{j=1}^{k_{1}}\left(M_{j}-m_{j}\right)>\sum_{j=1}^{k_{1}-1}\left(m_{j+1}-m_{j}\right)+M_{k_{1}}-m_{k_{1}}=M_{k_{1}}-m_{1}=\lambda_{2}-\lambda_{1}=\pi ;$ similarly, $k_{2} \rho_{0}>\pi$. Therefore,

$$
\nu(\gamma)=\frac{k_{1}+k_{2}-2}{2}>\frac{\pi}{\rho_{0}}-1 \geq n-2 .
$$

Here is the technical lemma that was invoked in the proof of (8.8).
(8.9) Lemma. Let $\lambda_{2}+\lambda_{4}+\lambda_{6}=\pi, 0 \leq \lambda_{i} \leq \frac{\pi}{2}$ and $0<\rho_{0} \leq \frac{\pi}{2}$. Then

$$
\arcsin \left(\cos \rho_{0} \sin \lambda_{2}\right)+\arcsin \left(\cos \rho_{0} \sin \lambda_{4}\right)+\arcsin \left(\cos \rho_{0} \sin \lambda_{6}\right) \geq \pi-2 \rho_{0}
$$

Proof. Let $f:[0, \pi] \rightarrow \mathbf{R}$ be the function given by $f(t)=\arcsin \left(\cos \rho_{0} \sin t\right)$. Then

$$
f^{\prime \prime}(t)=-\frac{\sin ^{2} \rho_{0} \cos \rho_{0} \sin t}{\left(1-\cos ^{2} \rho_{0} \sin ^{2} t\right)^{\frac{3}{2}}}
$$

so that $f^{\prime \prime}(t) \leq 0$ for all $t \in(0, \pi)$ and f is a concave function. Consequently,

$$
\begin{equation*}
f\left(s_{1} a+s_{2} b+s_{3} c\right) \geq s_{1} f(a)+s_{2} f(b)+s_{3} f(c) \tag{13}
\end{equation*}
$$

for any $a, b, c \in[0, \pi], s_{i} \in[0,1], s_{1}+s_{2}+s_{3}=1$. Define $g: T \rightarrow \mathbf{R}$ by $g(x, y, z)=f(x)+f(y)+f(z)$, where

$$
T=\left\{(x, y, z) \in \mathbf{R}^{3}: x+y+z=\pi, x, y, z \in\left[0, \frac{\pi}{2}\right]\right\} .
$$

In other words, T is the triangle with vertices $A=\left(0, \frac{\pi}{2}, \frac{\pi}{2}\right), B=\left(\frac{\pi}{2}, 0, \frac{\pi}{2}\right)$ and $C=\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right)$. It follows from (13) (applied three times) that

$$
\begin{equation*}
g\left(s_{1} u+s_{2} v+s_{3} w\right) \geq s_{1} g(u)+s_{2} g(v)+s_{3} g(w) \tag{14}
\end{equation*}
$$

for any $u, v, w \in T, s_{i} \in[0,1], s_{1}+s_{2}+s_{3}=1$. Moreover, a direct verification shows that

$$
g(A)=g(B)=g(C)=2 \arcsin \left(\cos \rho_{0}\right)=\pi-2 \rho_{0} .
$$

If $p \in T$ then we can write

$$
p=s_{1} A+s_{2} B+s_{3} C \text { for some } s_{1}, s_{2}, s_{3} \in[0,1] \text { with } s_{1}+s_{2}+s_{3}=1
$$

Therefore, (14) guarantees that

$$
g(p) \geq s_{1} g(A)+s_{2} g(B)+s_{3} g(C)=\pi-2 \rho_{0}
$$

Proof of (8.4). If γ_{s} is condensed for all $s \in[0,1]$, then $s \mapsto \nu\left(\gamma_{s}\right)$ is defined and constant, since it can only take on integral values. Thus, if the assertion is false, there must exist $s \in[0,1]$, say $s=1$, such that γ_{s} is not condensed. By (6.1), γ_{0} is homotopic to a circle traversed $\nu\left(\gamma_{0}\right)$ times. Moreover, the set of non-condensed curves is open. Together with (2.10), this shows that there exist C^{2} curves γ_{-1}, γ_{2} such that:
(i) There exist a path joining γ_{-1} to γ_{0} and a path joining γ_{1} to γ_{2} in $\mathcal{L}_{\kappa_{0}}^{+\infty}(I)$;
(ii) γ_{-1} is condensed and has rotation number $\nu\left(\gamma_{0}\right)$;
(iii) γ_{2} is not condensed.

Consider the map $f: \mathbf{S}^{0} \rightarrow \mathcal{L}_{\kappa_{0}}^{+\infty}(I)$ given by $f(-1)=\gamma_{-1}, f(1)=\gamma_{2}$. The existence of the homotopy $\gamma_{s}(s \in[0,1])$ tells us that f is nullhomotopic in $\mathcal{L}_{\kappa_{0}}^{+\infty}(I)$. By (2.10), f must be nullhomotopic in $\mathcal{C}_{\kappa_{0}}^{+\infty}(I)$. In other words, we may assume at the outset that each γ_{s} is of class $C^{2}(s \in[0,1])$.

With this assumption in force, let s_{0} be the infimum of all $s \in[0,1]$ such that γ_{s} is not condensed, and let $\gamma=\gamma_{s_{0}}$. Then γ must be condensed by (11.2), and it must be equatorial by our choice of s_{0}. In addition, $\nu\left(\gamma_{s}\right)$ must be
constant $\left(s \in\left[0, s_{0}\right]\right)$, since it can only take on integral values. This contradicts (8.8).

