
6

Dependency Parsing

Dependency parsing is to identify a rooted tree underlying a sentence.

The nodes in this tree are the sentence tokens. The dependency tree represents

the syntactic dependencies among the sentence tokens.

6.1

Task Formalization

Let x = (x0, x1, . . . , xN) be a sentence, where xi is the i-th token and

x0 is an artificial token which is always the root of the dependency tree. For

a given input sentence x, the prediction output space Y(x) is the set of all

rooted trees whose nodes are the tokens in x and the root node is x0. For any

dependency tree y ∈ Y(x), we say that (i, j) ∈ y whenever token xj modifies

the head token xi in the tree y.

6.2

Feature Factorization

We follow McDonald et al. (2005, 2006); McDonald and Pereira (2006)

and factorize the joint feature vectorΦ(x,y) along the edges of the dependency

tree y. In that way, an edge (i, j) connecting xi to xj is represented by a vector

Φ(x, i, j) = (φ1(x, i, j), . . . , φM(x, i, j)) of M binary features. These features

describe the dependency between the head token xi and the modifier token xj.

Then, the global feature vector is

Φ(x,y) =
∑

(i,j)∈y

Φ(x, i, j),

which gives the frequency distribution of the local features in the tree y.

6.3

Prediction Problem

The prediction problem for this DP modeling is reduced to the maximum

branching problem, which can be efficiently solved by Chu-Liu-Edmonds

algorithm. In the following, we just summarize this result.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 52

The objective function of the prediction problem is

s(x,y) = 〈w,Φ(x,y)〉.

Using the aforementioned factorization, it is easy to see that

s(x,y) =
∑

(i,j)∈y

〈w,Φ(x, i, j)〉,

which is just the sum of the edge weights, that is,

s(x,y) =
∑

(i,j)∈y

s(i, j),

where s(i, j) = 〈w,Φ(x, i, j)〉 gives the weight of edge (i, j). The objective

function of the prediction problem is equivalent to the tree weight given by

this function. Thus, we can generate a maximum branching instance using

s(i, j) as edge weight function. In that way, to solve this instance is equivalent

to solve the DP prediction problem in the ESL framework.

We use a loss function that just counts how many predicted edges are

not correct, that is ℓ(y,y′) =
∑

(i,j)∈y′ 1[(i, j) /∈ y].

6.4

Basic Features

We use the same basic features proposed by McDonald et al. (2006). For

a given edge (i, j), we have the following feature list:

– Side – Whether xj is on the left or on the right side of xi in the input

sentence.

– Distance – How many tokens there are between xi and xj.

– Word – Surface representation of both xi and xj.

– POS – Part-of-speech tag of xi, xi−1, xi+1, xj, xj−1 and xj+1.

– POS Between – Part-of-speech tag of all tokens between xi and xj.

– Feats – Syntactic and morphological features that are included in the

CoNLL-2006 dataset. We include these features for xi, xj and all tokens

that occur between xi and xj.

Fernandes et al. (2010b) present text chunking and clause identification

for the Bosque corpus, which comprises the Portuguese CoNLL-2006 dataset.

We perform additional experiments using basic features based on this

information. These features are the following:

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 53

– Chunk Tag – The chunk tag, in IOB2 style, for xi and xj.

– Start Clause – Indicates whether a token starts a clause.

– End Clause – Indicates whether a token ends a clause.

6.5

Empirical Results

The CoNLL-2006 (Buchholz and Marsi, 2006) provided a dependency

parsing dataset that is derived from Bosque (Freitas et al., 2008), a Portuguese

corpus comprising European and Brazilian news articles. In Table 6.1, we

provide basic statistics about this dataset.

Sentences Tokens

Train 8,546 207,000

Test 241 5,838

Table 6.1: Bosque dependency parsing dataset statistics.

In this section, we compare the performances of systems based on the

proposed ESL framework with state-of-the-art systems. Our systems use only

first-order features, while the best performing systems for this task use second-

and third-order features. In Table 6.2, we show the performances of several

systems along with two systems based on ESL. The two first rows in the

System
Learning Basic Feature

UAS
Algorithm Features Generation

Dual Decomposition MIRA
3rd order

Manual
93.03

2nd order 92.57

MSTParser MIRA
2nd order

Manual
91.36

1nd order 90.68

SPerc SPerc 1st order Manual 90.06

ESL SPerc
1st order EFG 90.28

1st+ck+clause EFG 92.66

Table 6.2: Performances of ESL and state-of-the-art systems on the Portuguese
CoNLL-2006 dependency parsing dataset.

table present the system results by Koo et al. (2010). This system uses an

algorithm based on dual decomposition (DD) to approximately solve the

NP-hard optimization problem when second- and third-order features are

considered. The DD algorithm provides a certificate of optimality for 99.65%

of the test examples. The third and fourth rows in the results table show

the results of MSTParser with first- and second-order features (McDonald

et al., 2005, 2006; McDonald and Pereira, 2006). As we showed before, our ESL

system outperforms an SPerc with the first-order templates from McDonald

et al. (2006). When we provide text chunking and clause features (Fernandes

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA



Entropy Guided Feature Generation for Structure Learning 54

et al., 2010b) to our ESL system, we achieve a performance comparable with

systems based on second- and third-order features. Moreover, this improvement

is achieved by simply including two basic features, without any human effort,

as would be required if one used manual templates.

We use 10% of the training data as validation set in order to pick the ESL

meta-parameters. The loss weight C is set to 300 and the number of epochs is

10. We generate templates containing from 2 to 4 basic features.

DBD
PUC-Rio - Certificação Digital Nº 0812627/CA




