
6
Final Remarks and Future Work

In this thesis we presented a point of view that the existing support for
engineering enterprise software product lines can be significantly improved by
taking a domain-specific modeling perspective. We presented domain knowl-
edge modeling languages that formalize domain-specific concepts and their in-
stantiation constraints, in addition to express the way in which domain-specific
concept instances implement features.

The view of a software product line as a composite of domain-specific
concepts was critical for improving feature visualization. The set of mappings
to source code instantiating concepts is an important contribution as it enables
easy navigation from models to source code and also projecting features assign-
ments on physical assets. We showed that both capabilities are fundamental
to correctly comprehend the configuration knowledge specification.

Another important contribution is the demonstration that DKMLs can
be used for many different purposes. We explored the automatic interpretation
of the metamodel to provide guidance and ensure consistency of the config-
uration knowledge in terms of the semantic expressed by the feature model.
Disciplined assignment of features to domain knowledge model’s elements re-
strict assignments such that no violation of the programming interface can
occur during product derivation. Instead of assigning features to physical as-
sets, disciplined assignment in our case map features to virtual elements of
an instantiated framework. On top of correctly built domain knowledge mod-
els, a constraint programming modeling of the configuration knowledge de-
tects errors in the entire product line in a single step, instead of the need of
compiling and execute each product in isolation. Our constraint programming
model checks the configuration knowledge against the feature model seman-
tics. Among other, it ensures that a framework concept instantiation cannot
be assigned to a optional feature and removed if it is still used by concept
instances not removed from the same product.

The proposed technique for engineering framework-based software prod-
uct lines was designed to be an uniform way to assign feature to source code
and a reusable-programming model that can be easily adopted in existing

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 6. Final Remarks and Future Work 98

projects. It is easy to build DKMLs for different domains of application using
the tool support provided by GenArch+. We showed using numerous examples
of DKMLs for several frameworks that this is valid assumption. The structure
based on classes and references decorated withthe knowledge about the config-
urability semantics was enough to model the programming interface provided
by all investigated frameworks. We also demonstrated that the closing map-
ping between DKMLs abstract syntaxes and the framework’s programming
interfaces supports the efficient projection of domain knowledge models from
existing source code.

Finally, we compared domain knowledge models to other code-oriented
techniques regarding some criteria: modularity, complexity, effort required to
correct comprehend the product line. Concerned with modularity, we realized
that the use of domain knowledge modeling languages, in general, reduces
feature scattering and tangling. However, these benefits depends on some
properties of the features. For instance, there is not way to modularize
features not associated to framework-provided concepts in domain-knowledge
models. Moreover, we observed that domain-knowledge models substantially
increase the number of elements in the configuration knowledge, which might
represent a negative impact on the effort need to specify and comprehend
the configuration knowledge. However, we have initial evidences that most of
the effort required to specify the configuration knowledge can be avoided by
projecting models from existing source code automatically.

This later assumption is in accordance with our finding regarding the ef-
fort to correctly comprehend the configuration knowledge. In fact, we observed
that GenArch+ does not require less time to comprehend a product line, than
CIDE and pure::variants. Nevertheless, the results clearly illustrate domain-
knowledge models usefulness for correct configuration knowledge comprehen-
sion. We also observed that our proposed product line engineering technique is
also useful for the case of traditional configuration knowledge comprehension
tasks, such as “Identifying all files in which source code of a feature occurs”
and “Identifying all features that occurs in a certain file”. In the case of spe-
cific tasks, associated to comprehend the configuration knowledge related to
framework-provided concepts, GenArch+ out-performed the traditional code-
oriented techniques.

The results presented in this thesis may impact the way product lines
are engineered and documented. Taking a language-oriented perspective brings
many benefits, such as improved visualization of features and automation. The
need of DKMLs arises due to the inability of the current code-oriented tech-
niques to adequately express framework-provided concepts and programming

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA



Chapter 6. Final Remarks and Future Work 99

interface defined over programming languages. We believe that in the future
programming languages and programming interface construction mechanisms
will evolve so that concepts instances will be easily identified in the source
code and instantiation constraints will be checked by the compiler. However,
until that happens DKMLs can provide the support required to properly com-
prehend and safely built framework-based software product lines.

6.1
Limitations and Future Work

There are some possible directions for future works. One important at-
tempt is the formalization of the DKML concept and a deeper investigation
of its desired properties. This formalization would allow us to describe all ele-
ments of DKMLs and the generic infrastructure provided by GenArch+ more
precisely. In particular, three new areas would benefit from formalization: in-
tegrating DKMLs and programming language semantics, product line refac-
toring, and dynamic analysis of code customization.

In future work, we want to develop an environment that better integrates
and unifies the development mechanisms, low level (programming languages)
and high level (DKMLs). First it will provide a more precise verification
of the configuration knowledge, that is, verifications that do not only take
into account the knowledge expressed by the domain knowledge models.
This formalization will also support small-step refactorings that preserve the
behavior of all products regarding the semantics defined by the framework’s
programming interfaces. Finally, the impact of assigning features to code
customization may also be completely checked against violations of the feature
model semantics considering a more appropriated dynamic analysis of concept
instance usage.

Application of DMKLs in practice is needed to ultimately confirm the
usefulness and value of the proposed engineering. To that end, more languages
should be built to address current problems with a few widely used frameworks,
and the effectives of DKMLs should be evaluated in large scale software product
lines. Moreover, in this case, we believe that future work on views and feature
visualizations is need to improve the comprehension of large scale configuration
knowledge. A new research endeavor in this direction would be to empirically
assess the impact of more recent domain-specific based techniques, such as
Clafer (Bak 2010) and Projectional Workbenches (Völter and Visser 2011), on
product line comprehension.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA




