
6. Limitations 
 

After prototypes implementation and performance evaluation, it is possible 

to highlight some bottlenecks that could reduce the architecture efficiency, and 

some limitations that restrict its usage. It is also possible to identify some 

improvement aspects that could be addressed in further researches, focusing in 

increase reliability and scalability of the proposed architecture. 

One of the main limitations of the Split&Merge architecture, when deployed 

in the Cloud, is the bandwidth availability between the Cloud platform and the 

content owner. In fact, this limitation is not directly related with the architecture 

itself, but, in some cases, it could turn the chosen for public cloud unfeasible. In 

the scenario in which our tests were performed, this bandwidth issue was 

impeditive for the adoption of proposed approach in the Globo.com video 

compression case. 

In fact, since the high resolution video, with high data rates, must be 

uploaded into the Cloud, this approach requires a really high bandwidth 

availability between the server were content is stored and the virtual machine in the 

Cloud in which videos will be processed. Ideally the bandwidth should be at least 4 

times greater than content data rate, adding only 25% of content duration of 

overhead in the total time required to obtain the encoded video. As shown in 

Figure 13 of section 5.1, in the Globo.com case, these high definition videos must 

be transferred from Globo.com’s datacenter to Amazon AWS platform, using the 

public internet links for this task. In this specific case, the Globo.com’s datacenter 

is in Brazil, and should send videos to Amazon’s cloud platform in US, using 

intercontinental pipes which are frequently overloaded, and where it is not possible 

to reach even the 25Mbps of data rate used in the original videos. In this scenario, 

the overall time required to get the encoded content is higher than if the content is 

processed using the traditional approach, which basically discards all encoding 

gains obtained by the Split&Merge architecture itself, due to network limitations. 

However, the scope of this limitation is restricted to this usage scenario. If 

the architecture was deployed in a private cloud, inside the content owner’s 

datacenter, or if there is a high bandwidth availability between the Cloud and the 

content owner, for example, using a dedicated and/or a private link, this network 

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA



 

 

66 

bottleneck could be removed, and all benefits of Split&Merge could be really 

obtained. Furthermore, the telecommunications infrastructure is constantly 

evolving, frequently increasing the network capacity. These investments basically 

means that this will not be an issue anymore in the next few years, and the 

architecture would be deployed and used as proposed. 

Besides this network bottleneck, there is another limitation that could impact 

in the overall architecture performance, and it is related specifically with the split 

and the merge steps. In the way which architecture was conceived, all operations of 

the split and the merge steps were executed sequentially by one single sever (or 

virtual machine in the Cloud deploy). This means that if the split or the merge 

steps were complex, with a high computational cost, the performance of process 

will be reduced. 

In the both cases analyzed in previous section, the computational cost of split 

and merge is directly associated with the input size. For video compression, longer 

the video, more chunks will be generated, more computational cost will be 

required to seek, calculate and find chunks. In this case, longer inputs will result in 

an increased duration of the split step. The same analysis works for the merge step. 

With more chunks, a longer video stream will be produced, and more 

computational cost will be needed to order, synchronize and remix the content. 

In this approach, performing the split an the merge steps in one single server, 

as more complex are the performed operations to fragment the input and to 

combine them to get the output, more the performance will be impacted and lower 

will be the benefits obtained by the Split&Merge approach. In fact, better results 

will be obtained for simple split and merge tasks, and complex chunk processing. 

Another identified limitation appears when the Split&Merge is deployed in 

public clouds. As a network bottleneck could be found outside the Cloud 

infrastructure, when uploading the content, another network issue could degrade 

the architecture performance, but, this time, inside the Cloud. 

During the process step, a master node continuously communicate with the 

worker nodes, to obtain the processing status, to delegate new tasks, and to 

perform failover controls, retrieving the state of each node. Working with the 

approach of one node by each chunk, one can have hundreds or even thousands of 

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA



 

 

67 

working nodes, running in the same Cloud infrastructure. In the limit, the internal 

network of the Cloud platform will be overloaded by the messages exchanged 

between the architecture’s virtual machines, which basically could stop all content 

processing. A good approach to tackle these bottlenecks is to constantly monitor 

the network path between the nodes, controlling overloads by shutting virtual 

machines down. In this case, having less nodes then chunks could be the best 

alternative to not increase significantly the time required to obtain the desired 

results. 

Finally, the last important limitation is related with the heterogeneity of 

public Cloud platforms. When deploying the Split&Merge in a public Cloud 

environment, one has to perform several customizations to use the API services 

provided by the platform to allow resources administration. This basically means 

that each service provider has its proprietary API to, for example, start and stop 

virtual machines, or to store and retrieve contents from the storage. Deploying the 

architecture in a different Cloud platform usually means that all interfaces to 

perform these simple tasks must be rewritten in the application side, which, in 

some cases, could be really complex and time consuming. 

Today there is no standardization of these public APIs to manage the Cloud 

resources, and, as result, each provider adopts the technologies and formats that fit 

better in their needs. This problem became even more critical if we consider that 

each platform uses different authentication/authorization processes, and even 

different protocols to allow users to perform these basic tasks. 

One alternative to address this issue is to build a middleware that is capable 

to abstract the Cloud platform interfaces from the applications development, and 

which is maintained by the service providers themselves. In this scenario, the 

Cloud platforms will became responsible to develop and maintain a common 

interface for developers to perform this basic set of operations, such start and stop 

servers. 

With this approach, the choice between one Cloud platform and other could 

be performed at runtime, using the provider with better quality of service at that 

specific moment, since, by the application point of view, the operations for servers 

administration will be the same, independent of who is providing the service. Other 

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA



 

 

68 

service providers, such that in the telecommunications area, already do this same 

approach, abstracting from the device manufacturers the differences between their 

infrastructures. 

 

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA




