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Entropy-Guided Feature Generation

A task dataset includes features that usually are either (i) naturally

included in the very phenomenon of interest, like words in NLP tasks; (ii)

simply derived from other basic features, like word capitalization patterns;

or (iii) automatically generated by external systems, like part-of-speech tags.

We denote this dataset-provided information as basic features. At the same

time, most structure learning algorithms are based on linear models, since

such algorithms have strong theoretical guarantees regarding their prediction

performance and, moreover, are computationally efficient. However, linear

models on basic features alone do not capture all the relevant relationships

among these variables.

For instance, dependency parsing is highly non-linear on the basic

features. One important basic feature for DP is the POS of words. By observing

the example in Figure 1.1, one can notice that both nouns system and result

are modifiers of the verb achieves. This is a very strong pattern in DP and,

thus, the binary feature modifier is a noun AND head is a verb is very

important. This feature is a conjunction of two basic features, namely the

modifier POS tag and the head POS tag. On the other hand, taking each of

these basic features independently is not informative, since most POS tags

can be head or modifier of many dependencies, depending on the context. For

instance, the nouns system and results, that modify the main verb, are also

heads of the pronoun Our and the adjective best, respectively.

Conjoining basic features to derive new features is a common way

to introduce nonlinear contextual patterns into linear models. Frequently,

a domain expert manually generates feature templates by conjoining the

given basic features in order to capture discriminative contextual patterns.

MSTParser, for instance, uses 21 feature templates that were manually created

from basic features. These templates include from one to six features, indicating

that the trained model is highly non-linear on the basic input features.

In this chapter, we describe the proposed entropy-guided feature

generation method for structure learning. EFG automatically derives a set of

basic feature conjunctions, which we denote feature templates. These templates
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are later used to generate the derived features, which comprise the joint

feature vectors Φ(x,y) used in the structured modeling described earlier. EFG

conjoins basic features that are useful to predict local variables.

3.1

Basic Dataset

As seen in the previous chapters, in dependency parsing, features are

functions of dependency tree edges. Given an edge e = (i, j) linking token xi to

token xj, let us examine only its categorical basic features. Assume there are K

basic features given by the vectorΨ(e) = (ψ1(e), . . . , ψK(e)). For k = 1, . . . , K,

we have that ψk(e) ∈ Xk, where Xk is the finite set of possible values for the

basic feature ψk. Additionally, we associate each edge e = (i, j) with a binary

label y(e), such that y(e) = 1 if xi is the head of xj and y(e) = 0 otherwise.

Using all edges in the training set D, we obtain the basic dataset

D = {(Ψ(e), y(e))} comprising the basic feature vectors of edges along with

their binary labels. In Table 3.1, we depict an example of such a dataset for

the sentence in Figure 2.1. This example includes the following basic features:

head-word is the word of the head token xi; mod-word is the word of the modifier

token xj; head-pos is the POS tag of xi; mod-pos is the POS tag of xj; dist is

the distance between xi and xj in tokens; and side is the side of xj in relation

to xi.

e Ψ(e)
y(e)

i j head-word mod-word head-pos mod-pos dist side

0 1 root John root noun 1 right 0
0 2 root saw root verb 2 right 1
0 3 root Mary root noun 3 right 0
1 2 John saw noun verb 1 right 0
1 3 John Mary noun noun 2 right 0
2 1 saw John verb noun 1 left 1
2 3 saw Mary verb noun 1 right 1
3 2 Mary saw noun verb 1 left 0

Table 3.1: Basic dataset for the sentence in Figure 2.1.

The entropy guided feature generation method automatically generates

feature templates for a structure learning problem by conjoining basic features

that are highly discriminative together. EFG is based on the conditional

entropy of the local decision variables y(e) given the basic features Ψ(e).

3.2

Conditional Entropy and Information Gain

Entropy is a measure of the uncertainty in a random variable outcome.

Given a binary random variable y and the probability Pr[y = 1] = p, the
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entropy of y is given by

H(y) = −p log
2
p− (1− p) log

2
(1− p),

where 0 log
2
(0) is defined to be equal to 0. In Figure 3.1, we plot the entropy

H(y) versus p. One can see that the maximum entropy is achieved when

p = 0.5, that is, when the uncertainty on the outcome of y is maximum.
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Figure 3.1: Entropy H(y) of a random binary variable y versus Pr[y = 1] that
is denoted by p.

Given the basic dataset D, one can easily estimate p as the fraction of

edges in which y(e) is equal to 1. Then, the empirical entropy of y on D is

denoted by HD(y) and can be calculated using the estimated probability of

y = 1 on the given dataset. In the following, we simply use the term entropy

to denote empirical entropy.

Considering the basic dataset D, we define the conditional entropy of y

given the basic feature ψk as

HD(y|ψk) =
∑

σ∈Xk

|Dk,σ|

|D|
·HDk,σ

(y),

where Dk,σ is the subset of edges in D whose feature ψk is equal to σ, that is,

Dk,σ = {(Ψ(e), y(e)) ∈ D | ψk(e) = σ}. The conditional entropy HD(y|ψk)

is the entropy of y on D when an additional information (feature ψk) is

given. From Gibb’s inequality, it follows that HD(y|ψk) ≤ HD(y), that is,

the knowledge of any additional information can only reduce uncertainty.

Additionally, the information gain (IG) of ψk on D is given by

IGD(ψk) = HD(y)−HD(y|ψk),

which corresponds to the reduction on the entropy of y if feature ψk is

known. Hence, IG helps to select high discriminative features with respect

to a target variable. It is straightforward to generalize information gain to
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a subset of features. Thus, we have a valuable metric to measure nonlinear

feature conjunctions and select the most informative ones.

Unfortunatelly, to analyse all possible feature conjunctions is practically

infeasible and, moreover, to find the best conjunctions is an NP-complete

problem (Hyafil and Rivest, 1976). On the other hand, decision tree (DT)

learning provides a simple yet effective algorithm that generates different

subsets of informative features, greedily guided by some informativeness

metric. The most popular DT algorithms (Quinlan, 1992; Su and Zhang, 2006)

use information gain as that metric. Therefore, we use decision tree induction

to generate feature combinations that are highly discriminative together.

3.3

Decision Tree Learning

Decision tree learning is one of the most widely used machine learning

algorithms. It performs a partitioning of the training set using principles of

information theory. The learning algorithm executes a general to specific search

of a feature space. The most informative feature is added to a tree structure at

each step of the search. Information gain, which is based on the data entropy,

is normally used as the informativeness measure. The objective is to construct

a tree, using a minimal set of features, that efficiently partitions the training

set into classes given by the prediction variable values. Usually, after the tree

is grown, a pruning step is carried out in order to avoid overfitting. In Figure

3.2, we present a decision tree learned from a basic dataset. Each internal node

in the DT corresponds to a feature, each leaf node has a label value (0 or 1,

in the binary case), and each edge is labeled with a value of the source node

feature.

Figure 3.2: A decision tree.

The most popular decision tree learning algorithms (Quinlan, 1992; Su

and Zhang, 2006) use information gain to select the most informative feature.

Hence, they provide a quick way to obtain entropy guided feature selection.
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We propose a new automatic feature generation method for structure learning

algorithms. The key idea is to use decision tree induction to conjoin the basic

features. One of the most used algorithms for DT induction is C4.5 (Quinlan,

1992). We use Quinlan’s C4.5 system to obtain the required entropy guided

selected features.

3.4

Feature Templates

The first step of the proposed method is to train a decision tree on the

basic dataset. For dependency parsing, the decision variable indicates whether

an edge links a token to its corresponding head token. We use the edges

of all training examples, that is, for each training sentence, we generate an

example for each candidate edge. Thus, the learned DT predicts whether an

edge corresponds to a correct dependency or not.

Our method uses a very simple decomposition scheme to extract feature

templates. This decomposition is based on a depth-first traversal of the learned

DT and is recursively defined as follows. For each internal node that is visited,

a new template is created by conjoining the node feature with its parent

template. Since we aim to generate feature templates – conjunctions of basic

features not including feature values – we disconsider the feature values and

the decision variable values in the DT. Thus, we do not make use of edge labels

nor leaf nodes. Figure 3.3 illustrates our method. The tree in the left side of

this figure is the skeleton obtained from the decision tree in Figure 3.2 by

discarding the aforementioned pieces of information. Then, it remains a tree

whose nodes are basic features with high discriminative power. The generated

templates are listed in the right side of the figure. In other words, we create

a template with the features in each path from the root node to every other

internal node in the given decision tree. Additionally, we eliminate template

duplicates.

Decision Tree Skeleton Generated Feature Templates

dist

dist side

dist mod-pos

dist mod-pos head-pos

dist mod-pos side

Figure 3.3: Feature template induction from a decision tree.

Since the DT learning algorithm greedily chooses the feature with the
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highest information gain at each step, our method generates feature templates

with high discriminative power based on entropy. This method is able to

provide a very large number of templates. Hence, to limit the maximum

template length, we use C4.5 pruned trees and additionally limit the maximum

template length when traversing the DT. This parameter is clearly task

dependent and must be calibrated by cross-validation or by means of a

development set.

3.5

Generated Features

Finally, we employ the generated templates to induce all binary

contextual features that occur in the structured dataset D. For each template,

we generate several binary features, each one corresponding to the assignment

of valid values to the template features. These derived features comprise the

structured model feature vectors Φ(x, i, j) = (φ1(x, i, j), . . . , φM(x, i, j)). For

instance, one of the derived features for the dist mod-pos side template in Figure

3.3 is given by

φm(x, i, j) =







1 if dist=2 and mod-pos=noun and side=left,

0 otherwise.

Observe that this feature captures a context that is not used by the DT

in Figure 3.2. Indeed, we drop the DT feature values when generating the

templates and then instantiate these templates based on every context that

occurs in the dataset.

3.6

Empirical Results

In this section, we compare the performances of systems based on the

proposed EFG method to a system based on the best available set of manual

templates for dependency parsing. For this task, our systems do not make use

of second- or third-order features. Thus, we use only first-order features to

perform this comparison. In Table 3.2, we show the performance of an SPerc

system using the best available manual templates along with the performances

of two systems based on EFG. First, let us focus on a comparison of EFG

to manual templates under same conditions, i.e., same basic features, same

learning algorithm, and same datasets. We use the SPerc learning algorithm

and the first-order features provided in the templates from McDonald et al.

(2006). The first row of Table 3.2 shows the performance when using the
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Basic Feature
UAS

Features Generation

1st order Manual 90.06
1st order EFG 90.28

1st+ck+clause EFG 92.66

Table 3.2: Performances of EFG and manual templates on the Portuguese
CoNLL-2006 dependency parsing dataset.

manual templates; and, the second row presents the performance when using

EFG to automatically generate non-linear features. EFG outperforms manual

templates by 0.22 on UAS. This is not a very big improvement, but shows

that EFG is able to automatically generate complex feature templates that

are competitive, and even better, than state-of-the-art templates that require

substantial human effort.

Fernandes et al. (2010b) present text chunking and clause identification

for the Bosque corpus, which comprises the Portuguese CoNLL-2006 dataset.

We provide these two basic pieces of information as basic features to the EFG

method, as well as the basic features used earlier, and train an SPerc model

using the provided templates. The performance obtained by this system is

shown in the last row of Table 3.2. We can see that we achieve an impressive

improvement around 2.4% on UAS. Moreover, this improvement is achieved

by simply including two basic features, without any human effort, as would be

required if one used manual templates.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA




