9
 Proofs of the Main Theorems

We will now collect some of the results from the previous sections in order to prove the theorems stated in $\S 4$. We repeat their statements here for convenience.
(3.2) Theorem. Let $-\infty \leq \kappa_{1}<\kappa_{2} \leq+\infty$. Every curve in $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}(I)$ (resp. $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}$) lies in the same component as a circle traversed k times, for some $k \in \mathbf{N}$ (depending on the curve).

Proof. By the homeomorphism $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}} \approx \mathbf{S O}_{3} \times \mathcal{L}_{\kappa_{1}}^{\kappa_{2}}(I)$ of (2.15), it does not matter whether we prove the theorem for $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}$ or for $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}(I)$. Further, by (2.25), it suffices to consider spaces of type $\mathcal{L}_{\kappa_{0}}^{+\infty}$, for $\kappa_{0} \in \mathbf{R}$. If $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ is diffuse, then it is homotopic to a circle by (5.11). If it is condensed, then the same conclusion holds by (6.1) (when $\kappa_{0}>0$), (6.7) (when $\kappa_{0}<0$) and Little's theorem (when $\kappa_{0}=0$).

Assume then that γ is neither homotopic to a condensed nor to a diffuse curve. Since γ itself is non-condensed by hypothesis, (5.12) guarantees that we may find $\varepsilon>0$ and a chain of grafts $\left(\gamma_{s}\right)$ with $\gamma_{0}=\gamma$ and $\gamma_{s} \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ for all $s \in[0, \varepsilon)$. Let $\left(\gamma_{s}\right), s \in J$, be a maximal chain of grafts starting at $\gamma=\gamma_{0}$, where J is an interval of type $[0, \sigma)$ or $[0, \sigma]$. That such a chain exists follows by a straightforward argument involving Zorn's lemma, since the grafting relation is an equivalence relation, as proved in (5.6). ${ }^{1}$ By hypothesis, no curve γ_{s} is diffuse, hence $\nu\left(\gamma_{s}\right)$ is well-defined and independent of s, and (7.8) yields that $\sigma<+\infty$. If the interval is of the first type, then we obtain a contradiction from (5.7), and if the interval is closed, then we can apply (5.12) to γ_{σ} to extend the chain, again contradicting the choice of J. We conclude that γ must be homotopic either to a condensed or to a diffuse curve. In any case, γ is homotopic in $\mathcal{L}_{\kappa_{0}}^{+\infty}$ to a circle traversed a number of times, as claimed.
(3.3) Theorem. Let $-\infty \leq \kappa_{1}<\kappa_{2} \leq+\infty$ and let $\sigma_{k} \in \mathcal{L}_{\kappa_{1}}^{\kappa_{2}}(I)$ (resp. $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}$) denote any circle traversed $k \geq 1$ times. Then σ_{k}, σ_{k+2} lie in the same

[^0]component of $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}(I)$ (resp. $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}$) if and only if
$$
k \geq\left\lfloor\frac{\pi}{\rho_{1}-\rho_{2}}\right\rfloor \quad\left(\rho_{i}=\operatorname{arccot} \kappa_{i}, i=1,2\right)
$$

Proof. This follows from the combination of (4.4), (8.2) and (8.4), if we use the homeomorphisms in (2.15) and (2.25).
(9.1) Proposition. Let $\kappa_{0}=\cot \rho_{0} \geq 0$,

$$
n=\left\lfloor\frac{\pi}{\rho_{0}}\right\rfloor+1 .
$$

Then the set \mathcal{O}_{ν} of all condensed curves $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}(I)$ satisfying $\nu(\gamma)=\nu$ for some fixed $\nu \leq n-2$ is a contractible connected component of $\mathcal{L}_{\kappa_{0}}^{+\infty}(I)$.

Proof. When $\kappa_{0}=0$, this result is equivalent to the assertion that the component of $\mathcal{L}_{0}^{+\infty}(I)$ containing a circle traversed once is contractible; this result is not new, and a proof can be found in [15]. When $\kappa_{0}>0$, (6.1) guarantees that \mathcal{O}_{ν} is weakly contractible and, in particular, connected. Proposition (8.4) then implies that \mathcal{O}_{ν} must be a connected component of $\mathcal{L}_{\kappa_{0}}^{+\infty}(I)$. Using (2.7(a)) we deduce that \mathcal{O}_{ν} is an open subset of this space. Hence \mathcal{O}_{ν} is also a Hilbert manifold, and it must be contractible by (2.7(b)).

Remark. Note that if $\kappa_{0}<0$ (that is, if $\rho_{0}>\frac{\pi}{2}$), then it is a consequence of (4.2) and (4.3) that $\mathcal{L}_{\kappa_{0}}^{+\infty}(I)$ has only $n=2$ components, and the conclusion of (9.1) does not make sense in this case (no curve γ satisfies $\nu(\gamma) \leq 0$). Moreover, these two components are far from being contractible: Even for $\kappa_{0}=-\infty$, the (co)homology groups of $\mathcal{J}=\mathcal{L}_{-\infty}^{+\infty}(I) \simeq \Omega \mathbf{S}^{3} \sqcup \Omega \mathbf{S}^{3}$ are non-trivial in infinitely many dimensions.

Our main theorem is a combination of the three previous results.
(3.1) Theorem. Let $-\infty \leq \kappa_{1}<\kappa_{2} \leq+\infty, \rho_{i}=\operatorname{arccot} \kappa_{i}(i=1,2)$ and $\lfloor x\rfloor$ denote the greatest integer smaller than or equal to x. Then $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}$ has exactly n connected components $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$, where

$$
n=\left\lfloor\frac{\pi}{\rho_{1}-\rho_{2}}\right\rfloor+1
$$

and \mathcal{L}_{j} contains circles traversed j times $(1 \leq j \leq n)$. The component \mathcal{L}_{n-1} also contains circles traversed $(n-1)+2 k$ times, and \mathcal{L}_{n} contains circles traversed $n+2 k$ times, for $k \in \mathbf{N}$. Moreover, each of $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n-2}$ is homotopy equivalent to $\mathbf{S O}_{3}(n \geq 3)$.

Proof. All of the assertions of the theorem but the last one follow from (4.2), (4.3) and the homeomorphism $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}} \approx \mathbf{S O}_{3} \times \mathcal{L}_{\kappa_{1}}^{\kappa_{2}}(I)$ of (2.15).

Assume that $n \geq 3$ and let $\sigma_{k} \in \mathcal{L}_{\kappa_{1}}^{\kappa_{2}}(I)$ be a circle traversed $k \leq n-2$ times. In the notation of (9.1), the connected component $\mathcal{L}_{k}(I)$ of $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}(I)$ containing σ_{k} is mapped to the component \mathcal{O}_{k} under the homeomorphism $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}(I) \approx \mathcal{L}_{\kappa_{0}}^{+\infty}(I)$ of (2.25), because σ_{k} is mapped to another circle traversed k times (cf. (2.23)). Therefore, $\mathcal{L}_{k}(I)$ is contractible by (9.1). The last assertion of the theorem is deduced from this and the homeomorphism $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}} \approx \mathrm{SO}_{3} \times$ $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}(I)$.

Theorem (4.1) characterizes the connected components of $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}$ in terms of the circles that they contain. However, recall that $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}$ is homeomorphic to $\mathcal{L}_{\kappa_{0}}^{+\infty}$ for some κ_{0}, and for spaces of the latter type a more direct characterization in terms of the properties of a curve is also available.
(9.2) Theorem. Let $\kappa_{0} \in \mathbf{R}$ and let $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ be the connected components of $\mathcal{L}_{\kappa_{0}}^{+\infty}$, as described in (4.1). Then:
(i) $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ lies in $\mathcal{L}_{j}(1 \leq j \leq n-2)$ if and only if it is condensed and has rotation number j.
(ii) $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ lies in \mathcal{L}_{n-1} if and only if $\tilde{\Phi}_{\gamma}(1)=(-1)^{n-1} \tilde{\Phi}_{\gamma}(0)$ and either it is non-condensed or condensed with rotation number $\nu(\gamma) \geq n-1$.
(iii) $\gamma \in \mathcal{L}_{\kappa_{0}}^{+\infty}$ lies in \mathcal{L}_{n} if and only if $\tilde{\Phi}_{\gamma}(1)=(-1)^{n} \tilde{\Phi}_{\gamma}(0)$ and either it is non-condensed or condensed with rotation number $\nu(\gamma) \geq n-1$.

Proof. This follows from (4.1) and (9.1).
Recall that $\tilde{\Phi}:[0,1] \rightarrow \mathbf{S}^{3}$ is the lift of the frame $\Phi_{\gamma}:[0,1] \rightarrow \mathbf{S O}_{3}$ of γ to \mathbf{S}^{3} (cf. (2.12)). When $-\infty \leq \kappa_{0}<0$ (resp. $\rho_{1}-\rho_{2}>\frac{\pi}{2}$) we have $n=2$, and this characterization of the two components $\mathcal{L}_{1}, \mathcal{L}_{2}$ of $\mathcal{L}_{\kappa_{0}}^{+\infty}\left(\right.$ resp. $\mathcal{L}_{\kappa_{1}}^{\kappa_{2}}$) may be simplified to: γ lies in \mathcal{L}_{i} if and only if $\tilde{\Phi}_{\gamma}(1)=(-1)^{i} \tilde{\Phi}_{\gamma}(0)$.

[^0]: ${ }^{1}$ By reasoning more carefully it would be possible to avoid using Zorn's lemma.

