
7

Numerical Results

The code was implemented in C++ and was run in a Core2Quad Q9300

with 8GB of DDR2 RAM, using the CSDP solver for SDP1.

The code was tested with the instances from the Biq Mac Library2, and

the results were compared to the Biq Mac Solver3 [rendl2010], which is the

best available solver, to our knowledge.

The results for the instances with 60 variables are as following:

Instance Nodes Time

Biq Mac ours Biq Mac ours

g05 60.0 3 274 7.18s 10.58s

g05 60.1 3 7 4.32s 1.60s

g05 60.2 15 25 26.5s 10.67s

g05 60.3 1 6 0.83s 1.22s

g05 60.4 33 1061 53.12 70.87

g05 60.5 1 4 0.98s 0.98s

g05 60.6 13 20 24.82s 2.01s

g05 60.7 7 291 14.67s 10.93s

g05 60.8 13 244 19.88s 10.40s

g05 60.9 21 536 34.08s 19.01s

As it can be seen, our code generates much more nodes, but solves each

node much faster.

This behavior is also observed in the instances with 80 variables:

1https://projects.coin-or.org/Csdp/
2http://biqmac.uni-klu.ac.at/biqmaclib.html
3http://biqmac.uni-klu.ac.at/

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 7. Numerical Results 50

Instance Nodes Time

BiqMac ours Biq Mac ours

g05 80.0 59 169 193.11s 20.00s

g05 80.1 3 36 13.35s 7.54s

g05 80.2 17 811 59.41s 72.43s

g05 80.3 523 7423 1467.26s 567.42s

g05 80.4 39 1750 141.63s 151.35s

g05 80.5 65 1147 207.45s 103.77s

g05 80.6 31 152 107.03s 18.42s

g05 80.7 23 682 75.44s 66.83s

g05 80.8 73 341 225.19s 36.29s

g05 80.9 157 389 453.07s 42.27s

When the number of variables gets larger, our code runs slower than Biq

Mac’s. This is the table for some big instances:

Instance size Nodes Time

BiqMac ours Biq Mac ours

ising3.0-200 6666 200 11 1046 661.02s 1432.27s

ising3.0-200 7777 200 13 1107 790.25s 1325.10s

ising3.0-300 6666 300 23 1421 4236.84s 9123.12s

ising3.0-300 7777 300 39 3121 7298.02s 13214.43s

t3g7 7777 343 81 4023 11072.86s 31235.21s

t2g20 7777 400 13 2751 6605.46s 9927.12s

As it can be seen, our code is substantially slower than the Biq Mac

Solver, but we also generate a huge amount of nodes, which can be used in

parallel environments, since solving the nodes is almost completely indepen-

dent. There is no trivial way to parallelize Biq Mac as well as we did with our

solution because of the small number of nodes.

The results of the parallelization are shown in the next session.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 7. Numerical Results 51

7.1

Parallel Computation

To experiment with parallelization we used the Amazon EC24 cloud

computing solution. The virtual cores are equivalent to a 3GHz 2007 Xeon

processor. We used 8-cores virtual computers.

To implement the parallelization we modeled the CPUs in a binary tree

structure, so that whenever a CPU runs out of nodes to process, it asks for

its parent for more. When the root runs out of nodes, it asks for each of its

children, who either sends back some of each nodes or pass the request down

the tree.

The message passing was implemented using Thrift5 RPC solution.

Below we have the result for the instance t3g7 7777:

#cores time

1 31235.21

8 4023.00s

32 1327.61s

56 733.92s

80 524.92s

104 405.02s

128 322.02s

152 277.17s

176 238.12s

200 200.05s

This result can be better seen in the following graph, which shows the

result with a full linear speedup, and the result achieved. The two graphs

show exactly the same data, but the second one shows in a log-log scale.

4http://aws.amazon.com/ec2/
5http://incubator.apache.org/thrift/

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 7. Numerical Results 52

If we analyze the graphs, we find out that the time gets a little worse

after 8 cores. This is understandable, since until 8 cores we were in a shared

memory environment. But it does not get worse if we further increment the

number of CPUs.

As we can see, for big problems this method is very parallelizable with

a near-linear speedup, as expected.

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA



Chapter 7. Numerical Results 53

7.2

Greedy Heuristics

The greedy heuristics described on section 6.4 got some great results.

The linear programming solver used was Gurobi6

First of all, the running time was below 30 seconds for all 110 instances

in the Biq Mac Lib. In 25% of the instances the optimum was reached, and

in 90% of them, the result was within 92% of the best known solution. The

worst result reached 87% of the best known.

Here is a table with the results for some of the instances:

Instance Heuristics Optimum Heuristics/Optimum

t2g15 5555 13430805 15051133 0.892345

t2g10 7777 5886888 6509837 0.904307

g05 100.9 1423 1430 0.995105

g05 80.5 922 926 0.995680

g05 100.1 1425 1425 1.000000

g05 80.9 923 923 1.000000

pw05 100.9 8099 8099 1.000000

6www.gurobi.com

DBD
PUC-Rio - Certificação Digital Nº 0812546/CA




