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Coreference Resolution

The CoNLL-2012 Shared Task (Pradhan et al., 2012) is dedicated

to the modeling of coreference resolution for multiple languages. The

participants are provided with datasets for three languages: Arabic, Chinese

and English. These datasets are provided by the OntoNotes project and,

besides accurate coreference information, contain various annotation layers

such as part-of-speech (POS) tagging, syntax parsing, named entities (NE)

and semantic role labeling (SRL). The shared task consists in the automatic

identification of coreferring mentions of entities and events, given predicted

information on other OntoNotes layers. The official ranking for this task

is given by the mean score on the three languages. We take part in the

CoNLL-2012 Shared Task closed track, in which training data is restricted

to the information provided by the shared task organizers. We propose a

language-independent approach based on ESL and submit its results to the

shared task (Fernandes et al., 2012b). The developed systems obtain the very

best performance among all participants. In this chapter, we describe this ESL

application.

Coreference resolution consists in identifying mention clusters in a

document. Mentions are textual references to real world entities, like people,

companies or places. In Figure 10.1, we present an illustrative document with

nine highlighted mentions. In a given document, mentions that refer to the

North Koreaa1
opened itsa2

doors to the U.S.b1 today, welcoming Secretary of State

Madeleine Albrightc1 . Shec2 says herc3 visit is a good start. The U.S.b2 remains concerned

about North Korea’sa3
missile development program and itsa4

exports of missiles to Iran.

Figure 10.1: Document with nine highlighted mentions that refer to three
different entities: North Korea is referenced by mentions {a1, a2, a3, a4}; the
U.S. is referenced by {b1, b2}; and Madeleine Albright by {c1, c2, c3}. The letter
in the mention subscript identifies its entity cluster and the number uniquely
identifies the mention within its cluster.

same entity are called coreferring mentions and form an entity cluster. In

the example, the letter in a mention subscript indicates its entity cluster

and the number uniquely identifies the mention within its cluster. There are

three entity clusters in the example that are related to the following real
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world entities: North Korea, which is identified by the letter a; the United

States, which is identified by b; and Madeleine Albright, which is identified

by c. The coreference resolution task is to identify entity mentions in a given

document and to cluster the coreferring mentions. Clusters that comprise only

one mention are ignored. For instance, in the example, the mention Iran is

ignored.

The remainder of this chapter is organized as follows. In Section 10.1,

we formalize the coreference resolution task. In this chapter, we propose a

novel structure learning modeling for this task. In Section 10.2, we present the

feature factorization used in this modeling. The resulting prediction problem is

equivalent to the maximum branching problem, just as for dependency parsing.

However, we use a slightly different loss function. These aspects are discussed

in Section 10.3. We describe the basic features provided to ESL in Section

10.4. We apply our ESL-based coreference modeling to three very different

languages, since our modeling is highly language independent. Nevertheless,

some datasets lack basic features and we need to adapt some parts of the

systems. In Section 10.5, we describe these adaptations and some additional

preprocessing procedures. Finally, in Section 10.6, we present our empirical

results.

10.1

Task Formalization

Regarding our ESL modeling, the input for the coreference resolution

task is a set of mentions x = {x1, . . . , xN} within a document. The task is to

cluster the coreferring mentions together, that is, mentions that are references

to the same entity are in the same cluster. A feasible output is then a set

of non-overlapping clusters y = {y1, . . . ,yK}, where yi ⊂ x; yi ∩ yj = ∅,

for i, j ∈ {1, . . . , K} and i 6= j; and K is unknown. Additionally, singleton

mentions are ignored. A singleton is a unique mention to its entity in the

input document.

10.2

Feature Factorization

Usually, coreference systems use features that depend on pairs of

mentions (xi, xj). We follow this idea, but we introduce a novel modeling for

coreference resolution. Most clustering metrics lead to NP-hard optimization

problems. Hence, we assume that an entity cluster is represented by a rooted

tree. A directed edge (i, j) in this tree indicates that xj is a reference to the

more general mention xi.
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10.2.1

Coreference Trees

We introduce coreference trees to represent clusters of coreferring

mentions. A coreference tree is a rooted tree whose nodes are the coreferring

mentions and arcs represent some coreference relation between mentions. In

Figure 10.1, we present a document with nine highlighted mentions comprising

three clusters. One plausible coreference tree for the cluster {a1,a2,a3,a4} is

presented in Figure 10.2. We are not really concerned about the semantics

Figure 10.2: Coreference tree for the cluster a in Figure 10.1.

underlying coreference trees, since they are just auxiliary structures for

the clustering task. However, we argue that this concept is linguistically

plausible, since usually there is indeed a specific-to-general relation between

two coreferring mentions. Observing the aforementioned example, one may

agree that mention a3 (North Korea’s) is more likely to be associated with

mention a1 (North Korea) than with mention a2 (its), even considering that a2

and a3 are closer to each other than a1 and a3, in the document text.

For a given document, we have a forest of coreference trees, one tree for

each entity cluster. However, for the sake of simplicity, we link the root node of

every coreference tree to an artificial root node, obtaining the document tree.

In Figure 10.3, we depict a document tree for the text in Figure 10.1.

10.2.2

Latent Structure Learning

Coreference trees are not given in the training data. Thus, we assume

that these structures are latent and make use of the latent structure perceptron

(Fernandes and Brefeld, 2011; Yu and Joachims, 2009) to train our models. We

introduced this algorithm earlier in Figure 2.3. Here, we describe its application

to coreference resolution by using coreference trees. We decompose the original

predictor into two predictors, namely the latent predictor Fh(x;w) and the
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Figure 10.3: Document tree with three coreference trees that corresponds to
the text in Figure 10.1. Dashed lines indicate artificial arcs.

target predictor Fy(x,h). The latent predictor is defined as

Fh(x;w) = arg max
h∈H(x)

〈w,Φ(x,h)〉,

where H(x) is the set of feasible document trees for x and Φ(x,h) is the joint

feature vector representation for the mentions x and the document tree h.

Hence, the latent predictor finds a maximum scoring rooted tree over the given

mentions x, where a tree score is given by a linear function over its features.

Fy(x,h) is a straightforward procedure that creates a cluster for each subtree

connected to the artificial root node in the document tree h. Then, for a given

input x, a complete prediction is given by Fy(x, Fh(x;w)).

As one can observe, in this application of the latent SPerc, we do not

use the target model wy introduced in Section 2.3, since the target predictor

Fy(x,h) predicts an output based exclusively on the latent structure h. Thus,

in this chapter, the model w corresponds to the latent model wh presented in

Chapter 2.

In Figure 10.4, we depict the latent structure perceptron algorithm for the

mention clustering task. Likewise its binary counterpart (Rosenblatt, 1957),

the structure perceptron is an online algorithm that iterates through the

training set. For each training instance, it performs two major steps: (i) a

prediction for the given input using the current model; and (ii) a model update

based on the difference between the predicted and the ground truth outputs.

The latent SPerc performs an additional step to predict the latent ground truth

h̃ by using a specialization of the latent predictor.

Golden coreference trees are not available, however, during training, for
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w0 ← 0

t← 0
while no convergence

for each (x,y) ∈ D

h̃← argmaxh∈H(x,y)〈wt,Φ(x,h)〉

ĥ← argmaxh∈H(x)〈wt,Φ(x,h)〉+ ℓ(h, h̃)

wt+1 ← wt +Φ(x, h̃)−Φ(x, ĥ)

t← t+ 1

w ← 1
t

∑t
k=1wk

Figure 10.4: Latent structure perceptron algorithm.

an input x, we have the golden clustering y. Thus, we predict the constrained

document tree h̃ for the training instance (x,y) using a specialization of the

latent predictor – the constrained latent predictor – that makes use of y. The

constrained predictor finds the maximum scoring document tree among the

constrained document tree set H(x,y) ⊂ H(x), which includes all rooted

trees of x that follow the correct clustering y. That is, a constrained tree

h ∈ H(x,y) comprises only arcs between coreferring mentions – according

to y – plus one arc from the artificial node to each cluster. In that way, the

constrained predictor guarantees that Fy(h̃) = y, for any w. The constrained

tree is then used as the ground truth on each iteration. Therefore, the model

update is determined by the difference between the constrained document tree

and the document tree predicted by the ordinary predictor.

The latent structure perceptron algorithm learns to predict document

trees that help to solve the clustering task. Thereafter, for an unseen document

x, the latent predictor Fh(x;w) is employed to produce a predicted document

tree h which, in turn, is fed to Fy(x,h) to give the predicted clusters.

10.3

Prediction Problem

We decompose the joint feature vector Φ(x,h) along coreference tree

edges, that is, mention pairs. Thus, the prediction problem is reduced to the

maximum branching problem, just as for dependency parsing, and it can be

efficiently solved by the Chu-Liu-Edmonds algorithm.

We use a loss function that is similar to the one used for dependency

parsing

ℓ(h, ĥ) =
∑

(i,j)∈ĥ;i>0

1[(i, j) /∈ h]+
∑

(i,j)∈ĥ;i=0

r · 1[(i, j) /∈ h]
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where (0, j) is an artificial edge and r is a meta-parameter denoted root loss

value. This loss function just counts how many predicted edges are not present

in the constrained document tree. Additionally, for arcs from the artificial root

node, we use a different loss value r.

10.4

Basic Features

We use 70 basic features to describe a candidate edge. All of them

give hints on the coreference strength of individual edges. These features

provide lexical, syntactic, semantic, and positional information. They have

been adapted from previously proposed features dos Santos and Carvalho

(2011); Sapena et al. (2010); Ng and Cardie (2002). All features have been

transformed into categorical, even the integer ones.

In Table 10.1, we briefly describe the set of basic features used in our

system. The Id column identifies each feature. The Type column indicates the

value type of each feature, such as boolean (yes, no) or ternary (yes, no, not

applicable). The # column indicates how many basic features correspond to

each description.

10.5

Data Preparation

In this section, we present some specific procedures that are performed

before the application of the ESL system to coreference resolution.

10.5.1

Mention Detection

The CoNLL-2012 shared task datasets do not explicitly provide entity

mentions; the system needs to detect them. For each document, we generate

a list of candidate mentions using the strategy of dos Santos and Carvalho

(2011). The basic idea is to use all noun phrases and, additionally, pronouns

and named entities, even if they are inside larger noun phrases. We do not

include verbs as mentions.

10.5.2

Coreference Arcs Generation

The input for the prediction problem is a graph whose nodes are the

mentions in a document. Ideally, we could consider the complete graph for

each document, thus every mention pair would be an option for building the

document tree. However, since the total number of mentions is huge and a big
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Id Description Type #

Lexical Features 25

L1 Head word of xi (xj) word 2
L2 String matching of xi and xj boolean 1
L3 String matching of the head words of xi and xj boolean 1
L4 Both xi and xj are pronouns and their strings match ternary 1
L5 Both xi and xj are not pronouns and their string match ternary 1
L6 Previous and next two words of xi (xj) word 8
L7 Length of xi (xj) integer 2
L8 Edit distance of head words xi and xj integer 1
L9 Edit distance of xi and xj after removing determiners integer 1
L10 xi (xj) is a definitive noun phrase boolean 2
L11 xi (xj) is a demonstrative noun phrase boolean 2
L12 The head word of both xi and xj are proper nouns boolean 1
L13 Both xi and xj are proper names and their strings match ternary 1
L14 Both xi and xj are proper names and their head word strings

match
ternary 1

Syntactic Features 28

Sy1 POS tag of the head word of xi (xj) POS tag 2
Sy2 Previous and next two POS tags of xi (xj) POS tag 8
Sy3 xi (xj) is a pronoun boolean 2
Sy4 Gender of xi (xj), if pronoun f, m, n/a 2
Sy5 xi and xj are both pronouns and agree in gender ternary 1
Sy6 xi and xj are both pronouns and agree in number ternary 1
Sy7 xi (xj) is a proper name boolean 2
Sy8 xi and xj are both proper names boolean 1
Sy9 Previous and next predicate of xi (xj) verb 4
Sy10 xi and xj are pronouns and agree in number, gender and

person
ternary 1

Sy11 Noun phrase embedding level of xi (xj) in the syntactic parse integer 2
Sy12 Number of embedded noun phrases in xi (xj) integer 2

Semantic Features 13

Se1 The prediction of the baseline system proposed in dos Santos
and Carvalho (2011)

binary 1

Se2 Sense of the head word of xi (xj) sense 2
Se3 Named entity type of xi (xj) NE tag 2
Se4 xi and xj have the same named entity ternary 1
Se5 Semantic role for the previous and next words of xi (xj) SRL tag 4
Se6 Concatenation of semantic roles of xi and xj for the same

predicate, if they are in the same sentence
(SRL tag)2 1

Se7 xi and xj have the same speaker ternary 1
Se8 xj is an alias of xi boolean 1

Positional Features 4

P1 Distance between xi and xj in number of sentences integer 1
P2 Distance between xi and xj in number of mentions integer 1
P3 Distance between xi and xj in number of person names

(applies only for the cases where xi and xj are both pronouns
or one of them is a person name)

integer 1

P4 One mention is in apposition to the other boolean 1

Table 10.1: Description of all 70 basic features.

portion of arcs can be easily identified as incorrect, we filter the arcs and, thus,

include only candidate mention pairs that are more likely to be coreferent.

We filter arcs by simply adapting the sieves method proposed by Lee et al.

(2011) to English coreference resolution. Lee et al. propose a list of handcrafted
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rules that are sequentially applied to mention pairs in order to iteratively merge

mentions into entity clusters. These rules are denoted sieves, since they filter

the correct mention pairs. In Lee et al.’s system, sieves are applied from higher

to lower precision. However, in our filtering strategy, precision is not a concern

and the application order is not important. The objective here is to build a

small set of candidate arcs that shows good recall. Additionally, we do not

have interest on sieves that are strongly language dependent, since our target

is multilingual coreference resolution. We thus select the most general sieves,

which can be easily applied to the Arabic and Chinese datasets provided in

the CoNLL-2012 shared task.

Given a mention pair (xi, xj), where xi appears before xj in the text, we

create a directed arc (i, j) if at least one of the following conditions holds:

1. Distance – The number of mentions between xi and xj is not greater

than a given parameter.

2. Alias – If both mentions are people, check if the head word of one mention

is part of the other mention, like Dilma and Dilma Rousseff. If both

mentions are organizations, check if the head word of one mention is

contained in the other, or if one is the acronym of the other.

3. Relaxed String Match – There is a match of both mentions up to their

head words.

4. Head Word Match – The head word of xi matches the head word of xj.

5. Shallow Discourse – Test if shallow discourse attributes match for both

mentions. For instance, two first person pronouns assigned to the same

speaker are considered coreferent.

6. Pronouns – Check if xj is a pronoun and xi has the same gender, number,

speaker and animacy of xj. For this filter, we use number and gender data

provided by Bergsma and Lin (2006).

7. Pronouns/NE – Check if xj is a pronoun and xi is a compatible pronoun

or proper name (named entity).

Sieves 2 to 7 are adapted from Lee et al. (2011). Most of these sieves are

relaxed versions of the ones proposed by Lee et al. (2011). Sieve 1 is introduced

by us to lift recall, yet avoiding strongly language-dependent sieves.
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10.5.3

Language Specifics

Our system can be easily adapted to different languages. In our

experiments, only minor changes are needed to train and apply the system

to three different languages. The adaptations are due to: (i) lack of input

features for some languages; (i) different POS tagsets across datasets; and (iii)

creation of static lists of language specific pronouns. The necessary adaptations

are restricted to only two preprocessing steps: basic features and coreference

arcs generation.

Some input features available in the English dataset are not available

in the Arabic nor in the Chinese datasets. The Arabic dataset does not

contain named entity, semantic role labeling and speaker features. Therefore,

for Arabic, we do not derive the following basic features: Sy9, Se3, Se4, Se5,

Se6, Se7, and P3. For Chinese, information related to named entity is not

provided. Thus, we do not derive the following basic features: Se3, Se4, and

P3. Additionally, the Chinese dataset uses a different POS tagset. Hence, some

mappings are used during the basic feature derivation stage.

The lack of input features for Arabic and Chinese also impact the sieve

based arc generation. For Chinese, we do not use sieve 6, and, for Arabic, we

only use sieves 1, 3, 4 and 7. Sieve 7 is not used for the English dataset, since

it is a specialization of sieve 6. The first sieve threshold is 4 for Arabic and

Chinese, and 8 for English.

In the arc generation and basic feature derivation steps, our system makes

use of static lists of language specific pronouns. In our experiments, we use

the POS tagging information and the golden entity clusters to automatically

extract these pronoun lists from training data.

Our system submitted to the CoNLL-2012 Shared Task ignores arcs

linking nested mentions. While this kind of mentions are never coreferent in

Arabic nor in English, the Chinese datasets include many nested coreferring

mentions. Hence, in the latest version of our system, we include such arcs for

the Chinese language.

10.5.4

EFG Setting

We experiment with different template sets for each language. The

difference between these sets is the training data given as input to EFG. We

obtain better results when merging different template sets. For the English

language, it is better to use a set of 196 templates obtained by merging

the output of two independent EFG executions. These two runs are fed with
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training datasets comprising: (a) mention pairs produced by sieves 2 to 6; and

(b) mention pairs produced by all sieves. For Chinese and Arabic, it is better

to use template sets generated specifically for these languages and merge them

with the template set (a), generated for the English language. The final set for

Chinese comprises 197 templates, while the final set for Arabic comprises 223.

All these templates conjoin from two to seven basic features.

10.5.5

Evaluation Metrics

Evaluating coreference systems is a hard task. The main issue is that

coreference information is highly faceted and the value of each facet varies

a lot from one application to another. Thus, when reporting and comparing

coreference performances, it is really hard to define one metric that fits all

purposes. Therefore, we follow the methodology proposed in the CoNLL-2012

Shared Task to assess our systems, since it combines three of the most popular

metrics. The metrics used are the link based MUC metric (Vilain et al., 1995),

the mention based B3 metric (Bagga and Baldwin, 1998) and the entity based

CEAFe metric (Luo, 2005). All these metrics are based on precision and recall

measures, which are combined to give an F-score value. The mean F-score of

these three metrics gives a unique score for each language. Additionally, when

appropriate, the official CoNLL-2012 Shared Task score is reported, which is

the average of the F-scores for all languages. We denote this metric as CoNLL

score.

Another important aspect of coreference evaluation is mention matching.

Some methodologies, like the ones used in MUC or ACE evaluations, consider

approximate matching of mention spans. However, the CoNLL-2012 Shared

Task evaluation considers only exact span matching. We use the latter in our

performance measures. In fact, the experimental results reported in this work

are generated by the official CoNLL-2012 Shared Task evaluation scripts.

10.6

Empirical Results

In this section, we present five sets of empirical findings on the

CoNLL-2012 Shared Task datasets. Namely, (i) we show our system overall

quality, that is, the best one for Arabic, Chinese and English; (ii) we assess

the EFG impact, showing that it significantly improves the resulting system

quality; (iii) we assess the root loss value impact, also showing that it

significantly improves system quality; (iv) we show that by enhancing our

Chinese modeling with nested mentions, we achieve state-of-the-art quality
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for this language; and (v) we present the supplementary results provided

by the shared task organizers. These empirical findings highlight the main

contributions of this work regarding multilingual unrestricted coreference

resolution on OntoNotes.

10.6.1

State-of-the-art Systems

In Table 10.2, we present per-language and CoNLL scores of the best

performing systems on the CoNLL-2012 test sets. The first row of this table

Reference AR CH EN CoNLL Score

This work 54.22 62.87 63.37 60.15

Fernandes et al. (2012a) 54.22 58.49 63.37 58.69
Björkelund and Farkas (2012) 53.55 59.97 61.24 58.25

Chen and Ng (2012) 47.13 62.24 59.69 56.35

Table 10.2: State-of-the-art systems for multilingual unrestricted coreference
resolution in OntoNotes. Performances on the CoNLL-2012 Shared Task test
sets.

corresponds to the last version of our system and the second row corresponds

to our official entry in the CoNLL-2012 Shared Task. The difference between

these two versions is the inclusion of candidate arcs linking nested mentions

for the Chinese language. By including such arcs, the score increases almost

4.5 points for that language.

The last two rows of Table 10.2 correspond to the competitors that are

ranked second Björkelund and Farkas (2012) and third Chen and Ng (2012) in

the shared task. Our system obtains a remarkable performance on the English

language, outperforming the runner-up by more than two points. We also

achieve the highest performance on Arabic and Chinese.

The detailed performance of our systems is presented in Table 10.3, where

we report recall, precision and F-score for all metrics and languages considered

in the CoNLL-2012 Shared Task. We can observe that the mean scores on

Chinese and English are similar. On the other hand, the performance on the

Arabic language is much lower. Given the smaller size of the Arabic training

corpus, this variation is expected.

Lang
MUC B3 CEAFe Mean

R P F R P F R P F
Arabic 43.63 49.69 46.46 62.70 72.19 67.11 52.49 46.09 49.08 54.22

Chinese 59.20 71.52 64.78 67.17 80.55 73.25 57.46 45.20 50.59 62.87

English 65.83 75.91 70.51 65.79 77.69 71.24 55.00 43.17 48.37 63.37

CoNLL Score 60.15

Table 10.3: Detailed performance of our system on the CoNLL-2012 Shared
Task test sets.
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10.6.2

Entropy Guided Feature Generation

In this work, we employ entropy guided feature generation to

automatically generate non-linear features that conjoin the used 70 basic

features. In this section, we compare our EFG-based system with a system

trained with basic features alone. It is important to notice that among these

70 basic features there are several complex features. Some of these features are

even conjunctions of other simpler basic features, and others provide complex

task dependent information, like head words and agreement on number and

gender, for instance. These 70 basic features were manually generated by

domain experts and encode valuable coreference information.

In Table 10.4, we present the performances of four systems on the

English development set. In the upper half of this table, we report the

performance of our EFG-based system (first row) and the performance of a

model trained with basic features alone (second row). We can notice that

the EFG system outperforms the baseline by 7.31 points. Moreover, EFG

consistently outperforms the baseline on all metrics.

Basic
EFG

MUC B3 CEAFe Mean
Feats. R P F1 R P F1 R P F1

70
Yes 61.34 75.71 67.77 62.94 79.59 70.29 56.23 40.36 46.99 61.68

No 51.32 73.28 60.37 54.85 78.06 64.43 50.87 30.71 38.30 54.37

54
Yes 60.86 74.82 67.12 62.50 78.83 69.72 54.53 39.46 45.79 60.88

No 36.65 73.44 48.90 45.25 82.26 58.38 49.97 22.09 30.64 45.97

Table 10.4: EFG effect on system performance for the English development
set.

We perform another experiment to assess EFG. We remove 16 basic

features out of the 70 original ones and perform the same experiment as

before. That is, we evaluate an EFG-based system trained with the remaining

54 basic features and compare it to another system trained with the same

54 basic features alone. Namely, we remove the following basic features:

L2, L3, L4, L5, L8, L9, L12, L13, L14, Sy5, Sy8, Sy10, Se1, Se4, Se7, P4.

In the lower half of Table 10.4, we present the performance of these two

systems. We can see that, while the EFG-based system performance (third

row) drops only 0.8 point when the 16 features are removed, the performance

of the baseline system (fourth row) drops impressive 8.4 points. The difference

between the two systems doubles in respect to the difference when using

all 70 basic features. These findings highlight two important points. First,

the removed features are very informative. Moreover, EFG is able to almost

completly overcome the omission of these informative features by automatically

generating conjunctions of the remaining 54 basic features.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 81

10.6.3

Root Loss Value

Just as some coreference metrics can be more important than others for

some applications, precision and recall have different values for applications.

Specifically for the CoNLL score – which is based on the Fβ=1 score – the

balance between precision and recall is important. For this reason, we introduce

one important parameter in our system: the root loss value. This parameter

specifies a different loss function value for outgoing arcs in the artificial

root node. Observe that, in a document tree, each arc from the root node

corresponds to a cluster. The effect of a root loss value larger than one is to

reduce the creation of new clusters, stimulating larger clusters. Therefore, one

can use this parameter to adjust the balance between precision and recall.

In the upper half of Table 10.5, we present our system performances on

the development sets when we set this parameter to one, which is equivalent

to not use this parameter at all. We can notice that in this case recall and

precision have very distinct values, lowering the F-score values. Using the

Root
Lang

MUC B3 CEAFe Mean
Loss R P F R P F R P F

Off

Arabic 34.18 58.85 43.25 50.61 82.13 62.63 57.37 33.75 42.49 49.45

Chinese 49.17 76.03 59.72 58.16 86.33 69.50 57.56 34.38 43.05 57.42

English 62.75 77.41 69.31 63.88 81.34 71.56 57.46 41.08 47.91 62.92

CoNLL Score 56.59

On

Arabic 43.00 47.87 45.30 61.41 70.38 65.59 49.42 44.19 46.66 52.52

Chinese 54.40 68.19 60.52 64.17 78.84 70.76 51.42 38.96 44.33 58.54

English 64.88 74.74 69.46 66.53 78.28 71.93 54.93 43.68 48.66 63.35

CoNLL Score 58.14

Table 10.5: Root loss value effect on development set performances.

development sets for tuning, we set the root loss value to 6, 2 and 1.5 for Arabic,

Chinese and English, respectively. In the lower half of Table 10.5, we present

the performances when we use these values for the root loss value parameter.

We can observe that this parameter really causes a better balancing between

precision and recall, consequently increasing the F-score values. Its effect is

accentuated on Arabic and Chinese, since the unbalancing issue is worse on

these languages. The increase in the CoNLL score is over 1.5 point.

10.6.4

Chinese Nested Mentions

Nested noun phrases are very common. For instance, the noun phrase the

smart boy includes the nested noun phrase boy. Whether to consider these two

noun phrases as coreferring mentions or only consider the longer noun phrase as

a mention is an annotation design choice. OntoNotes mostly consider only the
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longer noun phrase. However, in many Chinese documents, nested mentions are

annotated as coreferring. Thus, in this work, we evaluate the effect of whether

arcs linking nested mentions are considered or not. In Table 10.6, we present

the detailed results when such arcs are ignored (first row) and when they are

included (second row). To consider these arcs remarkably increases our system

score by almost 4 points on the Chinese language.

Nested MUC B3 CEAFe Mean
Mentions R P F1 R P F1 R P F1

Yes 60.35 70.56 65.05 67.37 79.49 72.93 55.15 44.94 49.52 62.50

No 54.40 68.19 60.52 64.17 78.84 70.76 51.42 38.96 44.33 58.54

Table 10.6: Effect whether nested coreferring mentions are considered or not
for the Chinese language.

10.6.5

Supplementary Results

We report in Table 10.7 the supplementary results provided by the

CoNLL-2012 Shared Task organizers on the test sets. These additional

Lang Config
MUC B3 CEAFe Mean

R P F1 R P F1 R P F1

AR

A/A 43.63 49.69 46.46 62.70 72.19 67.11 52.49 46.09 49.08 54.22

A/GB 45.18 47.39 46.26 64.56 69.44 66.91 49.73 47.39 48.53 53.90

A/GM 57.25 76.48 65.48 60.27 79.81 68.68 72.61 46.00 56.32 63.49

G/A 46.38 51.78 48.93 63.53 72.37 67.66 52.57 46.88 49.56 55.38

G/GB 46.38 51.78 48.93 63.53 72.37 67.66 52.57 46.88 49.56 55.38

G/GM 56.89 76.27 65.17 60.07 80.02 68.62 72.24 45.58 55.90 63.23

CH

A/A 52.69 70.58 60.34 62.99 80.57 70.70 53.75 37.88 44.44 58.49

A/GB 58.76 71.46 64.49 66.62 79.88 72.65 54.09 42.02 47.29 61.48

A/GM 61.64 90.81 73.43 63.55 89.43 74.30 72.78 39.68 51.36 66.36

G/A 59.35 74.49 66.07 66.31 81.43 73.10 55.97 41.50 47.66 62.28

G/GB 59.35 74.49 66.07 66.31 81.43 73.10 55.97 41.50 47.66 62.28

G/GM 61.70 91.45 73.69 63.57 89.76 74.43 72.84 39.49 51.21 66.44

EN

A/A 65.83 75.91 70.51 65.79 77.69 71.24 55.00 43.17 48.37 63.37

A/GB 64.92 77.53 70.67 64.25 78.95 70.85 56.48 41.69 47.97 63.16

A/GM 70.69 91.21 79.65 65.46 85.61 74.19 74.71 42.55 54.22 69.35

G/A 67.73 77.25 72.18 66.42 78.01 71.75 56.16 44.51 49.66 64.53

G/GB 65.65 78.26 71.40 64.36 79.09 70.97 57.36 42.23 48.65 63.67

G/GM 71.18 91.24 79.97 65.81 85.51 74.38 74.93 43.09 54.72 69.69

Table 10.7: Supplementary results on the test sets with different configurations
(Config) for parse quality and mention candidates (parse/mentions). Parse
quality can be automatic (A) or golden (G); and mention candidates can
be automatically identified (A), golden mention boundaries (GB) or golden
mentions (GM).

experiments investigate two key aspects of any coreference resolution system:

the parse feature and the mention candidates that are given to the clustering

procedure. In these results, we alternate the parse feature between the official
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automatic parse (A in the results table) and the golden parse from OntoNotes

(G). Regarding mention candidates, we use three different strategies: automatic

mentions (A), golden mention boundaries (GB) and golden mentions (GM).

Automatic mentions are the ones detected by our system. Golden mention

boundaries comprise all noun phrases in the golden parse tree, even when the

automatic parse is used as input feature. Golden mentions are all non-singleton

mentions, i.e., all mentions that take part in some entity cluster. It is important

to notice that golden mention information is much stronger than just golden

boundaries.

By observing Table 10.7, it is clear that the most beneficial information

is golden mentions (compare A/GM to A/A rows, for each language). The

mean F-score over all languages when using golden mentions is almost 8

points higher than the official score. These results are not surprising since

to identify non-singleton mentions accounts to a significant part of the final

task. Golden mention boundaries (A/GB) increase the Chinese score by almost

3 points. Conversely, for the other two languages, the results are decreased

when this information is given. This is probably due to parameter tuning,

since any additional information potentially changes the learning problem and,

nevertheless, we use exactly the same three models – one per language – to

produce both the official and the supplementary results. One can observe, for

instance, that the recall/precision balance greatly varies among the different

configurations in these experiments. The golden parse feature (G/A) causes

big improvements on all languages, specially Chinese.
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