
4
CGI - Column Generation Improve-
ment for Heuristics

Most of the interesting problems are NP-complete. One of the most

used ways get solutions to these problems is to use heuristics.

The method described in this chapter (CGI - Column Generation Im-

provement for Heuristics) is a way to “guide” heuristics of a broad family of

problems, so that we can get better results.

In the next section some basic notions of linear programming are pre-

sented, since they are necessary for the understanding of the CGI method.

Then the family of problems is presented and finally the method itself is

presented.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA

Chapter 4. CGI Column Generation Improvement for Heuristics 24

4.1

Linear Programming

The linear programming problem consists in optimizing a linear function,

under linear constraints.

Basically, it is a problem with the following structure:

z = min cTx

s.t.: Ax = b

Bx ≤ d

It can be shown that every linear program (an instance of linear pro-

gramming) can be written in the “standard form” [chvatal1983]:

z = min cTx

s.t.: Ax = b

x ≥ 0

From now on it will be assumed that all LP’s are in the standard form.

4.1.1
simplex

The simplex algorithm is one of the most popular algorithms for linear

programming (and one of the most important algorithms ever developed).

Now we will make some definitions in order to outline the algorithm:

Definition 6 Let X �|X| = n) be the set of variables and m be the number of

constraints in a linear program. Then, a set B ⊆ X �with |B| = m) is called

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA

Chapter 4. CGI Column Generation Improvement for Heuristics 25

a b�sis if the sub-matrix of A formed by the columns corresponding to B is

non-singular.

All members x ∈ B are called b�sic v�ri�bles.

The b�sic solution related to the basis B is the unique solution to the

linear program such that all the non-basic variables are set to 0.

Definition 7 Two basis B and B� are �dj�cents if |B ∩B�| = m− 1

The simplex algorithm is possible due to the following two theorems

(whose proves can be found at [chvatal1983]):

Theorem 8 All linear program with at least one optimal solution has an

optimal basic solution.

Theorem 9 Let B be a basis for a linear program. If that program has an

optimal solution, then that exists a sequence of basis B = B1� . . . � Bp where Bi

and Bi+1 are adjacents, and Bp is an optimal basis.

Also, the value associated with basis Bi+1 is less than or equal to the value

associated with basis Bi.

The simplex algorithm “walks” from basis to basis, aiming to improve

the solution1, until the optimum is reached. Since there is a finite number of

basis, the optimum is always found.

We will now outline the process to choose the next variable to enter a

basis.

Let B be the current basis. We can create a partition of the variable

vector in two: xb and xn, where xb is the vector of basic variables and xn is

the vector of non-basic variables.

Then, we can rewrite the linear program:

z = min cTx

s.t.: Ax = b

x ≥ 0

1the solution never gets worse, but it can remain at the same value if degeneracy happens.
See [chvatal1983]

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA

Chapter 4. CGI Column Generation Improvement for Heuristics 26

as the problem:

z = min cTb xb + cTnxn

s.t.: Abxb + Anxn = b

xb ≥ 0

xn ≥ 0

From Abxb + Anxn = b we conclude that xb = A−1

b b − A−1

b Anxn. Then,

the objective function can be rewritten as:

cTb xb + cTnxn = cTb (A
−1

b b− A−1

b Anxn) + cTnxn

= cTb A
−1

B b + (cTn − cTb A
−1

b An)xn

Since we want to minimize this value, cTb A
−1

b b is constant and xn ≥ 0,

then we are looking for a direction xn ≥ 0 such that the differential in this

direction is negative. This is the same as searching for a negative entry in

the row vector cTn − cTb A
−1

b An. If such entry does not exist, the solution with

xn = 0 is a local optimum, and since we are optimizing a convex function over

a convex region, this is also a global optimum.

The vector πT = cTb A
−1

b is the solution to the dual of the original linear

program, whenever it is feasible for this dual, so π will be called the “dual

solution” (being feasible or not), and the row vector cTn − πTAn will be called

the “reduced price vector”.

Although there are already polynomial solutions for the linear program-

ming problem, the simplex algorithm (which is exponential on the worst case)

is still used, due to its simplicity and its high performance in practice.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA

Chapter 4. CGI Column Generation Improvement for Heuristics 27

4.2

Column Generation

When a linear program has a large number of columns, the execution

time can be dominated by the computing of the reduced cost vector (explained

in 4.1.1). Sometimes we can find a non-basic variable with negative reduced

cost implicitly, without computing every reduced cost.

This is the main idea of the column generation approach. We can for-

malize the column generation step as solving the following problem:

min ci − πTAi

s.t. i is a non-basic variable

Where Ai is the i-th column of A.

Actually, we don’t even need to minimize the problem above, we only

need to find a non-basic variable such that ci − πTAi is negative, or a proof

that it does not exist.

There are several classic problems solved by column generation, such as

cutting stock and several routing and scheduling problems.

As an example to this technique, consider the cutting stock problem,

which can be defined as:

You produce rolls of length L, and you have several orders (ni, li),

meaning that you need to produce ni pieces of roll of length li (li ≤ L). You

want to deliver all the orders while producing the minimum amount of rolls of

length L. One way to formulate this problem as a LP is:

Let J be the set of all possible ways of cutting a roll of length L in

rolls of length li, such that Aij is the number of rolls of length li in the cut of

“type” j ∈ J . Clearly
�

i liAij ≤ L for all j ∈ J .

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA

Chapter 4. CGI Column Generation Improvement for Heuristics 28

z = min
�

j∈�

xj

s.t.:
�

j∈�

Aijxj ≥ ni ∀(ni� li) (4.1)

xj ∈ Z (4.2)

xj ≥ 0

Here the constraints (4.1) make sure that all the orders are delivered 2

Clearly the number of variables is too big to solve this problem directly

using the simplex method, so we will use Column Generation.

In this case, the column generation problem can be written as:

min 1 −
�

i

πiAi

s.t.
�

i

liAi ≤ L

Ai ∈ Z

Ai ≥ 0

Note that min 1 −
�

i πiAi = 1 − max
�

i πiAi. Using this observation

it is easy to note that solving the column generation problem for the cutting

stock is equivalent to the knapsack problem, which is very well solvable in

pseudo-polynomial time O(nL) using dynamic programming (here n is the

number of pairs (ni� li)).

2 Actually, because of constraints (4.2), the problem is not a linear program, but an
integer linear program. For the sake of simplicity, we will drop these constraints (considering
them is out of the scope of this chapter).

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA

Chapter 4. CGI Column Generation Improvement for Heuristics 29

4.3

The Linear 0-1 Problem

We will now describe a very broad family of problems, which can be

guided by CGI.

Definition 10 �linear 0-1 problem) The linear 0-1 problem is the following

problem:

min f(x) = cTx

s.t.: x ∈ {0� 1}n

x ∈ X

(4.3)

Where x is the decision variable �vector) and X is an arbitrary set.

The problem (4.3) can model a huge variety of problems, such as:

TSP let xe represent if the edge e is part of the solution, and X be the set

{x|x represents a Hamiltonian cycle}.

UBQP let xij represent yiyj. To do that, setX = {x|there is y ∈ {0� 1}k, xij = yiyj}.

Knapsack let xi = 1 if and only if object i is in the solution. Also, let

X = {x|
�

i wixi ≤ W}, where w is the weight of each object, and

W is the capacity.

Since this is a huge family of problems, the CGI method is very general.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA

Chapter 4. CGI Column Generation Improvement for Heuristics 30

4.4

The Proposed Improvement Method

Let f , c and X be parts of a linear 0-1 problem P as defined at definition

10. P can be modeled as an LP as:

min f �(y) =
�

x∈X

f(x)yx (4.4)

s.t.:
�

x∈X

yx = 1 (4.5)

�

x∈X
xi=1

yx ≤ 1 ∀i ∈ {1� . . . � n} (4.6)

yx ≤ 1 ∀x ∈ X (4.7)

yx ≥ 0 ∀x ∈ X (4.8)

The idea is that exactly one yx = 1, and the other will be 0. The x with

yx = 1 would be the optimal solution to P . In fact, this would be the case even

if we drop (4.6). The reason for its inclusion will be clear in a few paragraphs.

Theorem 11 There is am optimal solution for (4.4) where exactly one yx = 1

and all the other are 0.

Proof. Let y∗ be an optimal solution for (4.4). Let Y = {x ∈ X|yx > 0}.

We will first prove that ∀x1� x2 ∈ Y we have that f(x1) = f(x2).

Suppose there are x1� x2 ∈ Y such that f(x1) < f(x2), and let y� be:

y�x =

yx if x �∈ {x1� x2}

0 if x = x2

yx�
+ yx2

if x = x1

y’ is obviously a feasible solution, and f �(y�) = f �(y) + f(x1)yx2
−

f(x2)yx2
= f �(y) + yx2

(f(x1) − f(x2)) < f �(y), so y is not optimal, which is a

contradiction.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA

Chapter 4. CGI Column Generation Improvement for Heuristics 31

So, if ∀x1� x2 ∈ Y we have that f(x1) = f(x2), then the solution yx which

has yxx = 1 is optimal for every x ∈ Y .

Since the set X is usually very big, a column generation approach is

used (as explained at 4.2).

The column generation subproblem would be formulated as:

min f(x) − π0 −
�

i|xi=1

πi

=f(x) − π0 − πTx

=cTx− πTx− π0

=(c− π)Tx− π0

s.t.: x ∈ X

That is, given the dual solution π, the problem of finding a nonbasic

variable with negative reduced cost is a linear 0-1 problem, in the same set as

the original problem, but with a different linear function. All that we need is

a solution to the modified problem whose value is less than π0.

In the case of max cut, for instance, this would be another max cut over

the same graph, but with edge weight c− π. We can stop as soon as we get to

a cut whose value is less than a given threshold π0.

The purpose of CGI would be to weight the “important” variables of the

linear 0-1 problem, so that we can guide the heuristics.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA

Chapter 4. CGI Column Generation Improvement for Heuristics 32

4.5

One Last Problem to Solve

There is a problem that was not discussed yet: π� = (f �(y∗)� 0� . . . � 0) is

always a solution to the dual of the problem 4.4.

The problem with π� is that it does not change the linear function of the

linear 0-1 problem, all it does is to ask: “Is there a solution to the original

problem which is better then the best solution found so far?”. There is no

need for such a framework just to give us this simple conclusion: “to improve

your solution you must improve your solution”.

All popular linear solvers (free or commercial) are smart enough to give

this solution to the dual problem, so we are in trouble. There is a whole

polytope of solutions for the dual problem, and we could try to find a solution

π which is far from π�. This is easy since we already know the value of the

dual problem, namely, it is the same value of the best solution found so far.

Let this value be called z∗.

We can then solve the linear problem whose constraints are the same as

the constraints of the dual problem, plus
�

i πi = z∗, so that we are optimizing

over the optimal polytope. If we optimize for some objective function dTπ

such that d0 = 0, we will get a dual solution π which is the farthest solution

from π� in the direction d. We solve this same problem for some random d

(satisfying d0 = 0), and take the farthest to π�.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA

