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8

Appendix

The proofs to Propositions 1 and 2 are in the first section, while the

proofs of all lemmas used are in the second section of this appendix.

8.1 Propositions

Proof. (Proposition 1) Suppose H0 is true. Without loss of generality

and or the sake of clarity, consider a system of two variables, only one lag of

only one of the variables and no constant. Under H0 and the knowledge of β all

the regressors are stationary. Therefore, the asymptotic distributions would be

standard. We will show that using super-consistent β̂ yields the same limiting

distributions. Consider the first equation of the system:

∆y1t = θ11(ẑt−1) + θ21(ẑt−1)
2 + θ31(ẑt−1)

3 + γ∆y1t−1 + ǫ̃1t, (8.1)

where zt = β′yt−1, ẑt = β̂
′

yt−1 and ǫ̃1t = ǫ1t +θ11(β̂2−β2)y2t−1 +θ21[2zt−1(β̂2−
β2)y2t−1 + 3(β̂2 − β2)

2y2
2t−1] + θ31[3z

2
t−1(β̂2 − β2)y2t−1 − 3zt−1(β̂2 − β)2y2

2t−1 +

5(β̂2 − β2)
3y3

2t−1]. We will prove the result for this equation, the extension to

both equations being straightforward but involving much longer and tedious

manipulations.
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First, note that

√
T




γ̂1 − γ1

θ̂11 − θ11

θ̂21 − θ21

θ̂31 − θ31




=

T




T∑

t=1

∆y2
1t−1

T∑

t=1

∆y1t−1ẑt−1

T∑

t=1

∆y1t−1ẑ
2
t−1

T∑

t=1

∆y1t−1ẑ
3
t−1

T∑

t=1

∆y1t−1ẑt−1

T∑

t=1

ẑ2
t−1

T∑

t=1

ẑ3
t−1

T∑

t=1

ẑ4
t−1

T∑

t=1

∆y1t−1ẑ
2
t−1

T∑

t=1

ẑ3
t−1

T∑

t=1

ẑ4
t−1

T∑

t=1

ẑ5
t−1

T∑

t=1

∆y1t−1ẑ
3
t−1

T∑

t=1

ẑ4
t−1

T∑

t=1

ẑ5
t−1

T∑

t=1

ẑ6
t−1




−1

× 1√
T




T∑

t=1

∆y1t−1ǫ̃t

T∑

t=1

ẑt−1ǫ̃t

T∑

t=1

ẑ2
t−1ǫ̃t

T∑

t=1

ẑ3
t−1ǫ̃t




.

Hence, to establish our result, it suffices to show that:

(a) plim T−1
∑T

t=1 ∆y1t−1ẑ
l
t−1 = plim T−1

∑T
t=1 ∆y1t−1z

l
t−1, ∀l = 1, 2, 3.

(b) plim T−1
∑T

t=1 ẑk
t−1 = plim T−1

∑T
t=1 zk

t−1,∀k = 2, 3, 4, 5, 6.

(c) T−1/2
∑T

t=1 ∆y1t−1ǫ̃t has the same asymptotic distribution of

T−1/2
∑T

t=1 ∆y1t−1ǫt.

(d) T−1/2
∑T

t=1 ẑh
t−1ǫ̃t has the same asymptotic distribution of

T−1/2
∑T

t=1 zh
t−1ǫt for h=1,2,3.

(a) and (b) follow directly from Lemma 3.

To prove (d), note that the expression ẑ2
t−1ǫ̃1t equals ẑ2

t−1ǫ1t plus a number

of terms in the form

(β̂2 − β2)
i

T∑

t=1

zk
t−1y

i
2t−1.
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Following what was shown in Lemma 3, as long as i ≥ 1 and k > 0, the

expression is op(1), i.e., the limit when T → ∞ is zero. If k = 0, we need i ≥ 2.

In this case, the inequality is respected in all expressions.

Hence, T−1/2
∑T

t=1 ẑh
t−1ǫ̃1t = T−1/2

∑T
t=1 ẑh

t−1ǫ1t + op(1). Again from

Lemma 3, T−1/2
∑T

t=1 ẑh
t−1ǫ1t = T−1/2

∑T
t=1 zh

t−1ǫ1t + op(1), and from here the

result follows.

Proof of claim (c) is analogous to the proof to claim (d).

Now, suppose HA is true. To prove the consistency we will show that,

under HA, the F-statistic diverges to infinity. Under the alternative, ∆y1t

follows Equation (8.1) except for the error, which becomes ǫ̃∗1t = ǫ̃1t +
1
6
f (4)(kt, ψ)(zt−1)

4 for some fixed kt ∈ R.

Let Zt =
(
ẑt−1, ẑ

2
t−1, ẑ

3
t−1, ∆y1t−1

)
′

and ZT = (Z1, . . . , ZT )′. Then,

plim
(

1
T
ZT Z

′

T

)
−1

= Ω is unchanged whether H0 is true or not. We will show

that under HA, T−1/2(θ̂21 − 0) diverges. Let Ω̃ be the relevant partition of Ω.

Note that

T−1/2θ̂21 = Ω̃T−1/2

T∑

t=1

ẑ2
t−1∆y1t

= T 1/2θ21 + Ω̃T−1/2

T∑

t=1

ẑ2
t−1ǫ̃

∗

1t

= T 1/2θ21 + Ω̃T−1/2

T∑

t=1

[
ẑ2

t−1ǫ̃1t + ẑ2
t−1

1

6
f (4)(kt, ψ)(zt−1)

4

]
.

We know, from Assumptions 1 and 4, that 1
6
f (4)(kt, ψ) is bounded. So,

we can write

−K

T∑

t=1

ẑ2
t−1(zt−1)

4 <

T∑

t=1

ẑ2
t−1

1

6
f (4)(k1, ψ)(zt−1)

4 < K

T∑

t=1

ẑ2
t−1(zt−1)

4.

Pre-multiplying by T−1/2, taking limits, and using the results in Lemma 3, we

get

Op(1) <

T∑

t=1

ẑ2
t−1

1

6
f (4)(k1, ψ)(zt−1)

4 < Op(1).

From (d) we know that T−1/2
∑T

t=1 ẑ2
t−1ǫ̃1t is Op(1). Therefore, we have

two limited terms plus T 1/2θ21, which will diverge to ∞, giving us the result.

The same argument applies to the F-test, only with lengthier calculations.

Finally, from (b) it is easy to see that plimT−1(ǫ̂2
1t) exists.

¥
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Proof. (Proposition 2) Again, for the sake of simplicity, let us consider

only one lag of only one variable. In addition, without loss of generality, we

will assume ψ is scalar. The NLLS problem is

min
1

2
T−1

T∑

t=1

[
∆y1t − f(β̂

′

yt−1, ψ) − γ∆y1t−1

]2

.

The first order conditions are:

T−1

T∑

t=1

ŝt(ψ̂, γ̂) = 0,

where

ŝt(ψ̂, γ̂) =
[
∆y1t − f(β̂

′

yt−1, ψ̂) − γ̂∆y1t−1

] [
fψ(β̂

′

yt−1, ψ̂)

∆y1t−1

]
.

We will always use the hat to make clear whether the function is calculated

with β̂
′

yt−1 or β′yt−1.

We can make a mean-value expansion around (ψ, γ):

T∑

t=1

ŝt(ψ, γ) +
T∑

t=1

Ĥ t(ψ̃, γ̃)

(
ψ − ψ̂

γ − γ̂

)
= 0,

where

Ĥ t(ψ, γ) =

[
∂ŝt(ψ,γ)

∂ψ
∂ŝt(ψ,γ)

∂γ

]′

,

(ψ̃, γ̃) = (ψ̂, γ̂) + t(ψ, γ), for some t ∈ (0, 1).

From Lemma 4

plimT−1

T∑

t=1

Ĥ t(ψ̃, γ̃) = plimT−1

T∑

t=1

H t(ψ, γ) = H(ψ, γ),

for some fixed H(ψ, γ).

Therefore,

T 1/2

(
ψ − ψ̂

γ − γ̂

)
= [H t(ψ, γ)]−1 (

−T−1/2
) T∑

t=1

ŝt(ψ, γ) + op(1).

All we have to show now is that

(T−1/2)
T∑

t=1

ŝt(ψ, γ) = (T−1/2)
T∑

t=1

st(ψ, γ) + op(1).
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It is sufficient to show that

(a) T−1/2
∑T

t=1 ∆y1tfψ(β̂
′

yt−1, ψ̂) = T−1/2
∑T

t=1 ∆y1tfψ(β′yt−1, ψ̂) + op(1)

(b) T−1/2
∑T

t=1 f(β̂
′

yt−1, ψ̂)fψ(β̂
′

yt−1, ψ̂) =

T−1/2
∑T

t=1 f(β′yt−1, ψ̂)fψ(β′yt−1, ψ̂) + op(1)

Claims (a) and (b) follow directly from Lemma 3 and Assumption 4.

As to the covariance matrix estimator, the proof is standard. Since we

only need to use the Law of Large Numbers, the non-stationarity of the

variables does not bring any extra complications Wooldridge (2001) [27].

¥

8.2 Lemmas

Lemma 1 Suppose f is a function which is n times continuously differentiable

on the closed interval [a - r, a + r] and n + 1 times differentiable on the

open interval (a-r,a+r). If there exists a positive real constant Mn such that

|f (n+1)(x)| < Mn,∀x ∈ (a − r, a + r), then

f(x) = f(a) + f
′

(a)
(x − a)

1!
+ f

′′

(a)
(x − a)2

2!
+ . . . + f (n)(b)

(x − a)n

n!

for some b ∈ (a, x).

Proof. See Apostol (1967) [1].

¥

From Ibragimov and Phillips (2008) [11]:

Theorem 1 Let f : R → R be a twice continuously differentiable function

such that f ′ satisfies the growth condition |f ′(x)| ≤ K(1 + |x|α), ∀x ∈ R for

some constants K > 0 and α < 0. Suppose that ut and vt are two linear

processes ut =
∑

∞

j=1 γjǫt−j and vt =
∑

∞

j=1 δjǫt−j where
∑

∞

j=1 j|γj| < ∞,∑
∞

j=1 j|δj| < ∞ and (ǫt)t∈Z are zero-mean i.i.d. random variables with E[ǫ2
0] <

∞ and E[|ǫ0|p] < ∞ for p ≥ max(6, 4α). Then

1√
T

[Tr]∑

t=2

f

(
1√
T

t−1∑

i=1

ui

)
vt

d→ λuv

∫ r

0

f ′(ωuW (v))dv+ωv

∫ r

0

f(ωuW (v))d(W (v),

where ωu = E[u2
t ], ωv = E[v2

t ] and λuv =
∑

∞

j=1 E[u0v0].

The exact form of the limiting distribution is not relevant for our results.

What we need is the following corollary.
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Lemma 2 Under the conditions of Theorem 1,

T−1/2

T∑

t=2

f

(
T−1/2

t−1∑

i=1

ui

)
vt = Op(1)

.

Note that the derivatives of any polynomial function satisfy the growth

condition.

Lemma 3 Let vt be a stationary process, yt be an I(1) cointegrated vector,

with cointegration vector β and β̂ a super-consistent estimate of β. Let also, for

some d < ∞, f : R → R be d times continuously differentiable and the d-th de-

rivative of f be limited. Then, T−1/2
∑T

t=1 f(β′yt)vt = T−1/2
∑T

t=1 f(β̂
′

yt)vt +

op(1), and plim T−1
∑T

t=1 f(β′yt) = plim T−1
∑T

t=1 f(β̂
′

yt).

Proof. For the first result, consider first a two dimensional case β′yt =

y1t + β2y2t. Using Lemma 1 to expand f around β2y2t,

f(β̂
′

yt) = f(β′yt) + f ′(β′yt)(β̂2 − β2)y2t + · · · + f (d−1)(β′yt)(β̂2 − β2)
d−1yd−1

2t

(d − 1)!

+
fd(β̃′yt)(β̂2 − β2)

dyd
2t

d!

for some β̃′yt ∈
(
β̂

′

yt, β
′yt

)
. Taking the k-th term, such that 3 ≤ k ≤ d − 1,

we have, by Lemma 2,

(β̂2 − β2)
k

T∑

t=1

fk(β′yt)vty
k
2t/k! = T−(k−1)/2

[
T (β̂2 − β2)

]k

×
[
T−(k+1)/2

∑T
t=1 fk(β′yt)vty

k
2t

k!

]

= T−(k−1)/2Op(1)Op(1) = op(1).

For k = 2 we get a Op(1), but it will be further divided by T 1/2, giving us an

op(1). Since the d-th derivative is limited, for some M ∈ R, the sum of the

d-th term is bounded by

±M

T∑

t=1

(β̂2 − β2)
dvty

d
2t = ±MT−(d−1)/2

[
T (β̂2 − β2)

]d
[
T−(d+1)/2

T∑

t=1

vty
d
2t

]

= T−(d−1)/2Op(1)Op(1).

Again, if d 6= 1 we have an op(1) expression, if d = 1, we are back to the k = 2

case. Therefore, the only remaining term is the first, which gives us the result.
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For the multidimensional case, just repeat the reasoning for each dimension of

β′.

The second result is proven by the same line of reasoning. The only dif-

ference is that in the end of each expression we will have T−(i−2)/2Op(1)Op(1),

giving us an op(1) except for i = 1, 2. But since the expression will be divided

by T , we will have op(1) for every i.

¥

Lemma 4 plim T−1
∑T

t=1 Ĥ t(ψ̃, γ̃) = plim T−1
∑T

t=1 H t(ψ, γ).

Proof. Ĥ t(ψ̃, γ̃) equals

[
L ∆y1t−1fψ(β̂

′

yt−1, ψ̃)

∆y1t−1fψ(β̂
′

yt−1, ψ̃) ∆y2
1t−1

]

Where L = fψψ(β̂
′

yt−1, ψ̃)(−∆y1t + f(β̂
′

yt−1, ψ̃) + γ̃∆y1t−1) +

fψ(β̂
′

yt−1, ψ̃)2. From Lemma 3 and Assumption 4:

(a) plim T−1
∑T

t=1 ∆y1t−1fψ(β̂
′

yt−1, ψ̃) = plim T−1
∑T

t=1 ∆y1t−1fψ(β′yt−1, ψ̃)

(b) plim T−1
∑T

t=1 fψψ(β̂
′

yt−1, ψ̃)
[
−∆y1t + f(β̂

′

yt−1, ψ̃) + γ̃∆y1t−1

]
=

plim T−1
∑T

t=1 fψψ(β′yt−1, ψ̃)
[
−∆y1t + f(β′yt−1, ψ̃) + γ̃∆y1t−1

]

(c) plim T−1
∑T

t=1 fψ(β̂
′

yt−1, ψ̃)2 = plim T−1
∑T

t=1 fψ(β′yt−1, ψ̃)2

Therefore, we have established that plim T−1
∑T

t=1 Ĥ t(ψ̃, γ̃) =

plim T−1
∑T

t=1 H t(ψ̃, γ̃). Usual nonlinear least squares approach, c.f. Wool-

dridge (2001) [27], may easily be used to establish plim T−1
∑T

t=1 H t(ψ̃, γ̃) =

plim T−1
∑T

t=1 H t(ψ, γ). These two equalities give us the result.

¥
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