
5

Prediction Problems

In this chapter, we discuss prediction problems, a component that plays

a central role in the SL framework. The prediction problem for an input x in

the SL formulation has the form

arg max
y∈Y(x)

〈w,Φ(x,y)〉.

This is a very general form for an optimization problem. In fact, the

only requirement is that the objective function be linear on some feature

representation. On the other hand, the joint feature representation has no

explicit restriction and the output space is also arbitrary. Thus, ESL is just a

framework for learning parameters for general linear predictors. And, there are

several learning algorithms for this framework with strong guarantees regarding

both prediction performance and learning time. In Table 5.1, we present a list

of SL problems along with the corresponding output structures and prediction

problems.

Task Output Structure Prediction Problem

Dependency parsing Rooted tree Maximum branching

Part-of-speech tagging Sequence Longest path on DAG

Text chunking Sequence Longest path on DAG

Quotation extraction Segmentation Weighted interval scheduling

Coreference resolution Clustering Latent maximum branching

Table 5.1: List of tasks and the corresponding output structures and prediction
problems.

The output space Y(x) is represented by task-specific hard constraints

that are embedded in the prediction algorithm. Hence, Y(x) can comprise

any constraint that is efficiently handled by the optimization algorithm. For

most SL problems, these constraints are difficult to be learned from data;

or, at least, it is unnecessary to do so, since they are never violated in any

example. For instance, in dependency parsing, the learning algorithm expends

no effort on estimating parameters to avoid cycles in the output structure. The

prediction algorithm never extracts cycles because it is constrained to extract

only trees. This is a very flexible way to represent the valid prediction outputs.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 48

Additionally, it allows the modeler to make use of countless theoretical and

practical results from combinatorial optimization.

The second arbitrary component in the prediction problem is the joint

feature vector representation Φ(x,y) = (φ1(x,y), . . . , φM(x,y)). Each feature

function φm(x,y) is called global feature because it gives a value regarding the

whole output structure y. However, global features are usually factored along

the output structure and, consequently, the scoring function 〈w,Φ(x,y)〉 is

factored in the same way. Otherwise, the prediction algorithm would need to

enumerate all possible outputs to determine the best scoring one. In multiclass

classification, for instance, there is no feature factorization and the prediction

algorithm just enumerates all classes, computes their scores and picks the

highest scoring one. That is feasible when the number of classes is limited,

which is the case for multiclass classification. The feature factorization defines

the dependencies among the output variables. For dependency parsing, features

are factored on dependency edges (i, j) and a tree score is given just by

independently summing the scores of its edges. Thus, the prediction problem

is equivalent to the maximum branching problem.

In the next sections, we briefly describe some important structures

along with the proposed feature factorizations and the resulting prediction

algorithms. These aspects are discussed later in more details.

5.1

Rooted Tree

Dependency parsing consists in predicting a rooted tree underlying a

given sentence. The nodes of this tree are fixed: the sentence tokens. Let

x = (x0, x1, . . . , xN) be an input sequence, where xt is the t-th token and

x0 is a special node that is always the root of the tree. The prediction output

space Y(x) is the set of all rooted trees whose nodes are tokens in x and the

root node is x0.

In this work, we use the feature factorization proposed by McDonald

et al. (2005), which defines features over independent edges. In this case, the

prediction problem is efficiently solved by the Chu-Liu-Edmonds algorithm

(Chu and Liu, 1965; Edmonds, 1967). However, more complex models are

possible. McDonald and Pereira (2006) propose features that depend on

more than two tokens. More specifically, they use the so called second-order

features that depend on two dependency edges (i, j) and (i, k). Koo et al.

(2010) further extends this model by introducing third-order features that

also depend on two edges, but include dependencies on grandparent tokens.

They show significant improvements on parsing performance by including

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 49

high-order features. However, the complexity of the prediction algorithm also

grows. In fact, the prediction problem becomes NP-hard when these features

are considered. Thus, they solve the problem by approximation algorithms.

5.2

Sequence Labeling

Sequence labeling Dietterich (2002) is to find a sequence of labels y =

(y1, . . . , yN), where yt ∈ S, for a given input sequence of tokens x = (x1, . . . ,

xN). That is, each token xt is annotated with a label yt ∈ S, where S is a fixed

set of labels. The prediction output space for an input x is simply the set of

all possible label sequences with length N , that is Y(x) = SN .

Collins (2002b) proposes a feature factorization for sequence labeling

problems that relies on a Markovian property. The best scoring label for a

specific token xt depends only on the label itself yt and the previous token

label yt−1. In this factorization, there are two types of features: Φobs(x, yt)

are observation features that depend only on the input x and individual

token labels; and Φ
trans(yt−1, yt) are transition features that depend on two

consecutive labels. The resulting prediction problem is reduced to the longest

path problem on a directed acyclic graph, which can be efficiently solved by a

dynamic programming algorithm.

5.3

Sequence Segmentation

Given a document, quotation extraction is to identify quotes and,

additionally, to associate each quote to its author. For a training example

(x,y), the input x is composed by a set of K candidate authors a =

{a1, . . . , aK} and a set of N candidate quotes q = {q1, . . . , qN}, where each

quote corresponds to a segment of the input document. The set of candidate

quotes can overlap each other, but the correct quotes do not. The output space

is thus all subsets of non-overlapping candidate quotes such that each selected

quote is associated to exactly one author.

Fernandes (2012) proposes a structure learning modeling for quotation

extraction in which features depend on the association of a quote to an

author. In that way, the prediction problem is to find non-overlapping segments

associated to authors whose weights are maximum. This problem is equivalent

to the weighted interval scheduling for which there is an efficient dynamic

programming algorithm.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 50

5.4

Clustering

Coreference resolution Pradhan et al. (2011) consists in identifying

mentions to real-world entities in a document and clustering mentions that

refer to the same entity. This task is usually split into two subtasks: mention

detection and mention clustering. Mention detection is easily performed by

recovering all noun phrases in the document. The most interesting task is

mention clustering. The prediction output space for this task comprises all

possible clustering of the given mentions. The number of clusters is unknown.

Usually, coreference systems use features that depend on pairs of

mentions. We follow this idea, but we introduce a novel modeling for

coreference resolution. We assume that an entity cluster is represented by a

rooted tree, denoted coreference tree. A directed edge (mi,mj) from mentionmi

to mention mj in this tree indicates that mj is a reference to the more general

mention mi. In that way, we model the prediction problem as a maximum

branching problem on the graph whose nodes are the given set of mentions.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA




