Bibliography

[1] Apostol, T. Calculus. Wiley, New York, 1967.
[2] Balcombe, N., Bailey, A., and Brooks, T. Threshold effects in price transmission: The case of Brazilian wheat, maize and soya prices. American Journal of Agricultural Economics 89 (2007), 308-323.
[3] Bec, F., and Rahbek, A. Vector equilibrium correction models with non-linear discontinuous adjustments. Econometrics Journal 7 (2004), 628-651.
[4] Chung, H., Ho, T.-W., and Wei, L.-J. The dynamic relationship between the prices of ADRs and their underlying stocks: Evidence from the threshold vector error correction model. Applied Economics 37 (2005), 2387-2394.
[5] Davies, R. Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 74 (1987), 33-43.
[6] Engle, R., and Granger, C. Co-integration and error correction: Representation, estimation, and testing. Econometrica 55 (1987), 251276.
[7] Gonzalo, J., and Pitarakis, J.-Y. Threshold Effects in Multivariate Error Correction Models. 2006.
[8] Granger, C., and Terasvirta, T. Modelling Nonlinear Dynamic Relationships. Oxford University Press, Oxford, 1993.
[9] Hansen, B. Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica 64 (1996), 413-430.
[10] Hansen, B., and Seo, B. Testing for two-regime threshold cointegration in vector error-correction models. Journal of Econometrics 110 (2002), 293-318.
[11] Ibragimov, R., and Phillips, P. Regression asymptotics using martingale convergence methods. Econometric Theory 24 (2008), 888-947.
[12] Johansen, S. Estimation and hypothesis testing of cointegration vectors in gaussian vector autoregressive models. Econometrica 59 (1991), 15511580.
[13] Kapetanios, G., Shin, Y., and Snell, A. Testing for cointegration in nonlinear smooth transition error correction models. Econometric Theory 22 (2006), 279-303.
[14] Kristensen, D., and Rahbek, A. Likelihood-based inference in nonlinear error-correction models. Journal of Econometrics (2009), Forthcoming.
[15] Lo, M., and Zivot, E. Threshold cointegration and nonlinear adjustment to the law of one price. Macroeconomic Dynamics 5 (2001), 533-576.
[16] Luukkonen, R., Saikkonen, P., and Teräsvirta, T. Testing linearity against smooth transition autoregressive models. Biometrika 75 (1988), 491-499.
[17] Michael, P., Nobay, A., and Peel, D. Transaction costs and nonlinear adjustment in real exchange rates: An empirical investigation. Journal of Political Economy 105 (1997), 862-879.
[18] Pagan, A., and Ullah, A. Nonparametric Econometrics. Wiley, Cambridge, 1999.
[19] Saikkonen, P. Stability results for nonlinear error correction models. Journal of Econometrics 127 (2005), 69-81.
[20] Saikkonen, P. Stability of regime switching error correction models under linear cointegration. Econometric Theory 24 (2008), 294-318.
[21] Saikkonen, P., and Choi, I. Cointegrating smooth transition regression. Econometric Theory 20 (2004), 301-340.
[22] SEO, B. Testing for smooth transition nonlinearity in partially nonstationary vector autoregressions. Journal of the Korean Statistical Society 36 (2007), 257-274.
[23] Seo, M. H. Bootstrap testing for the null of no cointegration in a threshold vector error correction model. Journal of Econometrics 134 (2006), 129-150.
[24] Suárez-Fariñas, M., Pedreira, C., and Medeiros, M. Local global neural networks: A new approach for nonlinear time series modeling. Journal of the American Statistical Association 99 (2004), 1092-1107.
[25] Teräsvirta, T. Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association 89 (1994), 208-218.
[26] van Dijk, D., Teräsvirta, T., and Franses, P. Smooth transition autoregressive models - a survey of recent developments. Econometric Reviews 21 (2002), 1-47.
[27] Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge, 2001.

8

Appendix

The proofs to Propositions 1 and 2 are in the first section, while the proofs of all lemmas used are in the second section of this appendix.

8.1 Propositions

Proof. (Proposition 1) Suppose \mathcal{H}_{0} is true. Without loss of generality and or the sake of clarity, consider a system of two variables, only one lag of only one of the variables and no constant. Under \mathcal{H}_{0} and the knowledge of β all the regressors are stationary. Therefore, the asymptotic distributions would be standard. We will show that using super-consistent $\widehat{\boldsymbol{\beta}}$ yields the same limiting distributions. Consider the first equation of the system:

$$
\begin{equation*}
\Delta y_{1 t}=\theta_{11}\left(\widehat{z}_{t-1}\right)+\theta_{21}\left(\widehat{z}_{t-1}\right)^{2}+\theta_{31}\left(\widehat{z}_{t-1}\right)^{3}+\gamma \Delta y_{1 t-1}+\widetilde{\epsilon}_{1 t}, \tag{8.1}
\end{equation*}
$$

where $z_{t}=\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t-1}, \widehat{z}_{t}=\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}$ and $\widetilde{\epsilon}_{1 t}=\epsilon_{1 t}+\theta_{11}\left(\widehat{\beta}_{2}-\beta_{2}\right) y_{2 t-1}+\theta_{21}\left[2 z_{t-1}\left(\widehat{\beta}_{2}-\right.\right.$ $\left.\left.\beta_{2}\right) y_{2 t-1}+3\left(\widehat{\beta}_{2}-\beta_{2}\right)^{2} y_{2 t-1}^{2}\right]+\theta_{31}\left[3 z_{t-1}^{2}\left(\widehat{\beta}_{2}-\beta_{2}\right) y_{2 t-1}-3 z_{t-1}\left(\widehat{\beta}_{2}-\beta\right)^{2} y_{2 t-1}^{2}+\right.$ $\left.5\left(\widehat{\beta}_{2}-\beta_{2}\right)^{3} y_{2 t-1}^{3}\right]$. We will prove the result for this equation, the extension to both equations being straightforward but involving much longer and tedious manipulations.

First, note that

$$
\begin{aligned}
& \sqrt{T}\left(\begin{array}{l}
\widehat{\gamma}_{1}-\gamma_{1} \\
\widehat{\theta}_{11}-\theta_{11} \\
\widehat{\theta}_{21}-\theta_{21} \\
\widehat{\theta}_{31}-\theta_{31}
\end{array}\right)= \\
& \left(\begin{array}{llll}
\sum_{t=1}^{T} \Delta y_{1 t-1}^{2} & \sum_{t=1}^{T} \Delta y_{1 t-1} \widehat{z}_{t-1} & \sum_{t=1}^{T} \Delta y_{1 t-1} \widehat{z}_{t-1}^{2} & \sum_{t=1}^{T} \Delta y_{1 t-1} \widehat{z}_{t-1}^{3} \\
\sum_{t=1}^{T} \Delta y_{1 t-1} \widehat{z}_{t-1} & \sum_{t=1}^{T} \widehat{z}_{t-1}^{2} & \sum_{t=1}^{T} \widehat{z}_{t-1}^{3} & \sum_{t=1}^{T} \widehat{z}_{t-1}^{4} \\
\sum_{t=1}^{T} \Delta y_{1 t-1} \widehat{z}_{t-1}^{2} & \sum_{t=1}^{T} \widehat{z}_{t-1}^{3} & \sum_{t=1}^{T} \widehat{z}_{t-1}^{4} & \sum_{t=1}^{T} \widehat{z}_{t-1}^{5} \\
\sum_{t=1}^{T} \Delta y_{1 t-1} \widehat{z}_{t-1}^{3} & \sum_{t=1}^{T} \widehat{z}_{t-1}^{4} & \sum_{t=1}^{T} \widehat{z}_{t-1}^{5} & \sum_{t=1}^{T} \widehat{z}_{t-1}^{6}
\end{array}\right)^{-1}\left(\begin{array}{l}
\sum_{t=1}^{T} \Delta y_{1 t-1} \widetilde{\epsilon}_{t} \\
\sum_{t=1}^{T} \widehat{z}_{t-1} \widetilde{\epsilon}_{t} \\
\sum_{t=1}^{T} \widehat{z}_{t-1}^{2} \widetilde{\epsilon}_{t} \\
\sum_{t=1}^{T} \\
\sum_{t=1}^{T} \widehat{z}_{t-1}^{3} \widetilde{\epsilon}_{t}
\end{array}\right) .
\end{aligned}
$$

Hence, to establish our result, it suffices to show that:
(a) $\operatorname{plim} T^{-1} \sum_{t=1}^{T} \Delta y_{1 t-1} \hat{z}_{t-1}^{l}=\operatorname{plim} T^{-1} \sum_{t=1}^{T} \Delta y_{1 t-1} z_{t-1}^{l}, \forall l=1,2,3$.
(b) $\operatorname{plim} T^{-1} \sum_{t=1}^{T} \hat{z}_{t-1}^{k}=\operatorname{plim} T^{-1} \sum_{t=1}^{T} z_{t-1}^{k}, \forall k=2,3,4,5,6$.
(c) $T^{-1 / 2} \sum_{t=1}^{T} \Delta y_{1 t-1} \widetilde{\epsilon}_{t}$ has the same asymptotic distribution of $T^{-1 / 2} \sum_{t=1}^{T} \Delta y_{1 t-1} \epsilon_{t}$.
(d) $T^{-1 / 2} \sum_{t=1}^{T} \widehat{z}_{t-1}^{h} \widetilde{\epsilon}_{t}$ has the same asymptotic distribution of $T^{-1 / 2} \sum_{t=1}^{T} z_{t-1}^{h} \epsilon_{t}$ for $\mathrm{h}=1,2,3$.
(a) and (b) follow directly from Lemma 3.

To prove (d), note that the expression $\widehat{z}_{t-1}^{2} \widetilde{\epsilon}_{1 t}$ equals $\widehat{z}_{t-1}^{2} \epsilon_{1 t}$ plus a number of terms in the form

$$
\left(\widehat{\beta}_{2}-\beta_{2}\right)^{i} \sum_{t=1}^{T} z_{t-1}^{k} y_{2 t-1}^{i} .
$$

Following what was shown in Lemma 3, as long as $i \geq 1$ and $k>0$, the expression is $o_{p}(1)$, i.e., the limit when $T \rightarrow \infty$ is zero. If $k=0$, we need $i \geq 2$. In this case, the inequality is respected in all expressions.

Hence, $T^{-1 / 2} \sum_{t=1}^{T} \widehat{z}_{t-1}^{h} \widetilde{\epsilon}_{1 t}=T^{-1 / 2} \sum_{t=1}^{T} \widehat{z}_{t-1}^{h} \epsilon_{1 t}+o_{p}(1)$. Again from Lemma 3, $T^{-1 / 2} \sum_{t=1}^{T} \widehat{z}_{t-1}^{h} \epsilon_{1 t}=T^{-1 / 2} \sum_{t=1}^{T} z_{t-1}^{h} \epsilon_{1 t}+o_{p}(1)$, and from here the result follows.

Proof of claim (c) is analogous to the proof to claim (d).
Now, suppose \mathcal{H}_{A} is true. To prove the consistency we will show that, under \mathcal{H}_{A}, the F -statistic diverges to infinity. Under the alternative, $\Delta y_{1 t}$ follows Equation (8.1) except for the error, which becomes $\widetilde{\epsilon}_{1 t}^{*}=\widetilde{\epsilon}_{1 t}+$ $\frac{1}{6} f^{(4)}\left(k_{t}, \psi\right)\left(z_{t-1}\right)^{4}$ for some fixed $k_{t} \in \mathbb{R}$.

Let $\boldsymbol{Z}_{t}=\left(\widehat{z}_{t-1}, \widehat{z}_{t-1}^{2}, \widehat{z}_{t-1}^{3}, \Delta y_{1 t-1}\right)^{\prime}$ and $\boldsymbol{\mathcal { Z }}_{T}=\left(\boldsymbol{Z}_{1}, \ldots, \boldsymbol{Z}_{T}\right)^{\prime}$. Then, $\operatorname{plim}\left(\frac{1}{T} \mathcal{Z}_{T} \mathcal{Z}_{T}^{\prime}\right)^{-1}=\Omega$ is unchanged whether \mathcal{H}_{0} is true or not. We will show that under $\mathcal{H}_{A}, T^{-1 / 2}\left(\widehat{\theta}_{21}-0\right)$ diverges. Let $\widetilde{\Omega}$ be the relevant partition of $\boldsymbol{\Omega}$.

Note that

$$
\begin{aligned}
T^{-1 / 2} \widehat{\theta}_{21} & =\widetilde{\Omega} T^{-1 / 2} \sum_{t=1}^{T} \widehat{z}_{t-1}^{2} \Delta y_{1 t} \\
& =T^{1 / 2} \theta_{21}+\widetilde{\Omega} T^{-1 / 2} \sum_{t=1}^{T} \widehat{z}_{t-1}^{2} \widetilde{\epsilon}_{1 t}^{*} \\
& =T^{1 / 2} \theta_{21}+\widetilde{\Omega} T^{-1 / 2} \sum_{t=1}^{T}\left[\widehat{z}_{t-1}^{2} \widetilde{\epsilon}_{1 t}+\widehat{z}_{t-1}^{2} \frac{1}{6} f^{(4)}\left(k_{t}, \psi\right)\left(z_{t-1}\right)^{4}\right] .
\end{aligned}
$$

We know, from Assumptions 1 and 4, that $\frac{1}{6} f^{(4)}\left(k_{t}, \psi\right)$ is bounded. So, we can write

$$
-K \sum_{t=1}^{T} \widehat{z}_{t-1}^{2}\left(z_{t-1}\right)^{4}<\sum_{t=1}^{T} \widehat{z}_{t-1}^{2} \frac{1}{6} f^{(4)}\left(k_{1}, \psi\right)\left(z_{t-1}\right)^{4}<K \sum_{t=1}^{T} \widehat{z}_{t-1}^{2}\left(z_{t-1}\right)^{4} .
$$

Pre-multiplying by $T^{-1 / 2}$, taking limits, and using the results in Lemma 3, we get

$$
O_{p}(1)<\sum_{t=1}^{T} \widehat{z}_{t-1}^{2} \frac{1}{6} f^{(4)}\left(k_{1}, \psi\right)\left(z_{t-1}\right)^{4}<O_{p}(1) .
$$

From (d) we know that $T^{-1 / 2} \sum_{t=1}^{T} \widehat{z}_{t-1}^{2} \widetilde{\epsilon}_{1 t}$ is $O_{p}(1)$. Therefore, we have two limited terms plus $T^{1 / 2} \theta_{21}$, which will diverge to ∞, giving us the result. The same argument applies to the F-test, only with lengthier calculations.

Finally, from (b) it is easy to see that plim $T^{-1}\left(\hat{\epsilon}_{1 t}^{2}\right)$ exists.

Proof. (Proposition 2) Again, for the sake of simplicity, let us consider only one lag of only one variable. In addition, without loss of generality, we will assume ψ is scalar. The NLLS problem is

$$
\min \frac{1}{2} T^{-1} \sum_{t=1}^{T}\left[\Delta y_{1 t}-f\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \psi\right)-\gamma \Delta y_{1 t-1}\right]^{2}
$$

The first order conditions are:

$$
T^{-1} \sum_{t=1}^{T} \widehat{\boldsymbol{s}}_{t}(\widehat{\psi}, \widehat{\gamma})=0
$$

where

$$
\widehat{\boldsymbol{s}}_{t}(\widehat{\psi}, \widehat{\gamma})=\left[\Delta y_{1 t}-f\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widehat{\psi}\right)-\widehat{\gamma} \Delta y_{1 t-1}\right]\left[\begin{array}{c}
f_{\psi}\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widehat{\psi}\right) \\
\Delta y_{1 t-1}
\end{array}\right] .
$$

We will always use the hat to make clear whether the function is calculated with $\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}$ or $\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t-1}$.

We can make a mean-value expansion around (ψ, γ) :

$$
\sum_{t=1}^{T} \widehat{\boldsymbol{s}}_{t}(\psi, \gamma)+\sum_{t=1}^{T} \widehat{\boldsymbol{H}}_{t}(\widetilde{\psi}, \widetilde{\gamma})\binom{\psi-\widehat{\psi}}{\gamma-\widehat{\gamma}}=0
$$

where

$$
\widehat{\boldsymbol{H}}_{t}(\psi, \gamma)=\left[\frac{\frac{\partial \hat{\boldsymbol{s}}_{t}(\psi, \gamma)}{\partial \psi}}{\frac{\partial \hat{s}_{t}(\psi, \gamma)}{\partial \gamma}}\right]^{\prime},
$$

$(\widetilde{\psi}, \widetilde{\gamma})=(\widehat{\psi}, \widehat{\gamma})+t(\psi, \gamma)$, for some $t \in(0,1)$.
From Lemma 4

$$
\operatorname{plim} T^{-1} \sum_{t=1}^{T} \widehat{\boldsymbol{H}}_{t}(\widetilde{\psi}, \widetilde{\gamma})=\operatorname{plim} T^{-1} \sum_{t=1}^{T} \boldsymbol{H}_{t}(\psi, \gamma)=\boldsymbol{H}(\psi, \gamma),
$$

for some fixed $\boldsymbol{H}(\psi, \gamma)$.
Therefore,

$$
T^{1 / 2}\binom{\psi-\widehat{\psi}}{\gamma-\widehat{\gamma}}=\left[\boldsymbol{H}_{t}(\psi, \gamma)\right]^{-1}\left(-T^{-1 / 2}\right) \sum_{t=1}^{T} \widehat{\boldsymbol{s}}_{t}(\psi, \gamma)+o_{p}(1)
$$

All we have to show now is that

$$
\left(T^{-1 / 2}\right) \sum_{t=1}^{T} \widehat{\boldsymbol{s}}_{t}(\psi, \gamma)=\left(T^{-1 / 2}\right) \sum_{t=1}^{T} \boldsymbol{s}_{t}(\psi, \gamma)+o_{p}(1)
$$

It is sufficient to show that
(a) $T^{-1 / 2} \sum_{t=1}^{T} \Delta y_{1 t} f_{\psi}\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widehat{\psi}\right)=T^{-1 / 2} \sum_{t=1}^{T} \Delta y_{1 t} f_{\psi}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t-1}, \widehat{\psi}\right)+o_{p}(1)$
(b) $T^{-1 / 2} \sum_{t=1}^{T} f\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widehat{\psi}\right) f_{\psi}\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widehat{\psi}\right)=$
$T^{-1 / 2} \sum_{t=1}^{T} f\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t-1}, \widehat{\psi}\right) f_{\psi}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t-1}, \widehat{\psi}\right)+o_{p}(1)$
Claims (a) and (b) follow directly from Lemma 3 and Assumption 4.
As to the covariance matrix estimator, the proof is standard. Since we only need to use the Law of Large Numbers, the non-stationarity of the variables does not bring any extra complications Wooldridge (2001) [27].

8.2 Lemmas

Lemma 1 Suppose f is a function which is n times continuously differentiable on the closed interval $[a-r, a+r]$ and $n+1$ times differentiable on the open interval ($a-r, a+r$). If there exists a positive real constant M_{n} such that $\left|f^{(n+1)}(x)\right|<M_{n}, \forall x \in(a-r, a+r)$, then
$f(x)=f(a)+f^{\prime}(a) \frac{(x-a)}{1!}+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+\ldots+f^{(n)}(b) \frac{(x-a)^{n}}{n!}$
for some $b \in(a, x)$.
Proof. See Apostol (1967) [1].

From Ibragimov and Phillips (2008) [11]:
Theorem 1 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice continuously differentiable function such that f^{\prime} satisfies the growth condition $\left|f^{\prime}(x)\right| \leq K\left(1+|x|^{\alpha}\right), \forall x \in \boldsymbol{R}$ for some constants $K>0$ and $\alpha<0$. Suppose that u_{t} and v_{t} are two linear processes $u_{t}=\sum_{j=1}^{\infty} \gamma_{j} \epsilon_{t-j}$ and $v_{t}=\sum_{j=1}^{\infty} \delta_{j} \epsilon_{t-j}$ where $\sum_{j=1}^{\infty} j\left|\gamma_{j}\right|<\infty$, $\sum_{j=1}^{\infty} j\left|\delta_{j}\right|<\infty$ and $\left(\epsilon_{t}\right)_{t \in \boldsymbol{Z}}$ are zero-mean i.i.d. random variables with $E\left[\epsilon_{0}^{2}\right]<$ ∞ and $E\left[\left|\epsilon_{0}\right|^{p}\right]<\infty$ for $p \geq \max (6,4 \alpha)$. Then
$\frac{1}{\sqrt{T}} \sum_{t=2}^{[T r]} f\left(\frac{1}{\sqrt{T}} \sum_{i=1}^{t-1} u_{i}\right) v_{t} \xrightarrow{d} \lambda_{u v} \int_{0}^{r} f^{\prime}\left(\omega_{u} W(v)\right) d v+\omega_{v} \int_{0}^{r} f\left(\omega_{u} W(v)\right) d(W(v)$,
where $\omega_{u}=E\left[u_{t}^{2}\right], \omega_{v}=E\left[v_{t}^{2}\right]$ and $\lambda_{u v}=\sum_{j=1}^{\infty} E\left[u_{0} v_{0}\right]$.
The exact form of the limiting distribution is not relevant for our results. What we need is the following corollary.

Lemma 2 Under the conditions of Theorem 1,

$$
T^{-1 / 2} \sum_{t=2}^{T} f\left(T^{-1 / 2} \sum_{i=1}^{t-1} u_{i}\right) v_{t}=O_{p}(1)
$$

Note that the derivatives of any polynomial function satisfy the growth condition.

Lemma 3 Let v_{t} be a stationary process, \boldsymbol{y}_{t} be an $I(1)$ cointegrated vector, with cointegration vector $\boldsymbol{\beta}$ and $\widehat{\boldsymbol{\beta}}$ a super-consistent estimate of $\boldsymbol{\beta}$. Let also, for some $d<\infty, f: \mathbb{R} \rightarrow \mathbb{R}$ be d times continuously differentiable and the d-th derivative of f be limited. Then, $T^{-1 / 2} \sum_{t=1}^{T} f\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t}\right) v_{t}=T^{-1 / 2} \sum_{t=1}^{T} f\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t}\right) v_{t}+$ $o_{p}(1)$, and $\operatorname{plim} T^{-1} \sum_{t=1}^{T} f\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t}\right)=\operatorname{plim} T^{-1} \sum_{t=1}^{T} f\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t}\right)$.

Proof. For the first result, consider first a two dimensional case $\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t}=$ $y_{1 t}+\beta_{2} y_{2 t}$. Using Lemma 1 to expand f around $\beta_{2} y_{2 t}$,

$$
\begin{aligned}
f\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t}\right)=f\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t}\right) & +f^{\prime}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t}\right)\left(\widehat{\beta}_{2}-\beta_{2}\right) y_{2 t}+\cdots+\frac{f^{(d-1)}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t}\right)\left(\widehat{\beta}_{2}-\beta_{2}\right)^{d-1} y_{2 t}^{d-1}}{(d-1)!} \\
& +\frac{f^{d}\left(\widetilde{\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t}}\right)\left(\widehat{\beta}_{2}-\beta_{2}\right)^{d} y_{2 t}^{d}}{d!}
\end{aligned}
$$

for some $\widetilde{\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t}} \in\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t}, \boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t}\right)$. Taking the k-th term, such that $3 \leq k \leq d-1$, we have, by Lemma 2,

$$
\begin{aligned}
\left(\widehat{\beta}_{2}-\beta_{2}\right)^{k} \sum_{t=1}^{T} f^{k}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t}\right) v_{t} y_{2 t}^{k} / k! & =T^{-(k-1) / 2}\left[T\left(\widehat{\beta}_{2}-\beta_{2}\right)\right]^{k} \\
& \times\left[T^{-(k+1) / 2} \frac{\sum_{t=1}^{T} f^{k}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t}\right) v_{t} y_{2 t}^{k}}{k!}\right] \\
& =T^{-(k-1) / 2} O_{p}(1) O_{p}(1)=o_{p}(1) .
\end{aligned}
$$

For $k=2$ we get a $O_{p}(1)$, but it will be further divided by $T^{1 / 2}$, giving us an $o_{p}(1)$. Since the d-th derivative is limited, for some $M \in \mathbb{R}$, the sum of the d-th term is bounded by

$$
\begin{aligned}
\pm M \sum_{t=1}^{T}\left(\widehat{\beta}_{2}-\beta_{2}\right)^{d} v_{t} y_{2 t}^{d} & = \pm M T^{-(d-1) / 2}\left[T\left(\widehat{\beta}_{2}-\beta_{2}\right)\right]^{d}\left[T^{-(d+1) / 2} \sum_{t=1}^{T} v_{t} y_{2 t}^{d}\right] \\
& =T^{-(d-1) / 2} O_{p}(1) O_{p}(1)
\end{aligned}
$$

Again, if $d \neq 1$ we have an $o_{p}(1)$ expression, if $d=1$, we are back to the $k=2$ case. Therefore, the only remaining term is the first, which gives us the result.

For the multidimensional case, just repeat the reasoning for each dimension of β^{\prime}.

The second result is proven by the same line of reasoning. The only difference is that in the end of each expression we will have $T^{-(i-2) / 2} O_{p}(1) O_{p}(1)$, giving us an $o_{p}(1)$ except for $i=1,2$. But since the expression will be divided by T, we will have $o_{p}(1)$ for every i.

Lemma $4 \operatorname{plim} T^{-1} \sum_{t=1}^{T} \widehat{\boldsymbol{H}}_{t}(\widetilde{\psi}, \widetilde{\gamma})=\operatorname{plim} T^{-1} \sum_{t=1}^{T} \boldsymbol{H}_{t}(\psi, \gamma)$.
Proof. $\widehat{\boldsymbol{H}}_{t}(\widetilde{\psi}, \widetilde{\gamma})$ equals

$$
\left[\begin{array}{cc}
L & \Delta y_{1 t-1} f_{\psi}\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \tilde{\psi}\right) \\
\Delta y_{1 t-1} f_{\psi}\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widetilde{\psi}\right) & \Delta y_{1 t-1}^{2}
\end{array}\right]
$$

Where $L=f_{\psi \psi}\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widetilde{\psi}\right)\left(-\Delta \boldsymbol{y}_{1 t}+f\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widetilde{\psi}\right)+\widetilde{\gamma} \Delta y_{1 t-1}\right)+$ $f_{\psi}\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widetilde{\psi}\right)^{2}$. From Lemma 3 and Assumption 4:
(a) $\operatorname{plim} T^{-1} \sum_{t=1}^{T} \Delta y_{1 t-1} f_{\psi}\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widetilde{\psi}\right)=\operatorname{plim} T^{-1} \sum_{t=1}^{T} \Delta y_{1 t-1} f_{\psi}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t-1}, \widetilde{\psi}\right)$
(b) $\operatorname{plim} T^{-1} \sum_{t=1}^{T} f_{\psi \psi}\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widetilde{\psi}\right)\left[-\Delta y_{1 t}+f\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widetilde{\psi}\right)+\widetilde{\gamma} \Delta y_{1 t-1}\right]=$

$$
\operatorname{plim} T^{-1} \sum_{t=1}^{T} f_{\psi \psi}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t-1}, \widetilde{\psi}\right)\left[-\Delta y_{1 t}+f\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t-1}, \widetilde{\psi}\right)+\widetilde{\gamma} \Delta y_{1 t-1}\right]
$$

(c) $\operatorname{plim} T^{-1} \sum_{t=1}^{T} f_{\psi}\left(\widehat{\boldsymbol{\beta}}^{\prime} \boldsymbol{y}_{t-1}, \widetilde{\psi}\right)^{2}=\operatorname{plim} T^{-1} \sum_{t=1}^{T} f_{\psi}\left(\boldsymbol{\beta}^{\prime} \boldsymbol{y}_{t-1}, \widetilde{\psi}\right)^{2}$

Therefore, we have established that plim $T^{-1} \sum_{t=1}^{T} \widehat{\boldsymbol{H}}_{t}(\widetilde{\psi}, \widetilde{\gamma})=$ plim $T^{-1} \sum_{t=1}^{T} \boldsymbol{H}_{t}(\widetilde{\psi}, \widetilde{\gamma})$. Usual nonlinear least squares approach, c.f. Wooldridge (2001) [27], may easily be used to establish plim $T^{-1} \sum_{t=1}^{T} \boldsymbol{H}_{t}(\widetilde{\psi}, \widetilde{\gamma})=$ plim $T^{-1} \sum_{t=1}^{T} \boldsymbol{H}_{t}(\psi, \gamma)$. These two equalities give us the result.

