
5
Evaluation

The purpose of this Chapter is to present the evaluation of our proposed
technique for engineering software product lines. In particular, the evaluation
focuses on studying two distinct points: configuration knowledge specification
quality; and configuration knowledge comprehension.

First, this Section describes the setting and results of a study evaluating
the specification quality (Section 5.2). The goal of this study is to quantify and
analyze the impact of domain knowledge modeling languages on configuration
knowledge modularity and complexity, when compared to other code-oriented
techniques. Quantifying the specification cost in order to determine the feasi-
bility of the proposed technique is also the subject of this evaluation.

This Section also presents the design of an empirical study and the
analyse of its results (Section 5.3). This study compares the specifications in
the styles of annotative and general-purpose modeling with the domain-specific
modeling one - based on DKMLs. The main goal is to measure correctness
and response time of questions that require a thorough understanding of the
configuration knowledge specification.

5.1
Selected Product Lines

As part of the experimental procedure, we have selected three distinct
software product lines in order to conduct our study. Table 5.1 summarizes
their main characteristics. The following characteristics were considered: name
and domain of application; used frameworks; size, in terms of the number of
features (mandatory, optional and alternative); and feature granularity (coarse-
or fine-grained). In this set of studies, coarse-grained features are related
to self-contained domain-specific concepts (e.g., beans, actions, agents and
capability), and fine-grained ones are related to classes, attributes, methods.

These product lines were chosen for several reasons: (i) they were imple-
mented by experienced developers, which adopted widely used software devel-
opment practices, such as design patterns, and traditional architectures; (ii)
they vary in size; (iii) they take advantage of several commonly used applica-

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 72

Name Domain Frameworks Size Variability Granularity

E-Shop Online stores SpringDM
SpringMVC
iBatis

18 features
• 9 Mandatory
• 7 Optional
• 2 Alternative

Coarse-grained
Fine-grained

OLIS Personal assistance
software

Struts 2.0
Spring
Hibernate
JADE
Jadex

21 features
• 13 Mandatory
• 5 Optional
• 3 Alternative

Coarse-grained

Buyer
Agent

e-Commerce agents Jadex 12 features
• 4 Mandatory
• 1 Optional
• 7 Alternative

Fine-grained

Table 5.1: Main characteristics of the target product lines.

tion frameworks; and (iv) their features vary in granularity. The inclusion of
different granularity is important to enable us to observe if and when there
is any effect of using domain-specific concepts on the specification of the con-
figuration knowledge. Moreover, we have selected product lines developed in
our laboratory, due to the availability of developers. They helped us to model
the configuration knowledge of these product lines in each of the tools. This
ensure the correctness of the configuration knowledge, which is essential for
our study.

Description of Selected Product Lines

Buyer-SPL The Buyer-SPL implements a family of buyer agents for the
domain of e-Marketplaces. This domain in general contains buyers and sellers
that interact in such way that sellers sell products to buyers. In this product
line, customized buyer agents represent users and act in accordance with their
preferences. The buyer agents can be derived from the following features: (i)
Payment Type – Credit Card, Pay Pal and Pay upon Pick up; (ii) Shipping
Type – Ground Shipping and Pick up at Store; and (iii) Store Selection
Strategy – Cheaper and Faster. Note that the Pay upon Pick up feature can
only be selected if the Pick up at Store is selected. Its architecture is based
on the Web-MAS architectural pattern (Nunes et al. 2008) and encompasses
different services provided for users, including the buying service, which is
responsible for the customization of the buyer agent.

OLIS-SPL OLIS is a product line of web systems that supports the deriva-
tion of products with a set of core user services and optional ones whose goal
is to automate tasks using software agents. There are four main services that
compose OLIS, which are: (i) User Management service - allows users to reg-
ister themselves and configure their account; (ii) Event Announcement service

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 73

- allows users to announce events to other users through an event board; (iii)
Calendar service - allows users to schedule events in their calendars. Besides
the information of events published on the events board, each calendar event
contains a list of participants. Additionally, announced events can be imported
into the users’ calendar; and (iv) Weather service - provides information about
the current weather conditions and a given location forecast. Examples of ser-
vice variability are: (i) Event Reminder - sends notifications to the user about
events that are about to begin; (ii) Event Scheduler - checks the event partic-
ipants’ schedule to verify if a new event conflicts with other existing ones. In
this case, the system suggests a new date for a calendar event that is appropri-
ate to the participants’ schedule; and (iii) Events Suggestion - automatically
recommends events based on user preferences. OLIS allows deriving products
that are able to deal with three different event types: generic, academic and
travel events. Likewise the Buyer-SPL, is based on the Web-MAS architectural
pattern.

e-Shop-SPL The E-Shop is a software product line of online stores. It pro-
vides typical features such as search Store Catalog, Payment, and Shipment.
The features were devised into four main modules: (i) eshop - core implemen-
tation of the e-Shop-SPL; (ii) eshop.payment - modularizes a set of payment
methods and resources related to the payment process; (iii) eshop.customer -
modularizes the customer service; (iv) eshop.shipment - encompasses services
to calculate taxes and resolve the shipment process. The e-Shop is based on
the typical layered architecture pattern.

5.2
Assessment of Modularity and Complexity

5.2.1
Study Phases and Analysis Procedures

The goal our evaluation is: (i) to quantify and analyze the modular-
ity and complexity of the configuration knowledge specification compared to
other code-oriented techniques; and (ii) to quantify the configuration knowl-
edge specification cost of our proposed technique, in order to invastigate its
feasibility. The study was organized in the following major phases: (i) speci-
fication of the product lines in GenArch+, pure::variants and CIDE tools; (ii)
quantification of the modularity and complexity metrics (Section 5.2.2) over
the different investigated techniques; and (iii) quantitative analysis of the ob-
tained results for the different metrics (Section 5.2.3 and Section 5.2.4).

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 74

The analysis was divided into two stages. First, we compare GenArch+

against CIDE and pure::variants techniques from the perspective of the mod-
ularity and complexity of the configuration knowledge (Section 5.2.3). Sec-
ond, we measured the cost of specifying each investigated product line using
DKMLs. This support us to check if this issue (specification cost) does not
compromise the gains on using domain knowledge models (Section 5.2.4). The
results obtained from this evaluation allowed us to make a qualitative discus-
sion about configuration knowledge specification in the context of framework-
based software product lines.

5.2.2
Quantitative Metrics Suite

In order to compare GenArch+ and other existing code-oriented tech-
niques (CIDE and pure::variants), we used a suite of metrics to quantify the
separation of concerns and the complexity needed to prepare the assets (mod-
els, configuration files) associated with the configuration knowledge specifica-
tion.

Separation of Concern metrics A suite of separation of concern metrics
was selected to quantify the modularization of the configuration knowledge.
We consider measuring modularization because code instantiating framework-
provided concepts often crosscuts several source code elements as mentioned
in Chapter 2. As programming languages are not able to isolate the source
code instantiating concepts, it tends to lead to configuration knowledge with
poor modularity. The separation of concerns metrics are also interesting to
predict the effort of developers in localizing and understanding the configura-
tion knowledge specification. Previous empirical studies have observed that
these metrics are also a useful indicator of maintenance effort in a wide
range of software engineering tasks (Conejero et al. , Figueiredo et al. 2009,
Eaddy et al. 2008).

Our evaluation is based on the scattering and tangling attributes. We
measured the scattering by counting the product line artifacts that contain
at least one statement of configuration knowledge specification. We consider
artifact as source code (e.g., Java classes and interfaces), configuration files
(e.g., ADF files), and models (e.g,. agent-specific architecture model). The
configuration knowledge statements are expressed in the techniques as: (i)
mappings from features to product line assets (code, configuration files, model
elements); and (ii) mechanisms used to configure the source code, such as
template statements. Tangling was measured based on the Concern Diffusion

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 75

over Lines of Code (CDLoC) metric (Garcia et al. 2005). The CDLoC counts
the number of concern switches in the source code. In contrast, in our study,
we count the number of configuration knowledge specification switches in the
product line assets.

Effort estimation metrics In order to measure the complexity of the con-
figuration knowledge specification we have adopted some size metrics. They
count: (i) the number of elements in the configuration knowledge (NoECK);
and (ii) number of features assignments (NoFA). We believe that a high num-
ber of elements and features assignments in the configuration knowledge might
contribute to increase the effort (time) required for its specification.

Tools / Metrics OLIS Buyer eShop

CIDE Tang. 95 30 176
Scatt. 156 16 52

pure::variants Tang. 98 30 260
Scatt. 15 4 41

GenArch Tang. 0 0 0
Scatt. 1 1 1

Table 5.2: Configuration Knowledge Modularization – separation of concerns
metrics.

5.2.3
Results: Separation of Concerns

Table 5.2 summarizes the tangling and scattering metrics quantified
in the product line assets of the investigated product lines, considering the
GenArch+, CIDE and pure::variant tools. As we can see, pure::variants pre-
sented the highest values (98/30/260) for the tangling metrics compared to
the GenArch+ and CIDE. In contrast, CIDE showed the highest values for
the scattering metric. The reason for this is that CIDE requires introducing
invasive annotations along all source code assigned to any feature. GenArch+

and pure::variants presented low values for this metric because they specify
the feature assignments in fewer artifacts. GenArch+ adopts the configura-
tion model and pure::variants uses the family models for this purpose. As a
consequence, features assignments were found in GenArch+ only in 1 places
along all artifacts of the product lines. Therefore, we can conclude that the
use of exclusive artifacts for representing the configuration knowledge, instead
of only annotating the source code, tends to provide a better separation of the
configuration knowledge concern.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 76

Nevertheless, the use of templates by pure::variants technique to address
fine-grained variability implied in some switches between configuration knowl-
edge specification and source code not implementing features. For example,
the OLIS-SPL Spring Application Context file (see Figure 2.11) contains some
template statements that define which Beans is accountable to be part of de-
rived products. This property affected (increased) the collected results for the
separation of concern metrics. Without the use of templates, the results for
scattering and tangling metrics is only 1, as the result achieved by GenArch+.
However, we believe that it has not compromised the achieved benefits by
pure::variants. The difference from CIDE to pure::variants, for example, re-
mains almost equals for the tangling metric. Based on these results, we can con-
clude that the model-based techniques offered by GenArch+ and pure::variants
tends to successfully prevent the scattering and tangling of the configuration
knowledge specification over the framework-based source code. Therefore, even
though they cannot replace cohesive modules, they exhibit characteristics that
might facilitate the understanding of scattered feature implementations, thus
contributing to the product line maintainability and evolvability.

5.2.4
Results: Size

The model-based techniques - pure::variants and GenArch+ - are the
solutions that better modularize the configuration knowledge specification.
Nevertheless, as a drawback, they tend to increase the effort needed to specify
the product line assets, as we could observe after the application of the size
metrics. Table 5.3 summarizes the results for these metrics.

Tools / Metrics OLIS Buyer eShop

CIDE NoECK 245 53 501
NoFA 245 53 501

pure::variants NoECK 763 87 353
NoFA 220 28 143

GenArch NoECK 4119 1066 1859
NoFA 153 20 138

Table 5.3: Configuration Knowledge Modularization – size metrics.

It is interesting to observe that the use of models substantially in-
creases the number of elements in the configuration knowledge (NoECK). The
annotation-based technique provided by CIDE requires the coloring of only 245
pieces of source code, this for specifying the configuration knowledge of OLIS-
SPL; and 53 for Buyer-SPL. CIDE does not require the creation of any new

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 77

asset. Therefore, as we will discuss further, this metric matches with the num-
ber of features assignments (NoFA) metric. On the other hand, pure::variants
requires the creation of 763 model elements in the family model and the instru-
mentation of 49 source code elements with template statements, this for the
specification of the OLIS-SPL. In the case of GenArch+, we could observe that
the use of domain knowledge models increases even more the NoECK metric.
For example, for specifying the OLIS-SPL, GenArch+ demands the creation of
4119 elements. For specifying the Buyer-SPL and eShop-SPL, a large number
of elements in the domain knowledge models is also required, as shown in Table
5.3.

Even though GenArch+ demands the creation of a large number of
elements in the configuration knowledge of the product lines, the use of domain
knowledge models helped to reduce the number of features assignments. In
fact, GenArch+ required only 51 and 20 assignments for specifying the OLIS
and Buyer product lines, respectively. On the other hand, pure::variants for
example, forced the creation of 220 feature assignments for specifying the
OLIS-SPL, and 28 for the Buyer. This metric was measured by counting:
(i) the number of mappings from features to solution space elements in
the artifacts that specify the configuration knowledge; and (ii) the number
of template statements inside code assets. The results demonstrated that
GenArch+ potentially contributes to reduce the replication in the configuration
knowledge specification.

5.3
Empirical Evaluation

Our main goal is to investigate whether the different techniques influence
the correct comprehension of the configuration knowledge. Similar to related
efforts (Lange and Chaudron 2007, Cornelissen et al. 2011), two dimensions
were evaluated in the empirical evaluation: (i) correctness; and (ii) time. That
is, we have evaluated not only if the subjects were able to correctly comprehend
the configuration knowledge but also how fast they got the information they
needed. Therefore, we distinguish the following research questions.

RQ1: Does the availability of domain-specific models increase the correct
comprehension of the configuration knowledge?

RQ2: Does the availability of domain-specific models reduce the time that is
needed to correctly comprehend the configuration knowledge?

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 78

RQ3: Does the individual differences among the expertise of product line
engineers impact on the correct comprehension of the configuration
knowledge?

RQ4: Which types of configuration knowledge comprehension task benefit
most from the use of domain-specific and from other code-oriented
techniques?

5.3.1
Experiment Hypotheses

Associated to the first two research questions are two null hypotheses:

H10: The correct comprehension of the configuration knowledge does not
depend on the different specification techniques.

H20: The time to correctly comprehend the configuration knowledge does not
depend on the different specification techniques.

The alternative hypotheses are the following:

H11: The correct comprehension of the configuration knowledge depends on
the different specification techniques.

H21: The time to correctly comprehend the configuration knowledge depends
on the different specification techniques.

5.3.2
Background of the Participants

The first controlled experiment involved (Cirilo et al. 2011b) six post-
graduate (MSc and PhD) students from PUC-Rio answering questions about
the three previous presented software product lines. The second one involved
fifteen post-graduate students from two different institutions – PUC-Rio and
UFRN. All participants have knowledge in software product line engineering
and in the languages Java and XML, but they were not familiar with the
evaluated techniques. Therefore, they were given a short demonstration of
pure::variants, CIDE, and GenArch+. In this training session, we demonstrated
specific functionalities of the tools and examples of configuration knowledge
specification. We used a different product line to avoid biasing the experiment
results.

In addition to training the participants, we asked each one of the first
controlled experiment to fill in a background form after answering question-
naires. Our aim was to survey about the expertise of them in the frameworks

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 79

Participant
P1 P2 P3 P4 P5 P6

Framework
Spring 4 4 4 2 1 3
Struts 2 2 1 4 2 2
Spring MVC 4 4 4 5 3 5
Hibernate 1 1 1 1 4 1
iBatis 2 2 2 3 1 3
Spring DM 1 1 1 1 1 1
Jadex 2 1 1 3 1 1
Product Line
eShop 1.5 1.25 1 2.25 2 1
OLIS 3 3 2.75 3.5 1.75 3.25
Buyer Agent 2 1 1 3 1 1

Table 5.4: Degree of Expertise of the participants

used to implement the product lines. The expertise is a value ranging from 1
to 5, where 1 means no expertise in a given framework and 5 means a high ex-
pertise. After that, we calculated the degree of expertise of each participant for
each product line. The degree of expertise in a given product line is the average
of the expertise of the participant in the frameworks used to implement that
product line. Table 5.4 summarizes the participant’s background. Rows 4-10 in
the Table indicate the expertise that participants claimed to have about each
technology used to implement the different product lines. Rows 12-14 indicate
the resulting degree of expertise of the participants.

Most of participants of the first experiment claimed to have little knowl-
edge about the development of agent-oriented software systems with Jadex.
Additionally, all the participants have not previously worked with service-
oriented development using Spring Dynamic Modules (SpringDM). However,
in general all participants have at least basic skills in the relevant frameworks
of the experiment. Overall, most of them have satisfactory expertise in the
studied product lines.

5.3.3
Experimental Design

With the aid of a training section the participants had to answer three
questionnaires, one for each product line. The questionnaires in the first
experiment were composed of ten questions. Examples of questions are: “Which
concepts(s)/code asset(s) is(are) related to the feature X?;” and “How many
concepts(s)/code asset(s) is(are) mapped to the feature Y?”. In the second
evaluation the questionnaires were composed of nine questions. We devised

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 80

the questionnaires into four typical comprehension tasks. Table 5.5 provides
descriptions of the tasks and shows how each of the nine type of questions is
covered by at least one activity. To render the questions more representative
of real situations, they are open rather than multiple-choices, making it harder
to subjects to resorting to guesting.

T1: Identifying all files in which source code of a feature occurs.
Q1. What file(s) in the source code the feature X were implemented?
Q3. Which file(s) and respective source code fragment(s) are imple-
menting the Feature X ?

T2: Identifying all features that occur in a certain file.
Q2. Which other Feature(s) occurs in the file X ?
Q6. Which other Feature(s) occurs in the file(s) that implements the
Feature X ?

T3: Identifying all framework-concept instances that are imple-
menting a certain feature.

Q4/Q8. Which framework-concepts are implementing the Feature X ?
Q5. What file(s) in the source code the framework-concept(s) in-
stance(s) that implement the Feature X was/were implemented?

T4: Identifying all framework-concept instances that interact with
other ones.

Q7. You have identified the framework-concept instances that imple-
ment the Feature X. For each one, which other framework-concept
instances are interacting with them?
Q9. Which framework-concept instances are interacting with the ones
that implement the Feature X ?

Table 5.5: Description of the second comprehension questionnaire.

We designed our experimental study with the Latin square in order to
control the test of each tool with each participant. The Latin square design gave
us a random allocation of the tools in such a way that each one is used once
for each participant (row) and once for each product line (column). Therefore,
the size of the Latin square is 3 x 3, in which the x-axis is the participants
and the y-axis is the product lines. We have replicated the square once in the
first evaluation. In the second evaluation we replicated the square five times.
Table 5.6 shows the configuration of the Latin square, presenting the allocation
of participants, product lines and evaluated tools. This design is important to

Participants E-Shop OLIS Buyer
P1 ... n G+ PV C
P2 ... n C G+ PV
P3 ... n PV C G+

Table 5.6: Latin Square configuration

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 81

avoid some effects such as learning.

5.3.4
Variables and Analysis

The independent variable in our experiment is the availability of each
product line tool. The first dependent variable is the time spent on each
question. Since going back to earlier tasks is not allowed and the sessions are
supervised, we just had to write down the time spent during each question.
The second dependent variable is the correctness of each question.

To test our hypotheses, we first test whether the sample distribution is
normal (Shapiro-Wilk) and have equal variance (Levene). If these tests pass,
we use the ANOVA test to evaluate our hypotheses, that is, whether there is
any evidence that the means of the populations differ; otherwise, we use the
nonparametric Kruskal-Wallis test. If these tests lead to a conclusion that there
is evidence that the group means differ, we then are interested in investigating
which of the means are different. To this end, we use the Tukey multiple
comparison test in the case of the sample distribution is normal and have
equal variance. This test compares the difference between each pair of means
with appropriate adjustment for the multiple testing. Otherwise, we use the
Nemenyi-Damico-Wolfe-Dunn test. For the correctness and time variable, we
maintain a typical confidence level of 95 percent (alfa = 0.05).

5.3.5
Fist Controlled Experiment: Results, Analysis and Discussion

In the first controlled experiment (Cirilo et al. 2011b) we resort to answer
the RQ1, RQ2 and RQ3. This section presents the results and discusses
some general observations. The analysis was decomposed into two categories
regarding to: (i) correct answers and time; and (ii) expertise.

Hypotheses Testing

We start off by testing null hypothesis H10, which states that the correct
comprehension of the configuration knowledge does not depend on the different
specification techniques. Figure 5.1 shows a box plot for the scores that were
obtained by the subjects. Note that we consider overall scores rather than
scores per questions. The box plot shows that there is no explicit difference in
terms of correctness. The Shapiro-Wilk test did not succeed for the answers
data, which means that ANOVA cannot be used to test H10. Consequently, we
used the nonparametric Kruskal-Wallis test. As a chi-squared = 0.0363, degree-
of-freedom = 2, and a p-value = 0.982, the Kruskal-Wallis indicates that there

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 82

Figure 5.1: Box plot for correctness.

is no statistically significant difference among the investigated techniques in
terms of correctness, meaning that H10 cannot be rejected in favor of our
alternative hypothesis H11, stating that the correct comprehension of the
configuration knowledge depends on the different specification techniques.

We next test the null hypothesis H20, which states that the time to
correctly comprehend the configuration knowledge does depend on the different
specification techniques. Figure 5.2 shows a box plot for the total time that
the subjects spent on the questions. Differently from the correctness data, the
requirements for the use of the ANOVA were met. Table 5.7, therefore, shows
the results for ANOVA. The average time spent by the GenArch+ was not
clearly lower and the p-value = 0.1325 is bigger than 0.05, which means that
H20 cannot be rejected in favor of the alternative hypothesis H21, stating that
the time to correctly comprehend the configuration knowledge depends on the

Source SS DF F Sig.
Replica 142 141.5 0.0165 0.9011
SPL 1710 854.9 0.0994 0.9065
Technique 45246 22622.9 2.6298 0.1325
Replica:Subject 21864 5466.0 0.6354 0.6516
Residuals 68819 8602.4

Table 5.7: ANOVA test for participants time.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 83

Figure 5.2: Box plot for time.

different specification techniques.

Analysis: Correct Answers, Time and Expertise

Although the results do not allow us to clearly confirm or reject the
research hypotheses, next we discuss some implications that could be observed.

Product Lines vs. Correct Answers and Time Figure 5.3 shows a chart
that relates the number of correct answers and the evaluated techniques. Each
bar in this chart indicates the number of questions correctly answered by
the participants (y-axis) for each combination of product line and tool (x-
axis). The contractions C, PV and G+ stand for CIDE, pure::variants and
GenArch+, respectively. Overall, the Buyer agent presented a superior number
of correct answers when compared with the OLIS and E-Shop. The Buyer
agent is characterized to be a simple product line, which relies only on one
framework. Therefore, it required small number of elements in the configuration
knowledge specification. On the other hand, the OLIS and E-Shop are larger
and more complex product lines when compared with the Buyer agent. The
E-Shop, in particular, contains several fine-grained variability, and most of the
features crosscut different code assets implementing the architectural layers of
this product line. Therefore, the E-Shop configuration knowledge cannot be
fully modularized only through the use of domain-specific concepts. From this

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 84

result, we concluded that the size (number of features and lines of code) and
the number of fine-grained variability have negatively influenced the number
of correct answers and time, consequently, in general negatively influenced the
comprehensibility of the configuration knowledge.

Techniques vs. Correct Answers We observed that the correct comprehen-
sion of the configuration knowledge does not depend on the different specifi-
cation natures of CIDE and pure::variants. For example, participants 2 and
5 achieved the lowest number of correct answers in the E-Shop product line.
Based on this value we conclude that CIDE does not seem to contribute for
the participants to correctly understand scattered configuration knowledge,
as originally claimed by its authors (Kästner et al. 2008). On the other hand,
the general-purpose modeling technique implemented by pure::variants seems
to have helped participants 3 and 6 to better understand the E-Shop spec-
ification. The advantage of pure::variants is that it provides an overview of
the coarse-grained variability through the family model and a detailed under-
standing of fine-grained variability via templates statements inside code assets.
Pure::variants also provides searching mechanisms that were widely used by
some participants. These mechanisms apparently helped participants to filter
the configuration knowledge. However, the same result was not observed for
the OLIS product line, as CIDE presented a higher number of correct answers
than pure::variants for this product line. From these contrasting results, the
study indicates that there is no particularity in these tools that make them
significantly better than other.

Nevertheless, we observed that, in general, the use of domain-specific
abstractions provided the participants with the support to correctly under-
stand the configuration knowledge. Participant 1 was the only exception, when
pure::variants and CIDE were superior than GenArch+ in this aspect. To other
participants, this tool presented intermediate results for the E-Shop and OLIS
product lines and better results for the Buyer agent. Therefore, we observe
from this data that alternative hypothesis H11 might hold. That is, product
line engineers tend to better understand variability associated with concept
instances in the presence of domain-specific modeling.

Approaches vs. Time We also analyzed the time spent by the participants
to localize and understand the configuration knowledge specifications. We
observed that GenArch+ required the lowest time (3:40:45) for the participants
to answer the questionnaires, followed by CIDE (4:19:56) and pure::variants
(4:46:53). By analyzing only correct answers, we observed that GenArch+ was

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 85

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#!"

,-./012-34"#" ,-./012-34"$" ,-./012-34"%" ,-./012-34"&" ,-./012-34"'" ,-./012-34"("

!"#$%&"'()'*(&&"+,'-.$/"&$'

567892" :;<7" =>?@."

G+

PV

C

C G+

PV

PV

C

G+

G+

PV

C

C

G+

PV PV

C

G+

Figure 5.3: Measure of Correct Answers

the tool that presented the lower average (0:02:57), and CIDE (0:03:10) and
pure::variants (0:04:39) presented superior values.

Based on these results, we also observe that hypothesis H2 might holds,
but only with respect to some of the techniques. By comparing the time
spent to answer questions correctly with GenArch+ and pure::variants, we
observed that the use of the framework-provided abstractions improved the
comprehension of the configuration knowledge specification, by allowing the
participants localizing the configuration knowledge in a reduced time. However,
it seems that there is no significant difference between GenArch+ and CIDE
in terms of the time needed to localize and understand the configuration
knowledge specification.

Expertise Finally, we analyzed if the expertise of participant in the imple-
mentation frameworks was essential to correctly answer the questionnaires.
Figure 5.4 shows the chart that relates the degree of expertise of each partic-
ipant and his/her number of correct answers for each product line. Each bar
in this chart indicates the expertise (x-axis) of participants (y-axis) about the
product lines (bars). The bullets exhibit the total number of correct answers
(CA/Total - secondary x-axis) of each participant. Note that there is no rela-
tion between the expertise and the number of correct answers. For example,
participants 1, 2 and 3 claimed to have similar expertise; however, the par-
ticipant 3 presented a superior number of correct answers. Correspondingly,
participant 5, who has a limited expertise, presented a number of correct an-
swers very close to the one achieved by participants 2 and 4, who claimed to
have superior expertise.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 86

!"

#"

$!"

$#"

%!"

%#"

!"

$"

%"

&"

'"

#"

("

)"

*"

+"

$!"

,-./012-34"$" ,-./012-34"%" ,-./012-34"&" ,-./012-34"'" ,-./012-34"#" ,-./012-34"("

!"#$%&"'()'*(&&"+,'-.$/"&$'#.0'123"&4$"'

567892" :;<7" =>?@." ABCD94-E"

!"

#"

$!"

$#"

%!"

%#"

!"

!&#"

$"

$&#"

%"

%&#"

'"

'&#"

("

)*+,-./*01"$" )*+,-./*01"%" )*+,-./*01"'" )*+,-./*01"(" )*+,-./*01"#" )*+,-./*01"2"

!"#$%&"'()'*(&&"+,'-.$/"&$'#.0'123"&4$"'

34567/" 89:5" ;<=>+" ?@AB71*C"

G+

PV

C

G+

PV

C
G+PV

C

G+

PV

C

G+

PV

C

G+

PV

C

Figure 5.4: Measure of Correct Answers and Expertise

We also compared the degree of expertise, number of correct answers
and the product line tools. A high degree of expertise in the frameworks used
to implement the OLIS product line combined with the annotative approach
provided by the CIDE tool may have helped participants to correctly answer
the questionnaire, however the same behavior was not observed in the other
two product lines with the same tool. In contrast, the participants that use
pure::variants to answer questions about the E-Shop product line presented a
high number of correct answers despite they claimed to have a low degree of
expertise. However, for the other two product lines the participants presented
the same behavior described above, i.e. claimed to have a high degree of
expertise but achieved a low number of correct answers. For GenArch+, we
observed the same behavior described above: the expertise in the frameworks
was not fundamental to correctly answer the questionnaire. As a result, we
could observe that there is no correlation between the expertise and the number
of correct answers.

5.3.6
Second Controlled Experiment: Analysis and Discussion

Now we present the results of our second experiment and discusses
the observed results. In the same way, the analysis was decomposed into
two categories regarding to: (i) correct answers and time; and (ii) expertise.
Moreover, in this Section we also present a discussion about which types
of comprehension tasks benefit most from the use of the different styles of
configuration knowledge specification

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 87

Hypotheses Testing

In the same way, in the second experiment we start off by testing
null hypothesis H10. Figure 5.5 shows a box plot for the scores that were
obtained by the subjects (here we are also considering overall scores). Different
from the first experiment, now the box plot shows that there is explicit
difference in terms of correctness. Table 5.8 shows descriptive statistics of the
measurements. The solution given by GenArch+ subjects were 26.28% and
34.53% percent more accurate, averaging 5.82 out of 1.32 points compared to
3.81 points for the pure::variants and 4.29 points for the CIDE, respectively.

The Shapiro-Wilk and Levene tests succeeded for the answers data,
which means that ANOVA may be used to test H10. As shown in Table 5.9,
the ANOVA yields a statically significant result, that is, a p-value near to
zero (p-value = 1.099e-06) indicates a statistically significant difference in the
correctness measures associated with the three techniques. As the ANOVA test
leads to a conclusion that there is evidence that the group means differ, we
pass to investigate which of the means are different. To this end we use the
post-hoc Tukey’s HSD multiple comparison test. Table 5.10 shows the result
for each pair as a p-value. The Tukey’s HSD tests showed that GenArch+

subjects had significantly higher scores than the other two groups at the 0.05
level of significance. Observe that other comparison (pure::variants and CIDE)
was not significant. Therefore, we can reject H10 in favor of our alternative

Figure 5.5: Box plot for correctness.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 88

Correctness Time
G+ C PV G+ C PV

mean 5.823333 4.296667 3.816667 737.978 915.768 1976.169
difference -26.28% -34.53% +19.41% +62.65%
min 3 1.8 0.7 239.24 296 454.14
max 8 8 6 1872.71 2345.45 10978.33
median 6.15 4.4 4.1 622.46 802.47 1234.17
stdev. 1.329724 1.814079 1.443293 449.202 567.3122 2687.005

Table 5.8: Descriptive statistics of the experimental results.

Source SS DF F Sig.
Replica 25.569 4 9.4522 7.428e-05
SPL 24.808 2 18.3421 1.075e-05
Technique 32.939 2 24.3539 1.099e-06
Replica:Subject 32.031 10 4.7364 0.000676
Residuals 17.583 26

Table 5.9: ANOVA test for participants answers.

hypothesis indicating that there is a difference between the comprehension
correctness at the 0.05 level of significance.

We next test null hypothesis H20. Figure 5.6 shows a box plot for the
total time that the subjects spent on the questions. Table 5.8 indicates that, on
average, the GenArch+ required 19.41% percent less time than pure::variants
and 62.65% less than CIDE. Since the Shapiro-Wilk test indicated deviations
from normality, the Kruskal-Wallis test and Nemenyi-Damico-Wolfe-Dunn test
were applied. While the Nemenyi-Damico-Wolfe-Dunn test allowed us to re-
alize a pair wise comparison of the distributions, Kruskal-Wallis test allowed
checking if there exist significant differences among the three techniques un-
der investigation. As a chi-squared = 4.0495, a degree-of-freedom = 2 and a
p-value = 0.1320, the Kruskal-Wallis indicates that there is no statistically sig-
nificant difference in the effort need to correctly comprehend the configuration
associated with the three techniques. Consequently, our initial intuition that
the domain-specific based technique reduce the comprehension effort was not
totally confirmed.

Comparisons Diff Lwr Upr Sig.
G+ - C 1.526667 0.7805027 2.2728306 0.0000777
PV - C -0.480000 -1.2261640 0.2661640 0.2641892
PV - G+ -2.006667 -2.7528306 -1.2605027 0.0000013

Table 5.10: Tukey’s HSD multiple comparison test results for answers.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 89

Figure 5.6: Box plot for time.

Analysis: Correct Answers and Time

Reasons for Correctness Differences. We attribute the added value of
GenArch+ domain-specific models to correctness to several factors. A first one
is the appropriate abstraction level of such models. The fact that GenArch+

shows domain-specific concepts without source-code details and in a modular
way makes concept instances existence and assignment to features easier to
understand. Section 3.3 discusses this point in more detail. In contrast, CIDE
and pure::variants partially or totally mix this information with the source-
code, which impose to the developers an extra mental effort to properly
comprehend the configuration knowledge associated with framework-specific
concepts.

Second, the results of the qualitative questionnaire show that GenArch+

subjects liked tool features quite often: the subject estimate the facility to
answer questions in an average of 2.54 points out of 1.06 points. The subject
estimate the facility to answer questions using CIDE in an average of 2.7 points
out of 1.19 points, and using pure::variants in an 3.21 average of, out of 1.09
points. Our observation shown that GenArch+ features (see Section 4) was used
frequently and that tool was actually found useful most of questions. This is a
indication that the GenArch+ subject generally did not experience a resistance
to using it and were quite successful in their attempts. This observation is

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 90

confirmed when we correlate the results of number of correct answers and
time. We noted that in some cases the participants faced resistance to answer
some questions using CIDE and pure::variants. In these cases, as they are not
been successful in their attempts, they preferred to spent just few minutes
trying to answer the request question, rather than keeping trying.

Reasons for Different Time. The lower time achieved by GenArch+ sub-
jects can be attributed to several factors. First of all, all-information required
for correctly understanding the configuration knowledge is shown on domain-
specific models, which eliminates the need for interpreting the source code
and navigating through different files. In particular, the overview of the entire
product line as domain-specific concepts saves time in comparison to conven-
tional specifications in which multiple files typically have to be studied at once.
It is also the case why CIDE subjects achieved a great time. Since this tool
provides modular visualizations on feature and their interactions, it alleviates
from the subject the need to navigate thought the entire product line source-
code. However they still having to reasoning about feature assignment without
an appropriated representation of the existing concept instances. Then, second,
the need to imagine how certain features were assigned to concept instances
or their interaction represents a substantial cognitive load on the part of the
subjects. This is also alleviated by domain-specific models which show the ac-
tual concepts abstracted from the source-code. Examples of these assumptions
were discussed in Chapter 2.

On the other hand, several factors may have had a negative impact on
the time achieved by GenArch+ subjects. For example, the fact the GenArch+

represents the configuration knowledge on many models means that context
switching is necessary, which may yield a certain amount of overhead on the
part of the subjects. Moreover, although the activity of navigating from models
to source code is easy with GenArch+ (see Section 3.2), the subjects can get
lost when many editors are opened. It means that the subject needs to choose
the right editors, which often is not a direct decision. This last issue could
be solved by keeping few editors opened. However, it should be noted that
GenArch+ would still require a substantial amount of models to represent the
configuration knowledge effectively. We also observed the negative impact of
the number of models on the time achieved by pure::variants subjects. But in
this tool the things get worse because pure::variants does not support direct
navigability from models to source code. The subjects had to resort on extra
tools, like eclipse search mechanism to overcome this misconnection. Moreover,
the use of general-purpose concepts require from subject a extra cognitive load.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 91

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

T1" T2" T3" T4"

Average'of'Correct'Anwsers'per'Task'

G+" PV" C"

Figure 5.7: Measure of correct answers per tasks.

Individual Task Performance. Now we analyse which types of comprehen-
sion tasks benefit most from the use of the different styles of configuration
knowledge specification.

Figure 5.7 and Figure 5.8 show the average scores and time spent by the
participants in each product line tool from a task perspective. Figure 5.9 and
Figure 5.10 show four box plots for the facility to answer questions in each tool
estimated by the participants. The box plots are also separated from a task
perspective.

GenArch CIDE pure::variants
Correct. Time Correct. Time Correct. Time

mean 0.78 420.42 0.74 397.49 0.55 1002.44
stdev 0.33 380.15 0.41 424.69 0.30 2594.13

Table 5.11: Descriptive statistics (Answers and Time) - Task 1

Identifying all files in which source code of a feature occurs. The
goal of the first task was to identify and globally understand all files in which
source code of a feature occurs. The performance difference here was quite
subtle between GenArch+ and CIDE groups, with the GenArch+ apparently
having had a very small advantage (see also Table 5.11). In terms of time,
the difference between GenArch+ and CIDE groups was also unnoticeable.
However, it demanded the pure::variants group a huge among of time to
complete this task. The CIDE group typically studied the Interaction View
and/or used the Views on Feature. The GenArch+ users mostly filtered the
models content and studied the mappings to source code. Although, more
laborious, this last solution proved effective and led to slightly more accurate

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 92

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

T1" T2" T3" T4"

Average'of'Time'per'Task'

G+" PV" C"

Figure 5.8: Measure of time per tasks.

solutions. On the other hand, the pure::variants users in most of the time
searched the source code and models for feature occurrence, which is fairly
accurate once some results can be missed. To perform this task participants
using CIDE and GenArch+ liked tool features quite often more than the
participants using pure::variants.

GenArch CIDE pure::variants
Correct. Time Correct. Time Correct. Time

mean 0.80 408.59 0.76 388.60 0.78 274.94
stdev 0.32 829.35 0.37 414.47 0.23 186.77

Table 5.12: Descriptive statistics (Answers and Time) - Task 2

Identifying all features that occur in a certain file. This task
was similar to the previous one, but the focus was more on coupling, that
is, identifying all features that occur in a certain file. All the subjects, either
using GenArch+, CIDE, or pure::variants scored equally well on this task and
required similar amounts of time (see Table 5.12). The group using GenArch+

resorted to the Visualization on Source code functionality to look for features
assignment, while the CIDE group mostly observed the background color. The
pure::variants group just have to studied the template statements referring to
features. The fact that the information about features is directly exhibited on
the source code account for the good effectiveness and accuracy. Moreover, the
participants liked tool features equally.

Identifying all framework-concept instances that are imple-
menting a certain feature. This task concerned a domain-specific anal-
ysis that turned out to be significantly easier for the GenArch+ group (see

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 93

Figure 5.9: Box plot for difficult - Tasks T1 and T2.

Table 5.13). This is presumably explained by GenArch+ domain knowledge
models, from which all features assignments can be directly interpreted as
domain-specific concepts. The other groups (CIDE and pure::variants) carried
out a mental study of the source code, which is time-consuming and does not
necessarily yield good results, specially when the framework-concepts are not
well-known. Observe that in this case participants liked GenArch+ features
visibly more than they liked CIDE and pure::variants features.

GenArch CIDE pure::variants
Correct. Time Correct. Time Correct. Time

mean 0.67 749.34 0.33 1183.69 0.34 672.74
stdev 0.32 862.47 0.33 1674.59 0.33 1246.77

Table 5.13: Descriptive statistics (Answers and Time) - Task 3

Investigating dependencies between framework-concept in-
stances. This task posed the challenging questions of which framework-
provided concepts interact with each others. We can observe that GenArch+

group completely out-performed in terms of correctness (see Table 5.14). An
important reason might be that CIDE and pure::variants groups did not
know exactly what to look for in the configuration knowledge because the

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 94

Figure 5.10: Box plot for difficult - Tasks T3 and T4.

dependencies between framework-concepts are rather obfuscated in the sense
that no clear specification was given by such tools. Interestingly, even using
GenArch+ only a handful of subjects properly discovered the dependencies
between framework-concept instances. However, the GenArch+ group rated
the difficulty of this task between "Normal" and "Difficult", whereas CIDE
and pure::variants users rated the difficulty towards to "Difficult" and "Very
Difficult".

GenArch CIDE pure::variants
Correct. Time Correct. Time Correct. Time

mean 0.31 1469.9 0.04 349.2 0.08 335.76
stdev 0.31 2187.17 0.11 824.46 0.23 1329.02

Table 5.14: Descriptive statistics (Answers and Time) - Task 4

5.4
Threats to Validity

This section discusses the study constraints. For each category, we list
possible threats and the procedure we took to alleviate their risk.

Conclusion Validity. The major external risk here is related to the
engagement of the subjects to be part of the experiments, due to the length

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 95

(time) of the questionnaires (almost two hours and thirty minutes for each
participant). However, there was a rotation of the approaches order given
that we adopted the Latin square. Another threat is the heterogeneity of
participants. We have not taken any special care to select the participants and
so they may represent random choices. Although the heterogeneity of subjects
can also be considered a threat to the conclusion validity, it helps to promote
the external validity of the study. Finally, the quality of the investigated tools
is also a risk for the conclusion validity. However, we did not observe bugs
that hampered the understanding of specifications or forced the participants
to spend more time answering a question.

Construct Validity. We identified the following threats to the construct
validity: confounding questions, and insufficient training session. To minimize
these problems, we answered questions from participants as they were emerg-
ing. To avoid biasing the experiment results, we limited the explanations about
tool functionalities to what was demonstrated during the training session and
about the questions to what clarifications were absolutely necessary.

Internal Validity. Threats to internal validity reside on how we have
specified the configuration knowledge of the product lines with different
techniques. We ensured that each product line has been specified following
the same patterns in all tools by triple-checking each specification and by
using the product line developers to model the configuration knowledge. It is
important to be checked because the number of traceability links may increase
depending on how the configuration knowledge is specified. In fact, the size
and complexity of the product lines were two factors that have influenced the
results.

External Validity. The major external risk here is related to the
product lines. The selected product lines might not be representative of all
industrial practices. To reduce this risk, we selected three product lines from
different domains, which are heavily based on industry-strength frameworks.
Although the size of the chosen product lines is limited, this decision allowed
us to obtain more consistent results that could be interpreted in this specific
context. Nevertheless, additional replications are necessary to determine if our
findings can be generalized to other domains.

5.5
Summary

In this chapter we have presented an evaluation of three different config-
uration knowledge specification techniques regarding some criteria: modular-
ity, complexity, comprehensibility and effort required to correct comprehend

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 5. Evaluation 96

product line. We provided evidence that the use of domain knowledge mod-
els reduces the number of features assignments but significantly increases the
complexity of the configuration knowledge specification. We also showed that
the use of domain knowledge models does not require less time to comprehend
a product line, when compared to CIDE and pure::variants. Nevertheless, the
results clearly illustrate domain-knowledge models usefulness for configuration
knowledge comprehension. Our proposed technique added value was statisti-
cally significant, with the GenArch+ group scoring more points on average.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA




