
2
Problem Formulation

As stated before, software product lines are usually more effi-
ciently created when extracted from existing and similar software systems
(Krueger 2001). This process involves the identification of features in existing
source code (Kästner et al. 2008). Unfortunately, identifying features in exist-
ing source code of enterprise software systems might became a laborious and
error-prone task (Cirilo et al. 2012), as we will present in this Chapter.

Indeed, enterprise software product lines are comprised of multiple dif-
ferent application domains and views (Recker et al. 2006). There are vertical
domains such as accounting and inventory as well as horizontal domains such
as user interfaces and messaging. Therefore, domain experts, interface design-
ers, database experts and developers with different kinds of expertise all take
part in the process of building such a software product line. Considering the
important number of problem domains, there is a need for an equally important
number of specialized languages. This diversity of knowledge and expertise is
usually managed via a myriad of object-oriented frameworks, where each one
offers domain-specific concepts and expert-specific implementation mechanism.
Therefore, every participant of the development process has it own particular
mean to solve problems specific to its expertise.

Two well-know and industrial-strength frameworks are Spring and Jadex.
Spring delineates a service-oriented infrastructure based on the Bean concept.
This term is used to denote the Spring-managed objects. The Spring container
manages the object lifecycle by interpreting declarative data exposed in
the form of XML documents, so called Spring Application Context. Such
documents specify the classes and properties of the injectable objects, allowing
developers to decouple the configuration and specification of dependencies from
their actual program logic. Figure 2.1 illustrates a source code instantiating
the Spring-provided domain concept (i.e., Bean) and how feature assignment
occur in such context.

Jadex provides an agent-oriented development paradigm, whereby the
Agent concept allows us to decompose software system into autonomous
interacting entities with their own goals and rational manner. Jadex also

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 19

provides other concepts such as Beliefs, Goals, Plans, Capabilities, so on (see
Figure 2.2). Programming Jadex Agents is done using its provided API and
Agent Definition Files (ADF). The ADFs declare the initial Beliefs, Goals
and Plans of an Agent. The Jadex reasoning engine reads this file to create
and execute instances of Agents. It also observes the current values of Goals
and Beliefs in order to execute Plans based on internal/external messages
and events. Plans are Java classes that extends the Plan abstract class from
the Jadex API. This abstract class provides methods for sending messages,
dispatching goals or waiting for events. Plans are also able to read and alter
the Beliefs of the Agent using the API of the belief base.

OLIS

WeatherCalendar

Event Reminder

Spring Application Context File - WeatherService Code Configuration
01. <beans>
02. <bean id="WeatherUserServiceDAO" class="... .WeatherUserServiceDAOHibernate">
03. <property name="sessionFactory" ref="sessionFactory" />
04. </bean>
06.
07. <bean id="WeatherService" class="... .WeatherServiceImpl">
09. <constructor-arg ref="WeatherUserServiceDAO" />
10. <constructor-arg ref="CityDAO" />
11. </bean>
12. </beans>

Java Class - WeatherServiceImpl Code Customization
01. public class WeatherServiceImpl extends
02. ObservableBusinessServiceImpl implements WeatherService {
03.
04. private CityDAO cityDAO;
05. private WeatherUserServiceDAO weatherUserServiceDAO;
06. public WeatherServiceImpl(WeatherUserServiceDAO wsDAO,CityDAO cityDAO) {
07. ...
08. }
09. }

Spring Framework

Event Scheduler

AssignedTo

Figure 2.1: Source code instantiating Spring-provided concepts and their
assignment to features.

In general, object-oriented frameworks provide convenient domain con-
cepts and build-in generic functionalities, however they introduce a lot of com-
plexity for identifying features in existing source code. These challenges stem
from the fact that more diversity of implementation technology demands more
coordination for configuration knowledge specification. We will refer to these
challenges as the heterogeneous configuration knowledge problem. This problem
has a conceptual and a technical aspect.

Conceptually, the main problem is to localize and comprehend con-
cept instances implementing features. This happens because the instantia-

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 20

Buyer

Shipping

Store Selection

Nearer

Capability Definition File - SearchStores Code Configuration
01. <capability package="…searchstores" name="SearchStores">
02. ...
03. <goals>
04. <performgoal name="FindNearStores" >
05. <parameter name="stores" class="Map" direction="out" />
06. </performgoal>
07. ...
08. </goals>
09. <plans>
10. <plan name="verify_if_product_in_stock_plan">
12. <body class="VerifyIfProductInStockPlan" />
13. <trigger name="VerifyIfProductInStock">
14. <goal ref="VerifyIfProductInStock" />
15. </trigger>
16. </plan>
17. ...
18. </plans>
20. </capability>

Jadex Framework

Cheaper AssignedTo

Pick Up At StoreGround Shipping AssignedTo

Figure 2.2: Source code instantiating Jadex-provided concepts and their as-
signment to features.

tion of a particular concept (e.g., Spring Bean) is often scattered across the
source code, tangled with code instantiating other concepts, and hard to be
modularized because their implementation in general involves code configu-
ration and customization. One motivation for modularizing code implement-
ing features is that developers can reason about it without being distracted
with code of other features. Moreover, the high degree of scattering is con-
sidered as the main responsible for numerous problems (Garcia et al. 2005,
Eaddy et al. 2008, Figueiredo et al. 2009). Consider the source code of Fig-
ure 2.1, which instantiates the Bean WeatherService. The code is scat-
tered across the Spring application context and the WeatherServiceImpl Java
class, in addition to be tangled with code declaring other Spring Beans (e.g.,
WeatherUserServiceDAO). To properly comprehend the behaviour of a fea-
ture, developers need to search the entire code based and observe more than
one place, instead of just looking into a single location. For example, they
need to reason about the interrelationship between XML and Java code to
comprehend the code implementing the Weather feature.

A workaround solution to attenuate the diffusion of the configura-
tion knowledge is the use of search (Janzen and De Volder 2003) and views
(Kästner et al. 2008) mechanisms that answer the question about what code
belongs to a feature. However, it still does not solve the fundamental problems

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 21

discussed above. The abstraction mismatch and diffusion remain, and require
developers to spend additional time on performing non-trivial queries through
the source code (Siau et al. 2004). This should not be an extra task assigned
to developers who should resort only to domain-specific concepts that they
are familiar with. A more straightforward solution should support high-level
declarative expressions for representing the configuration knowledge, such as
"The Spring Bean WeatherService implements the Feature Weather".

Technically, the main problem is to enforce consistency. Software product
lines are inherently complex and prone to all kind of errors. Errors can
be distinguished in three basic types, as discussed in (Kästner et al. 2009):
syntactic errors, type errors and semantic errors. The first type occurs when
a product does not respect the language’s syntax in some sense. The second
one refers to errors such as statements creating a class that does not exist in
a product, that is, that product does not respect the language’s type system.
The last one occurs when a product behaves incorrectly according to some
specification. When identifying features in existing source code, developers
might also introduce errors regarding the framework’s programming interface,
as not assigning both code customization and configuration to the same
feature, or not observing references between concept instances. Consider the
source code in Figure 2.1. As a mandatory concern, developers must respect
the reference between the Beans WeatherService and WeatherUserService,
meaning that they must be related with coherent combination of features.

Note that in general syntax and type errors can be statically checked by
language compilers or checkers. However, as discussed in (Kästner et al. 2009,
Thaker et al. 2007), deriving and checking every product for consistency in
separated is often infeasible because even from small product lines with a
few numbers of features developers can derive thousands of products. Instead
tools must be provided to detect errors early, and when it is possible, assist
developers in resolving the problems. The idea is to ensure that no ill-product
will be derived from a correct configuration knowledge. Even when it is
feasible to derive and check every product, this problem can get worse because
errors regarding the framework’s programming interface frequently can be
only detected at runtime. Since current techniques (Hessellund et al. 2007,
Antkiewicz and Czarnecki 2006) for guaranteeing correctness of framework-
based application is no general enough to express all circumstances in which
feature assignment violates programming interface constraints, errors might
remain undetected unless a product with a problematic feature combination is
derived and executed, thus, for a long time.

In order to shed light on the frequency of the aforementioned challenges,

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 22

we computed some metrics over three framework-based software product lines
(see Section 5): distribution of feature over files (DoFF), distribution of concept
instances over files (DoCF), number of concept instances implementing features
(NoCF), and number of references between concept instances implementing
features (NoRF). The product lines were implemented using eight different
frameworks. In some of them, such as Spring and Struts, type hierarchies are
trivial. In Jadex, for example, the type hierarchies are more complex. All of
them use XML documents as configuration files. Each product line realizes
more than 30 features and their code size ranges from ⇠4000 LOC to ⇠14600
LOC.

Product Lines OLIS eShop Buyer
No. Features 7 8 7
No. Files 270 93 30
No. Concept Instances 1107 324 323
No. References 242 72 47
DoFF 135 50% 49 52% 16 53%
DoCF 167 15.08% 139 42.90% 6 1.85%
NoCF 104 9.39% 35 10.23% 20 6.19%
NoRF 44 18.18% 7 9.72% 2 4.24%

Table 2.1: Results of computed metrics.

Table 2.1 presents an overview of the results. Scattering of features over
the source code does not depends much on the product line (see line DoFF)
and the results reveal that a large percentage of scattering was found in all of
them. For example, 50% of OLIS files contain at least a part of the 7 optional
or alternative features. Therefore, 51.33% ± 1.52% files implement part of at
least one feature. Observe that we were not concerned on computing the files
implementing more than one feature, that is, compute feature tangling.

The distribution of concept instance over files vary significantly across
the product lines (see line DoFF). 42.90% of eShop concepts are implemented
in two files. In Buyer, on the other hand, only 1.85% of concept instances are
implemented in two files. According to the results, 19.94% ± 20.95% concept
instances are distributed over more than one file.

Regarding the number of concept instances implementing features, it also
does not vary much from one product line to another (see line NoCF). The
results reveal that 8.60%± 2.13% of concept instances implement features. In
contrast to scattering, only a small percentage of concept instances implement
features. For example, only 9.39% of the concept instances from OLIS imple-
ment features. Rather, taking only concept instances distributed over more
than one file into account, the probability of they implement a feature in-

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 23

creases. 10.23% of eShop product line’s concept instances implement features,
but 65.72% of such concept instances are distributed over more than one file.
The results show that 26.71% ± 34.53% of concept instances distributed over
more than one file implement features. Finally, Table 2.1 also indicates a small
number of references between concept instances implementing features (see
line NoRF). 18.18% of OLIS’s references between concept instances imple-
ment any feature. In general, the results reveal that 10.71 ± 1, 52 references
between concept instances involve concept instances implementing a feature.

Although not representative, the metrics provide initial dimension of the
problem, giving insight in how features are implemented in framework-based
software product lines. We show next four scenarios that concretely illustrate
the heterogeneous configuration knowledge problem. There are several occur-
rences of such scenarios in the framework-based product lines investigated by
us. The scenarios also illustrate that the challenges aforementioned are real
rather than hypothetical challenges.

2.1
Scenarios when Assigning Framework-based Software Product Lines
Source-code to Features

The following scenarios reflect our experience in extracting features from
four existing framework-based software product lines.

2.1.1
Configuration and Customization Code

The first scenario refers to the usual way of instantiating framework-
provided concepts. The process of frameworks instantiation is in general char-
acterized by two activities (Antkiewicz and Czarnecki 2006): concept configu-
ration and customization. For example, creating an instance of a Spring Bean
involves first, implementing its behaviour (customization) and second declaring
its existence and dependencies in a Spring Application Context file (configu-
ration) (see Figure 2.3). Therefore, to control the inclusion of the instantiated
concepts in products, the developer must assign both, code configuration and
customization, to the same feature.

Although the well-formedness rules that govern concept instantiation
can be established by checking whether its configuration conforms to XML
schemas and customization code meets the Java syntax and type system for
example, those checkers do not provide any support for statically checking
the integrity between them. Enforcing the existence of both code elements
is a prerequisite for guaranteeing the correct behaviour of applications. For

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 24

OLIS

WeatherCalendar

Event Reminder

Spring Application Context File - WeatherService Code Configuration
01. <beans>
02. <bean id="WeatherService" class="... .WeatherServiceImpl">
03. <constructor-arg ref="WeatherUserServiceDAO" />
04. <constructor-arg ref="CityDAO" />
05. </bean>
06. </beans>

Java Class - WeatherServiceImpl Code Customization

01. public class WeatherServiceImpl extends
02. ObservableBusinessServiceImpl implements WeatherService {
03. private CityDAO cityDAO;
04. private WeatherUserServiceDAO weatherUserServiceDAO;
05. public WeatherServiceImpl(WeatherUserServiceDAO wsDAO,CityDAO cityDAO) {
06. ...
07. }
08. }

Spring Framework

Event Scheduler

AssignedTo

Figure 2.3: Configuration and customization Code.

example, the Spring container is responsible for instantiating, configuring,
and assembling the Beans. The container obtains instructions about what
classes to instantiate by reading the code configuration. The code configu-
ration of the Bean WeatherService (see Figure 2.3), for example, explicitly
indicates the existence of a class called WeatherServiceImpl that implements
the code customization of the respective Spring Bean. However, observe that
it is not uncommon for developers accidentally forget to assign the Weather
feature to WeatherService code configuration. In this case, even products
without Weather feature still containing the WeatherService configuration,
but they are not containing the WeatherServiceImpl class. As the exem-
plified cross-reference is not evaluated until the WeatherService is selected
to be instantiated at the execution time, the non-existence of the missing
WeatherServiceImpl class will be only detect later, at running time.

Observe that typed references would offer only a partial solution to
the problem since the knowledge about references can be hidden inside the
framework logic. Spring provides two major variants of dependency injection,
constructor-based and setter-based. Our focus here is the constructor-based
variant. In this variant, dependency injection is resolved by the container
invoking a constructor with a number of arguments, each one referring to a
dependency. The order in which the Construct-arg concepts (see Figure 2.4) are
defined in code configuration is in general the order in which those arguments

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 25

Spring Application Context File - PetStore Code Configuration
01. <bean id="petStore"
02. class="...PetStoreImpl">
03. <constructor-arg ref="accountDaoOsgi"/>
04. <constructor-arg ref="categoryDaoOsgi"/>
05. <constructor-arg ref="productDaoOsgi"/>
06. <constructor-arg ref="itemDaoOsgi"/>
07. <constructor-arg ref="orderDaoOsgi"/>
08. </bean>

Java Class - PetStoreImp Code Customization

01. public class PetStoreImpl
02. implements PetStoreFacade, OrderService {
03.
04. public PetStoreImpl(AccountDao accountDao,
05. CategoryDao categoryDao,
06. ProductDao productDao,
07. ItemDao itemDao,
08. OrderDao orderDao) {
09. ...
10. }
11. }

Spring Framework

AssignedTo

OLIS

Customer ServiceProduct Navigation

BrowsingSearch

Figure 2.4: Spring constructor-based dependency injection.

are supplied to the construct when the Bean is being instantiated. In this
case, every Constructs-arg and its respective constructor argument must be
annotated with features in accordance. Figure 2.4 illustrates the usual way to
define construct-based dependency injection.

Suppose that in the example shown in Figure 2.4 the developer did
not map the constructor argument CategoryDAO categoryDAO to Browsing
feature. Observe that in this case the code is well-formed for all products
that contain the feature Browsing. However, in products without Browsing
the order of parameter assignment changes, leading to a mismatching among
the constructor-arg and their respective constructor parameters. Therefore,
the product will fail at running time because the Spring probably will assign
to constructor parameters values of incompatible type.

Due to the many lines of code and features in enterprise software product
lines and the complexity associated with the framework’s programming inter-
face, the developers probably can get confused or even not properly analyse
the source code and introduce such a category of error. To check the entire
product line, we need to ensure that code configuration can reach a code cus-
tomization in every product, for example. Moreover, in addition to have the

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 26

detection of error only at runtime we also have the problem of visualizing and
comprehending feature implementation. The code of a particular concept is of-
ten scattered across the base source code and tangled with code configuration
of other concepts.

2.1.2
Cross-references between Concept Instances

As mentioned, well-formedness of the concept instances in terms of syntax
and type system can be established by checking whether its configuration
and customization conforms to the XML schema and Java specification,
respectively. However, the cross-references between concept instances inside
code configuration might become another serious and frequent problem. For
example, as mentioned, each Spring Bean needs to inform its dependencies.
As illustrated in Figure 2.5, all such references across Spring Beans are
name-based: the name of the attribute ref should match the id attribute
of the corresponding Spring Bean in the case of constructor-based dependency
injection.

Considering the code in Figure 2.5, suppose that the construction
<constructor-arg ref="categoryDaoOsgi"/> is not assigned to any feature.
Although this code will be well-formed for all products that actually select the
feature Browsing, the reference is not resolved in product in which Browsing is
not selected. In this case, the construct-args reference remains but the cor-
responding Spring Bean configuration is removed. Unfortunately, there is no
mechanism in XML Schema to statically enforce this constraint, even when a

Spring Application Context File - PetStore and CategoryDAOOsgi Code Configuration
01. <bean id="petStore"
02. class="...PetStoreImpl">
03. <constructor-arg ref="accountDaoOsgi"/>
04. <constructor-arg ref="categoryDaoOsgi"/>
05. <constructor-arg ref="productDaoOsgi"/>
06. <constructor-arg ref="itemDaoOsgi"/>
07. <constructor-arg ref="orderDaoOsgi"/>
08. </bean>
09.
10. <osgi:reference id="categoryDaoOsgi" interface="...CategoryDao"/>

Spring Framework

AssignedTo

eShop

Customer ServiceProduct Navigation

BrowsingSearch

Figure 2.5: Cross-references between concept instances.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 27

OLIS

Generic

Travel

Spring Application Context File - WeatherService Code Configuration
01. <bean id="UserPreferencesAbstractFactory"
02. class="... .NoPreferencesFactory"/>
03.
04. <bean id="UserPreferencesAbstractFactory"
05. class="... .TravelPreferencesFactory"/>
06.
07. <bean id="UserPreferencesAbstractFactory"

class="... .AcademicPreferencesFactory"/>

Spring Application Context File - UserDAO Code Configuration

01. <bean id="UserDAO"
02. class="... .UserDAOHibernate">
03. <constructor-arg ref="UserPreferencesAbstractFactory" />
04. <property name="sessionFactory" ref="sessionFactory" />
05. </bean>

Spring Framework

AssignedTo

Academic

AssignedTo

AssignedTo

Figure 2.6: Source code of mutually exclusive concepts instances.

product without Browsing is requested. XML schemas are limited in the sense
that element and attributes declarations are context insensitive. It means that
XML Schemas do not express when the presence of an element or attribute
depends on the presence of other elements. Therefore, the developers might be
unaware of the errors unless a product with a problematic feature combination
is derived and executed.

In this case, developers also face the difficult navigation problem. Search-
ing for all uses of a certain concept instance without any guidance might in-
crease developer effort. Depending on the number of concepts, they still an-
alyzing them just to be sure that a feature assignment does not impact any
other concept instance. The previous examples were relatively simple because
they contained only assignment with single optional features. However, it is
possible to have features that are mutually exclusive. Even worse, feature mod-
els might contain in practice complex constraints, such as "feature X excludes
Y and requires W and Z".

Consider the source code in Figure 2.6. This is only well-formed if
developers know (i) that Travel, Academic, and Generic are mutually exclusive
- Spring might not work properly due to the existence of more than one Beans
with the same id; and (ii) that User Preferences can only be selected if either
Travel, Academic or Generic is selected. In the last case, an ill-formed product
can be derived with a reference to UserPreferencesAbstractFactory. Figure

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 28

2.6 illustrates that techniques for guaranteeing correctness of framework-based
application usually are no expressive enough to address all circumstances
in which feature assignment violates programming interface constraints. In
addition, it also shows that complex constraints among feature need to
be considered, for ensuring well-formed framework-based software product
lines. As this information might not be clear in source code, developers are
susceptible to analyze unnecessary code or even forget to observe an important
part of source code, increasing their development effort and the chances of
introducing errors.

Buyer

Shipping

Store Selection

Nearer

Capability Definition File - SearchStores Code Configuration
01. <capability package="…searchstores" name="SearchStores">
02. ...
03. <goals>
04. <performgoal name="FindNearStores" >
05. <parameter name="stores" class="Map" direction="out" />
06. </performgoal>
07. ...
08. </goals>
09. <plans>
10. <plan name="verify_if_product_in_stock_plan">
12. <body class="VerifyIfProductInStockPlan" />
13. <trigger name="VerifyIfProductInStock">
14. <goal ref="VerifyIfProductInStock" />
15. </trigger>
16. </plan>
17. ...
18. </plans>
20. </capability>

Java Class - VerifyIfProductInStockPlan Code Customization

01. public class VerifyIfProductInStockPlan extends Plan {
02.
03. public void body() {
04. log.info("Finding near stores and checking their stock...");
05.
06. IGoal findNearStores = createGoal("FindNearStores");
07. ...
09. IGoal checkStoreStock = createGoal("CheckStoreStock");
10. ...
11. }
12. }

Jadex Framework

Cheaper AssignedTo

Pick Up At StoreGround Shipping AssignedTo

Figure 2.7: References to concept instances inside customization code.

2.1.3
References to Concept Instances inside Customization Code

The relation between code configuration and customization is that code
configuration declares the existence of a concept instance and code cus-

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 29

tomization provides the implementation. For example, the definition file il-
lustrated in Figure 2.7 declares the Goal FindNearStores and the Plan
VerifyIfProductInStockPlan. The Plan is implemented in Java by the
class VerifyIfProductInStockPlan.java. Actually, Plans define the con-
crete behaviours that an Agent might assume. There are three expected
kinds of consistency constraints between such elements. First, as illustrated
in Section 2.1.1, the Java implementation must exist. Second, the Goal
VerifyIfProductInStock must exist (see Section 2.1.2). Finally, only declared
concepts may be accessed inside the Plan implementation. For example, Goals
can be also dispatched by Plans via the createGoal function, see line 06 in
Figure 2.7. The code customization should only access keys in this function
that correspond to declared concepts, such as Goal FindNearStores. Accord-
ingly, code configuration and customization must agree on proper mapping
with features, in addition to agree with use of common names and types.

Sadly, as mentioned neither XML Schemas nor Java specification state
any consistency requirements on the relation between declared concept in-
stances and their use. The use of attributes stored in maps is weakly typed.
So, by using this means of accessing concept instances inside customization
code we lose static guarantees. The code in Figure 2.7 is well-formed for all
products that actually select the feature Pick Up at Store, which regards the
Java syntax and type system. However the reference to Goal FindNearStores
cannot be resolved in products in which Nearer is not selected and this prob-
lem will be detected only at runtime. Therefore, the expected constraints are
implicit and its violation can lead to unpredictable behaviour or product mal-
function. Again, here we also have the comprehension problem. To know about
the correct means of using a certain concept instance, developers need to jump
from the code customization to configuration. In addition, there is no easy way
to know the impact of assigning a feature to a specific concept instance.

2.1.4
Context Sensitive Instantiation Constraints

The last scenario where developers must be careful when assigning source
code elements to features refers to concept instantiation governed by context
sensitive constraints. This scenario appears when developers are using concepts
designed to be highly reusable. As they often are applicable in many different
situations, they must satisfy particular requirements for each one.

For example the Result concept from the Struts framework implements a
diversity of constrains. Depending on the value of the Type attribute a variety
of Param concept instances might be required. For example, Result instances

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 30

Struts Configuration File

01. <struts>
02. ...
03. <action name="Event_*" method="{1}" class="eventAction">
04. <result name="input">/pages/Event.jsp</result>
05. <result name="success" type="redirect-action">
06. <param name="actionName">EventsBoard</param>
07. <param name="namespace">/eventsannouncement</param>
08. <param name="parse">true</param>
09. <param name="month">${eventDataManager.month}</param>
10. <param name="year">${eventDataManager.year}</param>
11. </result>
12. </action>
13. ...
14. </struts>

Struts Framework

Figure 2.8: Context sensitive instantiation constraints.

of the type redirect-action require instances of actionName and namespace

Param (see Lines 6,7 and 8 in Figure 2.8). In this case, such concept instances
are mandatory because the Struts framework relies on this information to
properly redirect the control flow for Actions. For redirecting to Pages any
Param instance is required. Therefore, depending on the value of one attribute
in XML documents, different instantiations constraints might take place.

As XML Schema checkers are context insensitive there is no way to
statically enforce when a feature assignment is violating context sensitive
constraints. That is, it is hard to know when a Param instance is missing by
accident or on purpose. Again, both problems appear: the detection of errors
at runtime and difficulty in comprehending features in the source code.

2.2
Limitations of the Related Work

We give in this section an overview of different code-oriented techniques
and discuss benefits and drawbacks that guided us in the search for better
feature implementation mechanisms. We have categorized the related work
into two groups: annotation-based techniques (Section 2.2.1); and model- based
techniques (Section 2.2.2). This helps to abstract from concrete languages or
tools and instead discuss more generally advantages and limitations of the
common underlying mechanisms.

In annotation-based techniques, the variable code is annotated with fea-
tures and conditionally removed during product derivation. The C prepro-
cessor cpp and CIDE (Kästner et al. 2008) are typical examples. First of all,
annotation-based techniques are simple, easy to use in existing projects and
are common in practice. Nevertheless their expressiveness are limited to the

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 31

semantics of languages such as Java and XML. In Section 2.2.1, we discuss
benefits and problems of current annotation-based techniques.

On the other hand, in model-based techniques, feature implementation
are specified using general-proposal models and ad-hoc references to source
code elements. The references are used to conditionally remove the variable
code from the common one. They usually also provide support for annotat-
ing the source code with features. pure::variants (pure systems 2012) is an
example of an tool that implements the model-based technique. As well as
annotation-based techniques, they are also flexible and ready to use in exist-
ing projects. However they provide a more high-level and powerful mechanisms
for constraint specification. Nevertheless, model-based techniques tend to force
the use of general-purpose abstractions and constraint mechanisms. In Section
2.2.2 we will point out some limitations, especially regarding to readability and
consistency check.

2.2.1
Annotation-based Techniques

Annotation-based techniques implement features by annotating source
code elements in a common code. By removing the annotated code elements
tailored products can be automatically derived. The most common form is
#ifdef and #endif directives to conditionally remove code snippets before
compilation. CIDE (Kästner et al. 2008) is an example of modern preprocessor
tools that supports code annotation with feature. In contrast to traditional
preprocessors as C++, CIDE does not use additional annotations. Instead,
it uses colors to indicate the association among source code elements and
features. In cases where a code is associated with more than one feature,
representing composition of features, CIDE uses a mix of background colors.
Even tough CIDE is based on preprocessor semantic, it is superior in the
sense that it does not allow developers annotating arbitrary source code
elements, therefore avoiding syntactic (Kästner et al. 2009) and type problems
(Kästner and Apel 2008).

Annotation-based techniques are simple, easy to use in existing projects
and are common in practice. However they present several problems when
applied in the context of enterprise software product lines. We exemplify the
limitations that we observed most frequently by means of the codes snippet in
Figure 2.9 and Figure 2.10.

First, instead of providing a view that separates all source code elements
that instantiate framework-provided concepts by features, the annotation-
based techniques scatters feature codes across the entire code base, where

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 32

OLIS

WeatherCalendar

Event Reminder

Spring Application Context File - WeatherService Code Configuration

Java Class - WeatherServiceImpl Code Customization
01. public class WeatherServiceImpl extends
02. ObservableBusinessServiceImpl implements WeatherService {
03.
04. private CityDAO cityDAO;
05. private WeatherUserServiceDAO weatherUserServiceDAO;
06. public WeatherServiceImpl(WeatherUserServiceDAO wsDAO,CityDAO cityDAO) {
07. ...
08. }
09. }

Spring Framework

Event Scheduler

01. <beans>
02. <bean id="WeatherUserServiceDAO" class="... .WeatherUserServiceDAOHibernate">
03. <property name="sessionFactory" ref="sessionFactory" />
04. </bean>
06.
07. <bean id="WeatherService" class="... .WeatherServiceImpl">
09. <constructor-arg ref="WeatherUserServiceDAO" />
10. <constructor-arg ref="CityDAO" />
11. </bean>
12. </beans>

Figure 2.9: WeatherService instantiation code annotated with features.

they are also entangled with the code of other features and related concept
instances. For example, in Figure 2.9, the code implementing the feature
Weather is scattered throughout two files and tangled with code responsible
for other feature, also implemented in the same Spring application context
file. Even when the code implementing a concept instance is separated (see
Figure 2.10), as the case of Capability EventScheduler, annotations can
be misunderstood. As mentioned in Section 2.1, a high degree of scattering
leads to the difficult navigation problem. Searching for all uses of a certain
concept instance without any guidance might be cumbersome for developers,
and in some case they might still be analyzing the source code just to be sure
that a feature assignment associated to a concept instance does not impact
any other concept instances (see Section 2.1.2). Therefore, such scattering
and mismatching of configuration knowledge can make it hard for developers
understanding when or why a certain source code element is included in a
product, and even maintaining the source code becomes a tedious task. In
general, some studies claim that annotation-based techniques work fine in small
projects, however do not scale to large software product lines.

Also consistency checks among feature model, framework’s programming
interface and features used inside annotations are often missing. Using anno-
tations to implement features can make it very difficult to detect the errors

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 33

Agent Definition File - User Agent Code Configuration

Capability Definition File - Event Scheduler Capability Code Customization

Jadex Framework

01. <capability package="... .scheduler" name="EventScheduler">
02. <beliefs>
03. <beliefref name="myself" exported="true" class="User">
04. <abstract />
05. </beliefref>
06. </beliefs>
07. </capability>

01. <agent name="User" package="... .user">
02. <capabilities>
03 ...
04. <capability name="eventschedulercap" file="... .EventScheduler" />
05 ...
06. </capabilities>
07.
08. <beliefs>
09. <belief name="myself" class="User" exported="true">
10. ...
11. <assignto ref="eventschedulercap.myself" />
12. ...
13. </belief>
14. </beliefs>
15. </agent>

OLIS

WeatherCalendar

Event ReminderEvent Scheduler

Figure 2.10: User agent and Event Scheduler capability instantiation codes
annotated with features.

mentioned in Section 2.1. Even modern preprocessors, such as CIDE, make it
difficult to detect errors introduced when annotations do not follow the frame-
work’s programming interface. They only operate at the level of programming
languages, without observing the constraints that govern concept instantia-
tion. Therefore, developers are prone to simple errors, like annotating the code
customization but do not annotate the code configuration, as illustrated in
Section 2.1.1. There is no way in CIDE to check this constraint. Even worse,
as CIDE type check mechanism works only over the programming language
type system, there is no easy and direct way to extend it to take into account
the framework’s programming interface.

2.2.2
Model-based Techniques

Model-based techniques (pure systems 2012, Czarnecki and Antkiewicz 2005)
specify the configuration knowledge in one or more general-purpose models.
pure::variants (pure systems 2012) is a commercial tool that implements
this technique. In pure::variants the product line is defined in one or more

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 34

object-oriented- based models, called Family model. A Family model is
organized into a logical hierarchy of Components, Parts and Source type.
pure::variants provides general-purpose and predefined Part types: ps:class,
ps:object, ps:package, ps:method, ps:flag, and so on. The physical represen-
tation of Components and Parts is defined by Sources. Source types can be:
ps:file, ps:condfile, for example. In model-based techniques, model elements are
only included in a product when: its parent is included; and any restrictions
associated with it are fulfilled. Restrictions are used to express both features
implementation and constraints among model elements.

Figure 2.11 illustrates a software product line defined in pure::variants.
The Family model on the left side is the responsible for defining the architec-
ture. For example, it contains numerous instances of ps:class type represent-
ing Spring Beans (e.g., WeatherService, WeatherUserServiceDAO, CityDAO).

Spring Application Context File - WeatherService Code Configuration
01. <beans>
02. PV:IFCOND(hasFeature("Weather"))
03. <bean id="WeatherService"
04. class="... .WeatherServiceImpl">
05. <constructor-arg ref="WeatherUserServiceDAO" />
06. <constructor-arg ref="CityDAO" />
07. </bean>
08. PV:ENDCOND
09. </beans>

Java Class - WeahterService Code Customization

01. public class WeatherServiceImpl extends
02. ObservableBusinessServiceImpl implements WeatherService {
03. private CityDAO cityDAO;
04. private WeatherUserServiceDAO weatherUserServiceDAO;
05. public WeatherServiceImpl(WeatherUserServiceDAO wsDAO,
06. CityDAO cityDAO) {
07. }
08. }

Spring Framework

OLIS

WeatherCalendar

Event ReminderEvent Scheduler

Figure 2.11: Software product line architecture defined in pure::variants.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 35

There are also three restrictions attached to WeatherService element. The
hasFeature("Weather") means that: the existence of the WeatherService

element in the Family model depends on the selection of the Weather feature
in any valid configuration of the feature model.

According to the product line growth, it might become increasingly dif-
ficult for developers to understand framework-based product lines defined in
Family models. First, the use of general-purpose concepts does not support
developers visualizing and reasoning about the configuration knowledge in
terms of framework-provided concepts and programming interfaces they are
already familiar with. Moreover, when creating the Family Model, the devel-
opers need to know what are the required and dependent source code elements.
For example, they need to know that WeatherService is implemented by the
WeatherService.java and WeatherServiceImpl.java files. Unfortunately,
what defines the optional and required combination of source code is not spec-
ified explicitly in this technique. It can be only discovered by investigating the
source code or the framework documentation which is often incomplete and
does not cover the full range of concept variants.

In order to express fine-grained feature implementation in the source code
model-based techniques often rely on templates engines. The code snippet
in Figure 2.11 illustrates the Spring Application Context as a template file
following the pure::variants notation. The template processing yields in a new
file without codes related to expressions that evaluate to false. Note that such
mechanism is similar to annotate the source code using features, as proposed in
annotation-based techniques (see Section 2.11). Consequently, it suffers from
the same fundamental problems discussed above: (i) tangled code (base code
and template statements) distracts the programmer in the search for concept
instances and uses; (ii) template statements are not part of the language but
added on top by an external tool (e.g., pure::variants); (iii) there is no explicitly
traceability from a feature to its implementation by means of framework-
provided concepts.

An interesting aspect of model-based techniques is that they sup-
port the specification of requires and excludes constraints between model
elements. Consider the Family model in Figure 2.11. The last two re-
strictions, hasElement("WeatherUserService") and hasElement("City"),
express that WathearService element depends on two other elements
(WeatherUserService and City) of the Family model. These restrictions
express the dependencies defined in the code configuration of the Bean
WeatherService, as we can observe in the right side of Figure 2.11 (see lines
05 and 06 from the Spring application context file).

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 36

Although restrictions provide an intuitive model for describing con-
straints in product line development, there is no mechanism in existing model-
based techniques that ensures the correspondence between constraint applied
to model elements and the framework’s programming interface. As illustrated
in Section 2.1, in real-world framework-based software product lines there are
more complex constraints that a general-purpose technique dedicated to soft-
ware product line implementation must take into account. For example, using
pure::variants it is easy for developers forget to create a constraint that obli-
gates the presence of Bean WeatherUserSevice when the Weather feature is
selected. Therefore, without reading the framework’s documentation, it is not
possible to know whether a constraint is missing by accident or on purpose.
Moreover, as mentioned, even when available, they are passive and partial, not
covering the full range of concepts and their instantiation constraints.

In addition, since there is no connection between the restrictions in
the modeling level (e.g., restrictions, requires and excludes constraints) and
code level (e.g., template statements), determining which decisions lead to an
exclusion of all source code elements implementing a given concept instance;
and whether they are included in at least one product, is tedious and difficult to
automated. For example, there is no way to check when the restriction related
to WeatherService element is compatible with the IF statement (see line 02-08
in Figure 2.11) inside the Spring Application Context file. This misconnection
leads to situations where the introduced errors are hard to discover and resolve.

2.3
Summary and Goals

Table 2.2 summarizes the discussed benefits and limitations of annotation
and model-based techniques. It is apparent that both groups are, in some
aspects, complementary, and that there is a lack of appropriated support for
implementing features in the context of enterprise software product lines.

Our experience with four different enterprise product lines has shown
that both groups are hard to use and some benefits like code navigability
and consistency check are not appropriately achieved, mostly when applied
in the context of framework-based software product lines. As discussed, some
limitations (e.g., abstraction mismatch) are even conceptual and cannot be
solved with just incrementing existing tools. Hence, instead of improving
such existing solutions, our goal is to adjust the existing domain-specific
modeling solutions, which are already broadly used on the implementation
of framework-based software systems. We address the discussed scenarios,
and propose a novel perspective to see features in domain-specific knowledge

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

Chapter 2. Problem Formulation 37

models (DKMLs). Models builded from DKMLs are designed to represent
the configuration knowledge of an implementation domain, defining a clearly
mapping to code instantiating concepts. It is easy to build DKMLs for different
domains of application. In addition, they encode the framework’s programming
interface, which allows us to automated some tasks, such as checking the
consistency of the entire software product line.

Criteria Annotation-based General-purpose
Model-based

Feature Assignment Fine-grained and over
the source code

Coarse-grained, via
models. Fine grained,
direct to source code.
There is no formal
connection between
them

Error Detection Some approaches can
detect language syntax
and type-system errors

General-purpose
constraint checking and
are not well connected
to any implementation
language

Language and
Technology In general are language

independent
In general are language
independent

Modularity Scattered and tangled
but can be virtual

Scattered and tangled

Uniformity Simple and uniform Mismatch between
models and source code

Table 2.2: Benefits and limitations of annotation and model-based techniques.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

