
2. Background

Today’s web is filled with browser-based applications that are used regularly

by millions of users. Some applications have to deal with billions of server

requests on a daily basis, and these numbers keep growing. Such applications need

to be designed to scale, to expand onto improved and/or additional hardware, and

to do this transparently (or at the least without having to take down the application

for maintenance). The hardware that a web application runs on is an important

component when it comes to dealing with large-scale applications. Applications

such as Gmail, YouTube and Flickr that run across thousands of machines are

good examples since they require different types of hardware, e.g. web-servers,

databases, etc. However, as the number of users grows, the cost to keep the

application up and running increases dramatically. The cost for maintenance,

physical space, cooling, power, operations, increases for each server that is added

to the environment, even if its resources are not fully used.

With very large applications, such as YouTube, that typically have more than

2 billion videos watched in a month, the costs associated with maintaining the

required infrastructure is unpredictable. To manage this infrastructure, there are

basically two options:

1. To provide resources based on peak situations, which basically

means that, for the most part, resources will be idle;

2. Provide resources based on the average number of requests, which

means that in some situations the servers will be overloaded and the

quality of service will be affected.

None of the above alternatives is good from a business perspective. The first

one is very expensive, as the cost is basically associated with the price of hardware

itself, and not with its usage. In the second one, the quality of service may be

impacted, and, in the long run, it may signify loss of clients and/or business

opportunities.

In this scenario Cloud Computing appears as an interesting alternative, as its

“everything as a service” model provides an economically attractive solution to

demand variations.

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA

17

2.1 Cloud Computing Paradigms

For the purpose of this thesis, Cloud Computing is defined as an Internet-

based computing, where there is a large group of interconnected computers

(cloud), that share their resources, software, and information (computing), on

demand, according to the user needs [4]. Vaquero et al. attempt to pin down a

suitable definition for clouds that describes how they differ from grids. Their

proposed definition is thorough, but verbose:

“Clouds are a large pool of easily usable and accessible virtualized resources

(such as hardware, development platforms and/or services). These resources can be

dynamically reconfigured to adjust to a variable load (scale), allowing also for an

optimum resource utilization. This pool of resources is typically exploited by a

pay-per-use model in which guarantees are offered by the Infrastructure Provider

by means of customized SLAs.” [4]

In creating their definition, Vaquero et al. studied definitions from numerous

experts, which featured many attributes of cloud computing such as immediate

scalability, optimal usage of resources, pay-as-you-go pricing models, and

virtualized hardware and software.

Cloud computing is a paradigm shift following the shift from mainframe to

client–server in the early 1980s. Details are abstracted from the users, who no

longer have need expertise in, or control over, the technology infrastructure "in the

cloud" that supports them [5]. Cloud computing describes a new supplement,

consumption, and delivery model for IT services based on the Internet, and it

typically involves over-the-Internet provision of dynamically scalable and often

virtualized resources [6,7].

Cloud computing infrastructures are typically broken down into three layers

[4, 61]: “software”, “platform” and “infrastructure”. Each layer serves a different

purpose and offers different products to businesses and individuals around the

world, and, conversely, every layer can be perceived as a customer of the layer

below [61].

The Software as a Service (SaaS) layer offers service based on the concept of

renting software from a service provider, rather than buying it yourself. It basically

refers to providing on-demand applications over the Internet. The software is

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA

18

hosted on centralized network servers and made available over the web or, also,

intranet. Also known as “software on demand” it is currently the most popular type

of cloud computing by offering high flexibility, enhanced scalability and less

maintenance. Yahoo mail, Google docs, Flickr, Google Calendar are all instances

of SaaS. With a cloud-based email service, for example, all that one has to do is

register and login to the central system to start to send and receive messages. The

service provider hosts both the application and data, so the end user is free to use

the service from anywhere. SaaS is very effective in lowering the costs of business

as it provides the business an access to applications at a cost normally less

expensive than a licensed application fee. This is only possible due to its monthly

fees based revenue model. With SaaS, users no longer need to worry about

installation or upgrades [62].

Platform as a Service (PaaS) offers a development platform for developers.

End users write their own code and the PaaS provider uploads that code and

presents it on the web. SalesForce.com’s is an example of PaaS. PaaS provides

services to develop, test, deploy, host and maintain applications in the same

integrated development environment. It also provides some level of support for the

design of software applications. Thus, PaaS offers a faster and usually cost

effective model for software application development and deployment. The PaaS

provider manages upgrades, patches and other routine system maintenance. PaaS is

based on a metering or subscription model so users only pay for what they use.

Users take what they need without worrying about the complexity behind the

scenes [42].

There are basically four types of PaaS solutions – social application

platforms, raw compute platforms, web application platforms and business

application platforms [43]. Facebook is a type of social application platform

wherein third parties can write new applications that are then made available to end

users.

The final layer in the cloud computing stack is the infrastructure.

Infrastructure as a Service (IaaS) is the process in which computing infrastructure

is delivered as a fully outsourced service. Some of the companies that provide

infrastructure services are IBM, Amazon.com, among others. Managed hosting and

provision of development environments are the services included in the IaaS layer.

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA

19

The user can buy the infrastructure according to his or her requirements at any

particular point of time, instead of buying an infrastructure that may not be used

for months. IaaS operates on a “Pay as you go” model, ensuring that the users pay

for only what they are using. Virtualization enables IaaS providers to offer almost

unlimited instances of servers to customers, and make use of the hosting hardware

cost-effective. IaaS users enjoy access to enterprise grade IT Infrastructure and

resources, that might be very costly if otherwise purchased. Thus, dynamic scaling,

usage based pricing, reduced costs and access to premium IT resources are some of

the benefits of IaaS. IaaS is also sometimes referred to as Hardware as a Service

(HaaS). An Infrastructure as a Service offering also provides maximum flexibility

because just about anything that can be virtualized can be run on these platforms.

This is perhaps the biggest benefit of an IaaS environment. For a startup or small

business, one of the most difficult things to do is keep capital expenditures under

control. By moving the computational infrastructure to the cloud, one has the

ability to scale up and down as needed.

In next section, we detail the Amazon Web Services Cloud Platform, as well

as its main services, that provided the basic infrastructure for the video processing

architecture proposed in this thesis.

2.2 Amazon Web Services Platform

Amazon Web Services (AWS) [48] is a group of cloud-based services

provided by Amazon that differs from traditional hosting since its resources are

charged by actual usage. These services provide cloud-based computation, storage

and other functionality that enable organizations and individuals to deploy

applications and services on an on-demand basis and at commodity prices [61].

The AWS platform is composed by several services that complement one another.

Elastic Compute Cloud (EC2), for processing, the Simple Storage Service (S3), for

binary storage, SimpleDB, for structured data storage, Relational Database Service

(RDS), for relational databases, Cloud Front, for content delivery, are examples of

such services. For the purposes of this project, EC2 and S3 are the most relevant

services.

 Amazon EC2 is a web service interface that provides resizable computing

capacity in the cloud. Based on IaaS model, it allows a complete control of

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA

20

computing resources and reduces the time required to obtain and boot new server

instances. Users of EC2 can launch and terminate server instances on a matter of

minutes, as opposed to delays of several hours, days or weeks, typical of traditional

hardware solutions. This feature is particularly interesting because it allows

applications to quickly scale up and down their processing resources, as computing

requirements change, while in the traditional hardware approach, it can take

several weeks or even months to get a new server running.

Amazon EC2 provides developers with two APIs for interacting with the

service, allowing intances administration operations, such as start, stop, reboot,

query information, etc. One is the Query API in which operations send data using

GET or POST methods over HTTP or HTTPS. The other is the SOAP [46] API in

which operations send data using SOAP 1.1 over HTTPS.

The main concept behind EC2 is that of a server instances [8]. There are a

number of different types of instances that users can choose from, divided into six

categories: standard, micro, high-memory, high-CPU, cluster and cluster-GPU.

Each type has several subtypes, with various levels of processing power, memory

and storage, and users can choose between them according their needs.

Because AWS is built on top of heterogeneous hardware processing power, a

standard measure Amazon EC2 Compute Units is used. One EC2 Compute Unit

provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007

Xeon processor. [9].

The storage provided on an instance (referred to by Amazon as “instance

storage”) is volatile. Data will survive the instance rebooting, either intentionally

or accidentally, but it will not survive an underlying hard drive failing or an

instance being terminated. It is also possible to choose a non-volatile storage for

the instance, called Elastic Block Storage (EBS). Amazon EBS allows users to

create storage volumes from 1 GB to 1 TB that can be mounted as devices by

Amazon EC2 instances. Multiple volumes can be mounted to the same instance.

Using an EBS as instance storage, users can temporally stop their instances,

without data loss.

The EC2 Instances are created by launching machine images known as

Amazon Machine Images (AMI) [47], which contain the operating system that will

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA

21

be launched on the instance, along with software applications and their

configuration. AMIs are stored on Amazon S3 and Amazon provides a number of

pre-bundled public AMIs (with Linux, UNIX or Windows as the OS), that can be

immediately launched by users, and do not require specific configuration.

Users can also create their own custom AMIs (private AMIs), either from

scratch or using a public AMI as base. Private AMIs are created by a process

called bundling, in which a machine image is compressed, encrypted and split, the

parts of which are then uploaded to Amazon S3.

EC2 provides the ability to place instances in multiple locations. EC2

locations are composed of Regions and Availability Zones. Regions consist of one

or more Availability Zones, are geographically dispersed. Availability Zones are

distinct locations that are engineered to be insulated from failures in other

Availability Zones and provide inexpensive, low latency network connectivity to

other Availability Zones in the same Region [61].

The Amazon S3 service provides a simple web service interface that can be

used to store and retrieve data on the web, and provides a scalable data storage

infrastructure [70]. It is designed to make storing and retrieving data on AWS as

simple as possible. Data is stored using a straightforward flat model, on top of

which users can build their own storage structures using hierarchies. S3 also

features a simple, yet versatile, access control system, where objects can be made

private, public or be made accessible by certain groups of users.

The two main concepts of S3 are buckets and objects [61]. Buckets are

containers for data objects. All objects stored on S3 are stored in buckets. An

object consists of four components: a value (the data being stored in that object), a

key (the unique identifier for that object), metadata (additional data associated with

the object) and an access control policy.

Each bucket has a name that is completely unique within S3. Bucket names

are directly mapped to URLs for addressing data stored on S3. If a bucket is named

cloudencoding then it can be addressed with the URL

http://cloudencoding.s3.amazonaws.com. This URL can be appended with the

name of an object to create an address for any object stored on S3.

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA

22

The other main concept of S3 is an object. Object sizes vary from one byte to

five gigabytes. There is no limit to the number of objects that a user can store on

S3 and no limit to the number of objects that can be stored in a bucket. A bucket

can be stored in one of several Regions. Users can choose a Region to optimize

latency, minimize costs, or address regulatory requirements [61, 70].

S3 objects are redundantly stored on multiple devices across multiple

facilities in an Amazon S3 Region. To help ensure durability, Amazon S3 PUT and

COPY operations synchronously store your data across multiple facilities before

returning. Once stored, Amazon S3 maintains the durability of your objects by

quickly detecting and repairing any lost redundancy. Amazon S3 also regularly

verifies the integrity of data stored using checksums. If corruption is detected, it is

repaired using redundant data. In addition, Amazon S3 calculates checksums on all

network traffic to detect corruption of data packets when storing or retrieving data

[70].

The key is the name of the object and must be absolutely unique within the

bucket that contains the object. Keys can be any size from one byte to 1,024 bytes.

Keys can be listed by their bucket and a prefix. This allows users to use common

prefixes to group together their objects into a hierarchy, meaning that the flat

storage model of S3 buckets can then be turned into a directory-like model for

storing data. Object keys can also be given suffixes, like .jpeg or .mpeg, to help

make the key more.

The metadata of an object is a set of key/value pairs and is divided into two

types: system metadata and user metadata. System metadata is used by S3 while

user metadata can be any key/value pair defined by the user. User metadata keys

and values can be any length, as long as the total size of all metadata (system and

user) for an object is less than two kilobytes.

Access control on objects is managed by access control lists (ACL). Every

object, as well as every bucket, has an ACL. When a request is made to S3, it

checks the ACL of the object or bucket to check if the requester has been granted

permission. If the requester is not authorized to access the object then an error is

returned by S3. There are a number of different types of groups that can be granted

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA

23

permissions and a number of different permissions, such as READ, WRITE and

FULL CONTROL.

S3 provides two APIs for making requests, the first uses a REST protocol

and the second uses SOAP. The REST API uses standard HTTP headers and status

codes, with some additional headers added in by S3 to increase functionality.

Amazon S3 also has the option of the Reduced Redundancy Storage (RRS)

that enables customers to reduce their costs by storing non-critical, reproducible

data at lower levels of redundancy than Amazon S3’s standard storage. It provides

a cost-effective solution for distributing or sharing content that is durably stored

elsewhere, or for storing thumbnails, transcoded media, or other processed data

that can be easily reproduced. The RRS option stores objects on multiple devices

across multiple facilities, providing 400 times the durability of a typical disk drive,

but does not replicate objects as many times as standard Amazon S3 storage, and

thus is even more cost effective [70].

The Amazon AWS Platform also provides several additional services, as

previously mentioned, which are not the focus of this research. One of them is the

Elastic Map-Reduce, an implementation of Map-Reduce [10] algorithm built on

top of the basic AWS infrastructure blocks (EC2 and S3). This feature is

particularly interesting because EC2 and S3 alone, are not sufficient to provide

efficient and scalable high performance processing architecture. To achieve these

goals, one has to build applications that are able to take advantage of the

characteristics of IaaS infrastructures, for example, the ability to automatically start

and stop machines according to processing demands, or the ability to use several

machines to simultaneously process parts of a content. One paradigm that deals

with these issues is the Map-Reduce, detailed in the following section.

2.3 The Map-Reduce paradigm and Distributed Data Processing

The distribution of tasks in a cluster for parallel processing is not a new

concept, and there are several techniques that use this idea to optimize the

processing of information [49, 50, 51]. The Map-Reduce paradigm [10], for

example, is a framework for processing large datasets of certain kinds of

distributable problems, that makes use of a large number of computers (nodes),

collectively referred to as a cluster. It consists of an initial Map stage, where a

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA

24

master node takes the input, chops it into smaller sub-problems, and distributes the

parts to worker nodes, which process the information independently; following

there is the Reduce stage, where the master node collects the solutions to all the

sub-problems and combines them in order to produce the job output. The process is

illustrated in Figure 1.

A popular Map-Reduce implementation is Apache’s Hadoop [11], which

consists of one Job Tracker, to which client applications submit Map-Reduce jobs.

The Job Tracker pushes work out to available Task Tracker nodes in the cluster,

which execute the map and reduce tasks.

Figure 1. The Map Reduce Architecture [44]

Despite being a very appealing and efficient technique for processing large

volumes of data, there are a number of challenges and shortcomings associated

with the deployment of Map-Reduce architectures [46]. The first of them is the

required infrastructure. To make the process truly effective, one needs several

machines acting as nodes, which often requires a large upfront investment in

infrastructure. This point is extremely critical in situations where the processing

demand is seasonal. In addition, fault tolerance issues and the need of a shared file

system to support mappers and reducers make the deployment of a Map-Reduce

architecture complex and costly.

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA

25

To understand how Map-Reduce could be useful to improve the efficiency of

a video processing task, and, which of its characteristics we must preserve while

building a high performance video processing architecture based on a Cloud

platform, we first need to understand how video compression works, and which are

the main steps of this process. Only then, can we discuss the required changes and

adaptations to the Map-Reduce paradigm.

In the next chapter, we present a brief introduction to sequential video

processing, followed by a discussion on the requirements for parallel video

processing, and the required adaptations to the Map-Reduce paradigm so that it

serves this specific purpose.

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA

