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Part-of-Speech Tagging

Part-of-speech tagging is to categorize words according to its part of

speech in a given sentence. In Figure 7.1, we present the sentence Flies like

flowers with the corresponding part of speech of each word. The task is to give

Word Flies like flowers

POS noun verb noun

Figure 7.1: Part-of-speech tagging example.

each word a tag according to its part of speech. The set of tags, or simply tagset,

is fixed within a particular POS tagging task. However, different applications

or datasets provide different tagsets, mainly varying POS granularity. For

instance, some POS tagsets include only one broad category for verbs, while

others include categories like main verb, auxiliary verb, among others. The

main difficult of this task is ambiguity, since one word can have different

POS tags depending on the context. For instance, the words Flies and flowers

can act as verbs in other contexts; and the word like can act as adverb,

noun, conjunction, among several other parts of speech. POS provides basic

morphological and syntactic information to more complex NLP tasks. It can

be even directly used to solve simple information extraction tasks.

We use a general sequence labeling modeling to approach POS tagging. In

Section 7.1, we formalize this general task. In order to apply ESL framework to

this problem, we still need to define the factorization of the global feature vector

Φ(x,y) along the output sequence y, and the resulting prediction problem.

We describe these two aspects in Section 7.2 and Section 7.3, respectively.

In Section 7.5, we present empirical results of two ESL applications for POS

tagging.

7.1

Task Formalization

The general task of sequence labeling is to find a mapping from an input

token sequence x = (x1, . . . , xN) to a label sequence y = (y1, . . . , yN), where

yt ∈ S. That is, each token in x is tagged with a label, or tag, from a given
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set S. The output space Y(x) for an input sequence x is the set of all possible

sequences of N labels, i.e., Y(x) = SN . Part-of-speech tagging is an instance

of sequence labeling in which S is the given POS tagset.

7.2

Feature Factorization

We use the decomposition scheme from Collins (2002b). Each input

token xt is represented by a vector Φsurf(xt) = (φsurf
1 (xt), . . . , φ

surf
M (xt)) of

M binary features that we call surface features. For instance, some surface

features that are present – have value 1 – in the second token of the example

in Figure 7.1 are: the current word is like, the previous word is Flies,

and the previous word is capitalized. The number of such features in

a dataset with hundreds of thousands of tokens is huge, but just a dozen

are active on each token. For a given example (x,y), the surface features

depend only on the input x, which is fixed within the prediction problem.

To compose Φ(x,y), surface features are combined with the output labels

in y. Additionally, transition features within y are used to cope with label

interdependencies.

Each surface feature m ∈ {1, . . . ,M} is combined with every possible

label s ∈ S to generate the observation feature φobs
m,s(xt, yt) = φsurf

m (xt)·1[yt = s],

for a given token xt and its corresponding label yt. This observation feature

indicates whether both the surface feature m is present in token xt and the

token label yt is equal to s. Then, we can define the observation feature vector

for a token-label pair (xt, yt) as

Φobs(xt, yt) =
(

φobs
m,s(xt, yt)

)

m∈{1,...,M};s∈S
.

Furthermore, we combine these local vectors into the global observation feature

vector

Φobs(x,y) =
N
∑

t=1

Φobs(xt, yt),

which is the frequency distribution of the observation features in (x,y).

For each possible pair of labels s, r ∈ S, the transition feature

φtrans
s,r (yt−1, yt) = 1[yt−1 = s] · 1[yt = r] indicates whether two consecutive

labels yt−1 and yt are equal to s and r, respectively. The transition feature

vector is then defined as

Φtrans(yt−1, yt) =
(

φtrans
s,r (yt−1, yt)

)

s,r∈S
,

which is a unit vector whose non-zero position is the one corresponding to
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s = yt−1 and r = yt. The global transition feature vector is given by

Φtrans(y) =
T

∑

t=2

Φtrans(yt−1, yt),

which is the frequency distribution of the transitions in the output sequence

y. Finally, the global feature vector is simply the concatenation of the global

observation feature vector and the global transition feature vector, that is

Φ(x,y) =
(

Φobs(x,y),Φtrans(x,y)
)

.

7.3

Prediction Problem

The used feature factorization relies on a Markovian property. Thus, in

the prediction problem, the best scoring label for a specific token xt depends

only on its label yt and the previous token label yt−1. In that way, the prediction

problem can be reduced to a longest path problem on an weighted directed

acyclic graph (DAG), which can be efficiently solved by dynamic programming.

In Figure 7.2, we present an example of such DAG for a sentence with three

tokens and a tagset with 2 labels (a and b). This graph comprises one layer for

Figure 7.2: Illustrative directed acyclic graph for a sentence x = (x1, x2, x3)
and a tagset S = {a, b}. The continuous path (y1,b, y2,a, y3,a) corresponds to
the labeling y = (b, a, a).

each token xt in the input sentence. At every layer t, there is a node labeled

yt,s for each label s ∈ S. The node yt,s represents that the t-th token is tagged

as s, that is yt = s. For each pair of labels (s, r) ∈ S × S and each consecutive

layers t−1 and t, there is one directed edge (yt−1,s, yt,r) in the graph. The edge

(yt−1,s, yt,r) represents a transition from yt−1 = s to yt = r and its weight is

given by

s(s, r, xt) = 〈w
trans,Φtrans(s, r)〉+ 〈wobs,Φobs(xt, r)〉,

wherewtrans is the model parameter vector corresponding to transition features

and w
obs comprises the parameters for observation features.
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Each path from layer t = 1 to layer t = N corresponds to a possible

output y = (y1, . . . , yN) whose accumulated weight in the graph is

s(x,y) = 〈wobs,Φobs(x1, y1)〉+
N
∑

t=2

s(yt−1, yt, xt). (7-1)

By expanding the edge weight function in the formula above, we have that

s(x,y) =
N
∑

t=1

〈wobs,Φobs(xt, yt)〉+
N
∑

t=2

〈wtrans,Φtrans(yt−1, yt)〉.

And, by using the feature factorization described earlier, we can derive that

s(x,y) = 〈wobs,Φobs(x,y)〉+ 〈wtrans,Φtrans(x,y)〉

= 〈w,Φ(x,y)〉,

where w = (wobs,wtrans) is the complete model, that is the concatenation of

the observation and transition parameters. Thus, to find the longest path in

the aforementioned DAG is equivalent to solve the ESL prediction problem for

the presented sequence labeling modeling.

For sequence labeling, we use the loss function ℓ(y,y′) =
∑T

t=1 1[yt 6= y′t]

that counts the number of mislabeled tokens.

7.4

Basic Features

Our basic features for POS tagging are obtained from dos Santos and

Milidiú (2009a). We use the following features:

– Word: The surface form of a token;

– Prefix/Suffix: Word prefixes and suffixes up to 5-character long;

– Known Word Prefix: Adding (or subtracting) 5-character prefix (or

suffix) results in a known word, where known words are the ones that

occur in the training dataset;

– Known Word Bigram: Occurrence of the word before (or after) a specific

word in a given long list of word bigrams. For instance, for the English

language, if the word appears after to, then it is likely to be a verb in

the infinitive form;

– Word Window: Words of the previous two tokens and the next two

tokens.
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7.5

Empirical Results

We evaluate our system performances on two POS datasets: Mac-Morpho

(Alúısio et al., 2003), a Portuguese language corpus; and Brown (Francis and

Kučera, 1982), an English language corpus. In Table 7.1, we present some

statistics of these datasets. Both datasets are split into training and test

Dataset Language
Tagset Training Test

size Tokens Tokens

Mac-Morpho Portuguese 22 1,007,671 213,794

Brown English 182 950,975 210,217

Table 7.1: Basic statistics of the part-of-speech tagging datasets.

partitions. Brown and Mac-Morpho have relatively the same size, but Brown

includes a much larger tagset. Performance on POS tagging is reported on

simple token accuracy, that is the percentage of correctly tagged tokens among

all tokens.

7.5.1

Mac-Morpho Dataset

The best performing system on the Mac-Morpho dataset is the ETL

Committee (dos Santos and Milidiú, 2009a), an ensemble composed by 100

ETL models. We compare our system to this ensemble system and also to the

best single model ETL-based system. In Table 7.2, we depict the performance

of these systems. We notice that ESL reduces the accuracy error by 5.9% when

System Accuracy

ETL single model 96.75

ETL Committee 96.94

ESL 97.12

Table 7.2: Performances on the Mac-Morpho dataset.

compared to ETL Committee and by 11.4% when compared to the single model

ETL system. These are substantial improvements on this dataset, since there

is not much room for improvements.

Regarding ESL training meta-parameters, we use the following setting.

The number of epochs is 50 and the loss weight parameter C is set to 50. One

epoch corresponds to one complete pass over all examples in the training set.

The minimum and the maximum feature template length is set to 2.
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7.5.2

Brown Dataset

The best performing system on the Brown dataset is also ETL

Committee. Thus, in Table 7.3, we again present the performances of the

best single model ETL system, ETL Committee, and ESL. We notice that

System Accuracy

ETL single model 96.69

ETL Committee 96.83

ESL 96.72

Table 7.3: Performances on the Brown dataset.

ESL outperforms the single model ETL system, but does not outperform

ETL Committee. ETL Committee error is 3.4% smaller than ESL error.

Nevertheless, ESL is still competitive with state-of-the-art systems. Moreover,

we can also train ensembles of ESL models and probably have some gain in

performance.

We use the following values for ESL meta-parameters. The number of

epochs is 50 and the loss weight parameter C is set to 100. One epoch

corresponds to one complete pass over all examples in the training set. The

minimum and the maximum feature template length is set to 2.
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