
6

Branch and Bound

A branch-and-bound algorithm was developed to solve UBQP exactly.

A branch-and-bound algorithm is an algorithm for solving NP-Hard

problems exactly. The basic build blocks of the algorithm for solving problem

P are:

– Let P and P � be the problems of finding min(f(x)|x ∈ X) and

min(f �(x)|x ∈ X �) respectively, where X and X � are the feasible re-

gions for P and P �.

If X ⊆ X � and f(x) = f �(x) for all x ∈ X, then P � is called a relaxation

of P . A relaxation is only really useful if it is easier to solve than the

original problem.

We need a relaxation P � of P .

– Given the problem P of finding min(f(x)|x ∈ X), the family of sets

X1� . . . � Xt is called a “branching” of P if ∪t

i=0
Xi = X.

A branching of P is only useful if each problem min(f(x)|x ∈ Xi) is

another instance of the same problem as P , so that we can solve each of

these problems recursively.

Ideally, the branching will form a partition of X.

We need a branching of P .

– An heuristic solution to P , i.e., an algorithm that finds a “good” solution

to P .

An heuristics to P is optional. It can greatly improve the performance

of the branch-and-bound.

With this in mind, we still need to proof some results, before showing

the branch-and-bound.

Theorem 14 The value of the relaxation is a lower bound to the value of the

original problem.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 6. Branch and Bound 42

Proof. Let P be a problem and P � be a relaxation of it. Let x�∗ be the optimal

solution to P � and x∗ be the optimal solution of P .

What the statement of the theorem says is that f �(x�∗) ≤ f(x∗). To proof it,

assume this is not the case.

Well, by the definition of relaxation, f �(x∗) = f(x∗) < f �(x�∗). This is a

contradiction, since x�∗ cannot be the optimal solution to P �.

Theorem 15 Let P and P � be a problem and its relaxation. Let x�∗ be the

optimal solution to P �. If x�∗ ∈ X then x�∗ is also the optimal solution to P .

Proof. Assume this is not the case, so there is x ∈ X such that f(x) < f(x�∗).

In this case, from the definition of relaxation: f �(x) = f(x) < f(x�∗) = f �(x�∗)

which is contradictory, because x�∗ cannot be the optimal solution to P �.

Theorem 16 Let X1� . . . � Xt be a branching of the problem P . Then the

objective value of the problem P is the minimum of the objective values of

the problems min(f(x)|x ∈ Xi).

Proof. Since ∪t

i=1
Xi = X, the optimal solution x∗ of P must be in at least one

of Xi.

Finally, with these results in mind it is time to show the general branch-

and-bound algorithm for the problem P . The incumbent is the value of the

best known solution. It can be initialized with any x ∈ X

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 6. Branch and Bound 43

Data: X, h (the height in the branch-and-bound tree)

Result: x∗ ∈ X such that ∀x ∈ Xf(x∗) ≤ f(x)

xlb ← solve-relaxation(X);

�� xlb is a lower bound to P because of 14

if f �(xlb) ≥ f(incumbent) then
return incumbent

end

if xlb ∈ X then

incumbent ← xlb return xlb

end

xub ← heuristics(X);

�� this step is optional

if f(xub) < f(incumbent) then
incumbent ← xub

end

X1� . . . � Xt ← branching(X); �� Do the actual branching

forall the i = 1� . . . � t do
call recursively(Xi, h+ 1)

end

return (incumbent)

Algorithm 1: Branch and Bound
Now, in the next few sections I will explain how the branch-and-bound

algorithm works for the UBQP using the method described in chapter 5.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 6. Branch and Bound 44

6.1

Relaxation

Our relaxation of P was made in several steps:

1. We found the lower bound lb1 achieved by 3.3.

2. For each xi we calculateK0(i) (andK1(i)) which means “the lower bound

if we fix xi to 1 (to 0)”. There are further explanation on 6.1.1.

3. The actual best lower bound is max(lb1�maxi(min(K0(i)� K1(i)))).

6.1.1

Computing K0(i) and K1(i)

There are several ways of computing these lower bounds.

One way is to fix xi (to 0 or to 1) and then find the lower bound using

3.3. We will call this the “slow” method.

Another way is computing U0(i) and U1(i) as stated in 5.2 for λ in a

family Λ. This will be called “fast” method.

The Λ used consists of 1000ei for each i and the λ given by 3.3 on the

original problem (without any variable fixing).

One can easily see that the slow method yields to better lower bounds

than the fast method, because while the former fixes xi ≥ 0 (xi ≤ 1), tha later

fixes xi = 1 (xi = 0).

But the fast method, as the name suggests, is much faster than the slow

method.

Experiments showed that the best is to randomly use one or the other.

The probability of running the slow method is 1

1.3h
where h is the height of the

node in the branch-and-bound tree (the root has h = 0). It is intuitive that

it is better to spend a good time in the upper part of the branch-and-bound

tree, and this probability makes exactly this.

Besides that, with probability 0.7
h

2 we further improve the bound by

constraining 0 ≤ xi ≤ 1. This can be done in both the slow and the fast

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 6. Branch and Bound 45

method, by using the Lagrangian of the new problem.

Of course, if for some variable K0(i) ≥ f(incumbent) or K1(i) ≥

f(incumbent) we can fix this variable to 1 or to 0.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 6. Branch and Bound 46

6.2

Branching

The branching used was the simplest of them, we partition X as X1� X2,

where in X1 a variable xi is set to 0 and in X2 the same variable xi is set to 1.

The “hard” part was the choice of the variable xi on which we would branch on.

For this purpose we used the bounds K0(i) and K1(i) computed at 6.1.

They can be used in several intuitive ways, such as:

– Branch on the variable xi that has the maximum max(K0(i)� K1(i)), and

solve first the branch that corresponds to the maximum of these two.

The intuition behind this decision is that this choice is the closest to the

best known upper bound, so it will be pruned very quickly, or, if we get

lucky, solved to optimality very quickly.

– Branch on the variable xi that has the minimum min(K0(i)� K1(i)), and

solve first the branch that corresponds to the minimum of these two.

This way we are branching to the least lower bound, so one can expect

that the best solution for this branch will be very good, which will give

a good incumbent solution. The best the incumbent, the more pruning

is done.

– Branch on the variable xi that has the maximum absolute difference

between K0(i) and K1(i).

This way we are branching on the variable that is “more certain”, that

is, one can expect that xi = 0 if K1(i) < K0(i) and that xi = 1 if

K0(i) < K1(i). So we solve first the branch that corresponds to the

minimum of these two.

Experimentally the last way gave the best results.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 6. Branch and Bound 47

6.3

Heuristics

The heuristics used was a simple VDS (Variable Depth Search) that acts

as follows:

Data: X, which can be interpreted as the set of variables

Result: x ∈ {0� 1}X which has a “low” f(x)

times ← 0 best ← 0X while times < T do

σ ← a random permutation of X;

tempbest ← best;

temp ← best;

forall the i ∈ σ in the order of σ do

Swap the value of tempi;

if f(temp) < f(tempbest) then

tempbest ← temp;

end

end

if f(tempbest) < f(best) then

best ← tempbest;

end

end

return best;

Algorithm 2: Heuristics

This heuristics was enhanced by CGI (explained in chapter 4).

Also, if the number of variables is less than 25, we find the optimal

solution exhaustively, using a brute-force algorithm.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 6. Branch and Bound 48

6.4

A slighty modification

We also made a greedy heuristics by slightly modifying the branch and

bound. The modifications were:

– We don’t run the heuristics when solving the nodes.

– We branch using the “second way” described in section 6.2. Namely, we

branch on the variable with the minimum min(K0(i)� K1(i)), and solve

first the branch corresponding to the minimum of these two.

– Whenever we reach a feasible solution (normally after running the

brute-force) we stop the algorithm and return it as the solution.

This is a simple greedy heuristics, but leads to some interesting results,

stated on section 7.2.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA




