
3

Testing Linearity

We want to test whether f is a linear function or not. If f is the

exponential or logistic function, this could be done by testing H0 : λ = 0

or H0 : δ = 0 in Equations (2.2), (2.3), or (2.4). The issue is that in any

case there are unidentified parameters under the null hypothesis. One possible

solution is to follow Davies (1987) [5] and perform a supLM test, as done in

Hansen and Seo (2002) [10] and Seo (2007) [22]. Another possibility is to follow

the ideas in Luukkonen, Saikkonen and Terasvirta (1988) [16] and substitute

f by its Taylor expansion around the null hypothesis and test the polynomial

coefficients. The latter will be our approach.

To establish the asymptotic distribution of the test, we will make two

more assumptions.

Assumption 2 The function f : R → R
n is three times continuously

differentiable.

Assumption 3 ǫt is a difference martingale sequence with respect to the

filtration generated by yt.

The differentiability is needed in order to guarantee the validity of

the Taylor expansion, while the difference martingale errors is a common

assumption in error correction models. A important restriction is threshold

models. Since the threshold function is not differentiable everywhere, it does

not satisfy Assumption 2, which is essential to the validity of the test. However,

in finite samples, a threshold model can always be approximated through a

logistic smooth function by taking a large enough λ.

To establish the consistency of the test, we need one more hypothesis.

First, define the following partial derivatives:

fψi
(x, ψ) =

∂f(x, ψ)

∂ψi

, fψix
(x, ψ) =

∂2f(x, ψ)

∂ψi∂x
,

fψiψj
(x, ψ) =

∂2f(x, ψ)

∂ψi∂ψj

, and so on.
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Assumption 4 The derivatives fψix
(x, ψ) and fψiψjx(x, ψ) are limited in x

∀i, j ∈ {1, . . . , m}.

Note, for example, that the Smooth Transition Models presented in the

previous sections attend Assumption 4.

One often cited shortcoming of the Taylor expansion approach is the

local power characteristic of the test; see Hansen (1996) [9] for a discussion.

The expansion is usually made around the H0 values for the parameters. Since

the approximation becomes worse as the true parameters get farther from the

null hypothesis, it is difficult to establish consistency for every true parameter

set. Here we avoid this problem by making the expansion around the variable

instead of making it around some parameters. By doing so, as a result of the

finite variance of the variable, it is possible to limit the approximation errors.

This approach has two advantages over the supLM one. First, it is

extremely simple and much faster computationally. While supLM demands

bootstrap calculations, grid searches and involves non-standard asymptotic

distributions, the Taylor expansion approach demands only a simple F-test.

The computing time difference is of the order of 104. Second, since the test does

not have a specific alternative hypothesis, it is consistent against a large set of

nonlinearities. The supLM approach will be consistent only against the specific

alternative being tested, but will also have power against other alternatives as

well. Thus, since it is possible that the process is nonlinear but is not the

alternative hypothesis, accepting H0 does not mean the process is linear and

rejecting H0 does not guarantees the nonlinearity has the form being tested.

This is true even for large samples.

The Taylor Theorem version we will use is stated in the appendix as

Lemma 1. Using it to expand f around β′yt−1 = 0, Equation (2.1) becomes

∆yt = θ0 + θ1(β
′yt−1) + θ2(β

′yt−1)
2 + θ3(β

′yt−1)
3 +

p∑

i=1

Γi∆yt−i + ǫ∗t , (3.1)

where ǫ∗t = ǫt+
(

1
6

)
f (4)(kt)(β

′yt−1)
4, for some kt ∈ R, θ0 = f(0), θ1 = f (1)(0),

θ2 =
(

1
2

)
f (2)(0), and θ3 =

(
1
6

)
f (3)(0). f (i)(0) is the ith-order derivative

of f evaluated at 0. When f is linear, we have θ2 = θ3 = 0. When f is

nonlinear, f (2)(x) 6= 0 for almost every x ∈ R. The inequality will not hold

if x is a point of inflexion of the function. This will be true for x = 0 if, for

example, f is an odd function. We include the third term of the expansion

to deal with this situations. To keep it concrete, take the exponential model.

The θ values are θ0 = 0, θ1 = α + δexp{−λc2}, θ2 = −4cδλexp{−λc2},

θ3 = 3δ(2λexp{−λc2}−4c2λ2exp{−λc2}). If the location parameter, c, is zero,

the function is odd, and θ2 = 0, but θ3 6= 0. Therefore, the test will be able to
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detect the nonlinearity. To test H0 : f is linear against HA : f is nonlinear

we propose the following procedure:

(a) Estimate β̂ super-consistently. In our framework, it is enough to run an

OLS in the equation y1t = β1 + β2y2t + · · · + βnynt + ut;
1

(b) Estimate Equation (3.1) by OLS using β̂ in place of β. Then, perform a

F-test for the following null hypothesis H0 : θ2 = θ3 = 0.

Proposition 1 Under Assumptions 1–3 and H0 : θ2 = θ3 = 0, the F-statistic

on the second stage of the proposed test has a χ2(2n) asymptotic distribution.

Moreover, under HA and 4, the test is consistent.

Proof : See Appendix in Section 8. ¥

1In case of endogenous regressors, Dynamic OLS (DOLS) may be used.
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