
2 Fundamentals 25

2
Fundamentals

This section briefly describes a number of techniques and tools developed

across different fields that are potentially interesting to serious games, by looking

at the concepts of each major requirement.

Apart from those developed for the computer games field, all techniques and

tools are somehow related to representing, analyzing, generating and simulating

dynamic processes.

2.1
Computer Games

Existing computer games techniques is the first obvious place to look at.

Unfortunately, since the gaming industry is so big and competitive, most

companies usually keep their top technologies secret and only allow them to be

published after becoming relatively obsolete and therefore losing most of their

market value.

Over the last decades, one of the problems that received most attention in

gaming is undoubtedly real-time rendering. With huge investments, modern

graphic cards have been developed specifically for this purpose. Along with that

hardware, software representations for virtual worlds also received considerable

attention from Computer Science researchers, which led to the development of

highly specialized data structures such as scene graphs (Strauss and Carey 1992).

Although interesting and challenging, real-time rendering is out of the scope

of this thesis for its complexity. However, the following observations are

important in the context of this thesis:

• In order to make full use of 3D gaming visual resources, it is

necessary to store the visible 3D objects in highly specialized data

structures.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 26

• Those specialized data structures, such as scene graphs, are oriented

towards rendering, not modeling (Sowizral 2000). Therefore, if

traditional simulation techniques are to be integrated in a serious

game architecture with modern game rendering techniques, it is

necessary to find a way in which the simulation models act on those

specialized data structures.

Since this thesis focuses on modeling and simulation, a special attention will

be given on how games usually implement their dynamics. A closer look on the

different kinds of game loops may help in that task.

2.1.1
Game Loops

Most computer games are inherently real time interactive applications. Their

execution must be synchronized with the real time flow. Sometimes there is a

need for accelerating the pace of a game. For example, in a training game that

simulates an emergency situation that may last for days, the simulation should

obviously not take the same amount of time. Periods requiring no decision making

should be fast-forwarded. However, in these cases, the game also requires

synchronization with the real time flow, only at a different rate in each game

stage.

Real time applications consist, from the functional point of view, of three

tasks being executed concurrently. First, they must continuously check for player

input and process their commands accordingly. Second, the state of the world

needs to be continuously updated. Finally, they must present the resulting world

state to the player(s). These three tasks shall be referred to as read input, update

and render respectively. The different ways these tasks can be interleaved in

running time will define the game loop models.

As a first attempt, this concurrent execution could be achieved by running

each task on a separate thread. However this approach may encounter difficulties

because some hardware platforms fail to provide adequate thread support when

precise timing is required (Dalmau 2003). Instead, most professional games

simulate this concurrent behavior with regular single-threaded loops and timers.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 27

Game loops can be classified into coupled and decoupled according to the

implemented order of execution of its main tasks (Valente et al. 2005). In coupled

loops, the three tasks are executed sequentially and at the same frequency.

Coupled loops are only useful when the hardware on which the game will run is

fixed and known in advance such as videogame consoles. It is not adequate for

games that need to run on different machines such as computer games. To address

this need, professional computer games usually implement an uncoupled game

loop. This kind of loop has the advantage of allowing the execution of tasks at

different frequencies. This is useful for example to increase the rendering

frequency on powerful machines without changing the frequency of game logic

processing. However, it is not so useful to increase rendering performance without

increasing the frequency of world updates because the same scene would be

rendered multiple times. What most professional games do is to separate their

update task into two subtasks. Usually the game logic and artificial intelligence

algorithms run at a fixed frequency while tasks that determine the positioning of

visible objects into the game scene but do not affect the game logic run at the

highest achievable frequency (Dalmau 2003). Animation interpolation is one

example of such tasks. These types of game loops are exemplified in Figure 2.1.

Figure 2.1 – Examples of Coupled and Uncoupled Game Loops. Source: (Valente et al. 2005).

The coupled loop on the left executes all tasks sequentially and at the same

frequency. The loop model on the right actually has two loops, one that executes

at a fixed frequency and one that executes as frequently as possible. The

executions of the two loops are interleaved according to the speed achieved at

runtime. The important conclusion here is that professional computer games

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 28

usually require that their world update frequency be defined at runtime for the

variable frequency update subtasks.

2.2
Modeling and Simulation

According to the realism requirement, serious games often need to simulate

the dynamics of some situations in such a way that the outcome is similar to that

of the real world. Therefore, it seems very logical to look at the techniques

developed to simulate real-world systems (von Neumann 1966; van Deursen

1995; Zeigler et al. 2000). The main purpose of this area is precisely to develop

computational models to simulate reality.

2.2.1
The DEVS Formalism

The Discrete Event System Specification (DEVS) formalism introduced by

Zeigler (1972) provides a way to model dynamic systems. As a discrete

formalism, it models state changes as discrete instantaneous events. For any

period of time where there is no event, the state remains unchanged.

Systems are modeled in DEVS as having input and output interfaces. These

interfaces represent the way the system interacts with other systems. Input is the

interface from which the system receives external stimuli while output provides a

way of observing and receiving stimuli from the system. Therefore, systems are

modular since their inputs and outputs are the only way of interacting with them.

Figure 2.2 illustrates this formalism.

Figure 2.2 – Basic Discrete Event System Specification

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 29

A basic DEVS (also called atomic DEVS) is a structure

M = 〈X, S, Y, δint, δext, λ, ta〉

where

X is the set of input values

S is the set of states

Y is the set of output values

δint: S → S is the internal transition function

δext: Q × X → S is the external transition function, where

Q = {(s,e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set

e is the time elapsed since last transition

λ: S → Y is the output function

ta: S → [0, ∞] is the time advance function

In order to describe the interpretation of these elements, we shall assume the

system has just entered some state s. If no input is received, the system will

remain in s for time ta(s). Once this time expires, the system outputs the value

λ(s) and switches to state δint(s). Note that, besides positive reals, ta(s) can also

assume the values 0 and ∞. If ta(s) = 0, the system will immediately go to the next

state without allowing any possible input to intervene. In this case, s is said to be a

transitory state. If ta(s) = ∞, the system will remain in s indefinitely until some

input causes another state transition. In this case, s is said to be a passive state. If

an input x ∈ X is received before the expiration time, the system switches to state

δext(s,e,x), where (s,e) with e ≤ ta(s) is the total state at the time the input was

received.

In short, the internal transition function defines the next state when no

inputs are received, the external transition function defines the next state in case

of an external input and the output function defines the system’s output whenever

the internal transition function is invoked.

The following example helps illustrate how DEVS works. Consider a

controller system for a safe door that will only open it if it receives the correct

password, which is 12345. If the user does not type anything for more than treset,

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 30

the system is reset, the user is signaled of that and he will have to start over. If the

user types the wrong password, he should wait for a system reset to start over.

The model for this system is defined as

M = 〈X, Y, S, δint, δext, λ, ta〉

where

X = {0,1,2,3,4,5,6,7,8,9}

Y = {“reset”,”open”}

S = {Wrong,Open,Reset,S1,S2,S3,S4,S5}

δint(Sn) = Reset

δint(Wrong) = Reset

δint(Open) = Reset

δint(Reset) = S1

δext(S5,e,5) = Open

δext(Sn,e,n), n≠5 = Sn+1

δext(Sn,e,x), x≠n = Wrong

δext(Wrong,e,x) = Wrong

λ(Open) = “open”

λ(Reset) = “reset”

ta(S1) = ∞

ta(Sn), n≠1 = treset

ta(Wrong) = treset

ta(Open) = 0

ta(Reset) = 0

X says that the system accepts any digit as inputs. If the user does not type

anything for a long enough period, the system will eventually reach the state S1.

Each password digit typed correctly will take the system from Sn to Sn+1, until S5,

from which it will finally reach the state “Open”. Any digit typed incorrectly will

take the system to state “Wrong” and will only change to “Reset” when it stops

receiving digits for time treset.

It may not feel intuitive for a process to have single inputs and outputs. In

the case of the safe, the “reset” output is directed to the user as feedback while the

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 31

“open” output may be directed to a door controller. In order to make modeling

more intuitive, the DEVS with ports formalism was created as a simple extension

to basic DEVS. It is illustrated in Figure 2.3.

Figure 2.3 – DEVS with ports

The DEVS with ports is defined by the same structure

M = 〈X, Y, S, δint, δext, λ, ta〉

where

X = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values

Y = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values

all other attributes are defined just as in basic DEVS

The DEVS with ports formalism allows the composition of models into

higher level models as illustrated in Figure 2.4. This composition is achieved most

simply by the coupling of input and output ports of different models. The DEVS

coupled model formalizes the composition of different models. This abstraction

capability makes it easier to build complex models part by part.

Figure 2.4 – DEVS coupled models

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 32

A DEVS coupled model is defined by the structure

N = 〈X, Y, D, {Md | d ∈ D}, EIC, EOC, IC, Select〉

where

X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values

Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values

D is the set of components names

Md = 〈Xd, Yd, S, δint, δext, λ, ta〉 is a DEVS with

Xd = {(p,v) | p ∈ IPortsd, v ∈ Xp}

Yd = {(p,v) | p ∈ OPortsd, v ∈ Yp}

EIC ⊆ {((N, ipN), (d, ipd)) | ipN ∈ IPorts, d ∈ D, ipd ∈ IPortsd}

EOC ⊆ {((d, opd), (N, opN)) | opN ∈ OPorts, d ∈ D, opd ∈ OPortsd}

IC ⊆ {((a, opa), (b, ipb)) | a,b ∈ D with a ≠ b,

opa ∈ OPortsa, ipb ∈ IPortsb}

Select: 2
D
 - {} → D is the tie-breaking function

Each component Md is a DEVS model itself. A component may be another

coupled model, allowing the construction of hierarchical models. EIC defines the

external input coupling, connecting external inputs to components inputs.

Similarly, EOC defines the external output coupling, connecting components

outputs to external outputs. The internal coupling IC connects component outputs

to component inputs. Note that no output of a component may be connected to an

input of the same component, i.e. no direct feedback loops are allowed in DEVS.

Finally, the tie-breaking function defines the order in which to carry out

computations when multiple components receive inputs at the same time.

2.2.2
Cellular Automata

Considering all different formalisms to model spatial dynamic systems,

cellular automata (CA) (von Neumann 1996) are among the most popular.

Despite their simplicity, they are capable of reproducing complex behavior of

systems in several fields, such as land use cover change (Carneiro 2006), urban

growth (Batty 2005) and many other human-driven and natural phenomena.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 33

A cellular automaton works in a world representation where both time and

space are discretized. Time is represented by the sequence of time values t0, t1, …

while space is partitioned into cells. Usually, time values represent a sequence of

equally spaced instants in time and cells are subdivisions of space defined by a

regular grid. Each cell has a well-defined state for each time value. The set of cells

that influence state changes of a particular cell is called the neighborhood of that

cell. A CA is defined as

CA = 〈C, S, N, T〉

where

C is the set of cells

S is the set of possible cell states

N: C → C
|N|

, where |N| is the neighborhood size and c ∉ N(c), for each c∈C,

is the neighborhood function that defines the neighborhood of each cell

T: S × S
|N|

 → S is the transition function that, given the state of a cell c and

the states of all its neighbors, defines the next state for c

Figure 2.5 illustrates a simple CA for a two-dimensional grid cell space. The

neighborhood of each cell is the well known Moore neighborhood, which is

composed by the eight closest cells. Cells may assume only one of two states, 0 or

1. At each time step, the transition function states that each cell must assume, at

the next time step, the state of the majority of its neighbors and that it should keep

its current state in the case of a tie.

Figure 2.5 – A simple CA

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 34

The simplest procedure for simulating a CA is to scan the entire cell space at

each time step applying the transition function for each cell. For this algorithm to

yield the correct result, it must keep a second copy of the data structure that stores

cell states. For each cell, the algorithm should read the necessary cell states from

the first structure and store its next state in the second structure. This is necessary

so that the cells that have not been scanned yet are not affected. Once the scan is

complete, the second structure will hold the next global state.

This simple algorithm has two main drawbacks. First, it cannot handle

infinite cell spaces. Second, it may be inefficient because it keeps scanning and

making calculations for cells that are in the same situation as in the previous time

step.

Another method for CA computation is described by Zeigler et al. (2000) as

the discrete event approach to CA simulation. The idea of this method is to

concentrate on events. In the context of a CA, an event occurs when a cell changes

its state. The algorithm then works as follows: at each time step it keeps track of

the set of cells that actually changed state. Then, it collects the set of all neighbors

of those cells. Finally, the union of these two sets defines the cells that are going

to be scanned at the next time step. All other cells will be left unchanged. This

procedure assures that, if neither a cell nor any of its neighbors have changed state

at a given time step, that cell will not be scanned at the next time step.

Cell Space Models

Cell space models are a more general class of dynamic models that

comprises cellular automata, where the definition of local neighborhood and

transition rules are relaxed (Batty 2005). The main difference from strict CA

models is that cell space models allow action at a distance, which is characterized

by causality relationships between cells at distance. Usually, physical phenomena

are more easily mapped to the strict CA form, while anthropic phenomena often

require some sort of action at a distance.

Cell space models are not formalized in this section because of the lack of

consensus on exactly how and to what extent the CA properties should be relaxed.

Section 4.2 proposes a formalism for this class of models.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 35

2.3
Multi-Agent Systems

Multi-Agent Systems (MAS) are not targeted at any specific kind of

application. Instead, the term stands for any system which is based on the agent

modeling paradigm. In fact, this may be the reason why there is a lack of

consensus among researchers about what are the basic concepts for modeling

agents. Usually, toolkits for building MAS are targeted at one of the following

types of application (Theodoropoulos et al. 2009): (1) MAS for studying complex

systems, such as social models, insect colonies, artificial life and logistics; (2)

MAS for distributed intelligence; (3) development of software MAS, i.e., software

systems that distribute their functionalities among a set of agents, such as

semantic Web agents, cognitive agents in expert systems and agents for network

meta-management (e.g., load balancing or service discovery).

These different kinds of applications have different requirements and,

therefore, impact the functionality offered by the toolkits for building MAS. Since

this thesis is focused on the simulation of realistic situations, the first type of

application is more adequate because it provides an environment which is most

recognizable as a simulation engine.

Even after filtering the available MAS toolkits by the type of application,

they are still too many to allow a complete study. Instead, two of them were

chosen based on their fitness for the requirements enumerated in section 1.3 and

also on their popularity among researchers. They are described in the following

sections.

2.3.1
Jason

Jason (Bordini and Hübner 2009) is a platform for multi-agent simulation. It

is a good representative of the approaches based on the BDI agent architecture

(Rao and Georgeff 1992), which is one of the most popular architectures for

modeling the cognitive behavior of agents. BDI stands for “Belief-Desire-

Intention”. Beliefs are facts that an agent thinks are true, and together they

constitute its world view. The belief set is dynamically updated as the agent

interacts with its environment and other agents. Desires are the goals of the agent.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 36

Both beliefs and desires constitute the input of the reasoning process. Intentions

are the result of that reasoning process and they determine the next actions of the

agent.

There are two aspects of Jason that makes it an interesting case for this

work. First, it allows an agent to keep a library of plans, which are possible

courses of action to achieve a particular goal. Second, it works with the notion of

events, which are triggered at every change in a belief or a goal. Plans are always

started by events.

Agent reasoning is done in reasoning cycles as depicted in Figure 2.6. Each

cycle starts by the agent updating its belief base by sensing the environment. That

sensing may trigger one or more events which, in turn, may trigger one or more

plans, producing intentions. Then, the set of intentions compete in the choice of

intention of the agent to be further executed in the reasoning cycle. The details of

how an agent chooses which intentions will become actions are beyond the scope

of this work. It suffices to mention that there is a specific procedure for that.

Figure 2.6 – Working Model of Jason Agents. Source: (Bordini and Hübner 2009), p. 457.

The reasoning process is defined in a prolog-like declarative language which

is an extension of the AgentSpeak language (Rao 1996).

In Jason, as in most MAS, there is the notion of an environment, through

which agents can interact. The environment is responsible for: (1) keeping its

current state; (2) simulating how the actions of the agents alter that state; (3)

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 37

providing the agents with a symbolic representation of that state when they sense

it. Differently from agent reasoning, environments are specified by a Java code

using the Jason API for the environment. This API is flexible enough to allow the

implementation of different types of environments. For example, the

synchronization of the execution of the actions of an agent is totally flexible.

While some simulations allow an agent to execute multiple actions in parallel,

others may require the notion of a simulation step, in which one action is executed

at each step.

Jason also provides some flexibility in its execution mode, which can be

either asynchronous or synchronous. In the asynchronous mode, each agent

executes its next reasoning cycle as soon as the previous cycle has finished. In the

synchronous mode, each agent performs exactly one reasoning cycle at every

global simulation step.

Comparing the basic aspects of the Jason formalism with DEVS, a few

remarks can be drawn:

• In Jason, there are two distinct kinds of elements: environment and

agents. In DEVS, there is only the notion of systems.

• In Jason, time is not explicitly modeled. For example, one cannot

specify how long an action takes to be executed.

• Jason provides more specific constructs for implementing complex

cognitive agents. DEVS provides a lower level language.

• Jason provides multiple ways to execute a simulation model. In

DEVS, the result of a simulation derives entirely from the simulation

model.

2.3.2
SeSam

SeSam (Shell for Simulated Agent Systems) (Klügl and Puppe 1998) is a

generic purpose multi-agent simulation platform. One of its main focuses is to

provide a modeling and simulation tool that is easy to use, not requiring deep

programming knowledge.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 38

Simulation modeling is done with three types of objects: world, agents and

resources, as illustrated in Figure 2.7. All objects have an internal state defined by

a set of variables. In each simulation there may be only one world. The notion of

world is similar to the notion of environment in most MAS. Agents are active

entities which interact with the world by sensing it and acting on it. Finally,

resources are static and passive objects that are accessed and manipulated by the

agents. Note that the world inherits the behavior from the agent type. This means

that the world is active and can change with time, even if there is no agent acting

on it.

Figure 2.7 – Object Types in SeSam. Source: (Klügl 2009), p. 485.

Behaviors are defined by a set of graphs in which nodes represent activities

and edges represent transition rules, as depicted in Figure 2.8. It is interesting that

the behavior of an agent can be composed of multiple activity graphs. This

provides a means of composing behaviors of agents from smaller behavior

definitions. These activity graphs are called reasoning engines in SeSam

nomenclature.

All reasoning engines of a simulation object are executed in parallel. Each

reasoning engine may have only one activity being executed at a time. The

transition rules define the conditions on which the reasoning engine terminates an

activity and starts the next one. Each transition rule defines a Boolean expression

that is evaluated at every simulation step. When a transition rule connecting an

executing activity to another one becomes true, the executing activity is

terminated and the other is started. Note that, when executing an activity, multiple

transition rules may be evaluated as true concurrently. In this case, some sort of

tiebreak rule must be applied.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 39

Figure 2.8 – Behaviors in SeSam

Since activity graphs can become quite large, SeSam provides means for

hierarchical behavior composition, where it is possible to define composite

activity nodes, which contain themselves another activity graph.

An activity encapsulates three sequences of actions: start actions that are

performed when the activity is selected anew, standard actions that are performed

once every time step as long as the agent is executing that activity, and

termination actions that are executed for cleaning up when the activity is finished.

An action is basically a nested set of primitive calls. The transition rules are also

defined by Boolean expressions built of primitive calls.

Primitive calls are the basic building blocks of the dynamic models of

SeSam. They connect the model to the underlying programming language, which

is Java in this case. Each primitive is implemented as a Java class with a method

named execute. They also define the input and output argument types. The

primitive categories are: (1) action primitives, which are used to manipulate the

agent’s internal state or environment; (2) sensor primitives, which collect

information from the agent’s environment; (3) computational primitives, which

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 40

provides computations of higher or lower complexity; (4) user primitives, which

consist of macros that combine calls to other primitives.

Although seemingly complex, this behavior structure allows the separation

of dynamic models in two levels: the lower level, which requires Java

programming skills, and the higher level, in which the lower level primitives are

used as building blocks and no programming skills are necessary. This is an

attempt by SeSam to make simulation more accessible to a broader class of

researchers and businesses.

SeSam provides a third and higher modeling level in which the user defines

a full simulation experiment. Once all the definitions for agents, world and

resources are complete, the user defines a situation. A situation is basically a set

of instance descriptions defining all instances of agents, resources and the world

that are going to compose the simulation. Additionally, the user may define other

properties of his experiment, such as the values that are going to be observed

during the simulation execution. Although interesting, the details of this level of

modeling are out of the scope of this work and will not be detailed further.

Comparing the basic aspects of SeSam with the DEVS formalism, a few

remarks can be drawn:

• In SeSam, like DEVS, all simulation elements are specializations of

the same abstract type object.

• In SeSam, time is not explicitly modeled. Every action is scheduled

by a global time step mechanism. For example, one cannot specify

directly how long an action takes to be executed. It is necessary to

implement a loop that counts the time steps.

• SeSam does not restrict the behavior of agents to any particular

format.

• SeSam provides means for composing object states and behaviors.

• Behaviors are defined intuitively in the form of graphs, which are

similar to workflows, but without parallel activity execution.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 41

2.4
Workflows and Planning

Workflows are activities involving the coordinated execution of multiple

tasks, where each task defines some work to be done by a person or a software

system (Casati et al. 1995). Workflows can be very interesting to serious games

because business processes are usually modeled as workflows. In fact, integrating

serious games with the so-called business process management (BPM) systems is

likely to bring many benefits for personnel training and business planning.

Workflows are usually represented by flow charts. A flow chart is basically

a graph notation for representing procedures. It uses boxes to represent events that

change some data and diamonds to represent decisions, which may change the

direction of the process (Sowa 2000), as depicted in Figure 2.9. A workflow is a

specific case of a flow chart in which the events are actions executed by some

participant. Therefore, workflows are basically structured sets of actions (van der

Aalst et al 2003).

Figure 2.9 – A Flow Chart

Artificial Intelligence (AI) planning, or simply planning, is also an area of

high interest to serious games. It is also an old Computer Science area. Plans

traditionally refer to plans of action, which can be often represented in the form of

workflows. The ability to dynamically generate workflows to pursuit specific

objectives is widely used in gaming to model the behavior of intelligent

automated characters.

Most of the pioneer work in the planning area, such as STRIPS (Fikes,

Nilsson 1971) and NOAH (Sacerdoti 1977), was devoted to automatic planning in

deterministic domains. These planners take as input the current state of the world,

a set of possible actions with their corresponding pre- and post-conditions and a

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

2 Fundamentals 42

goal proposition. Their objective was to output a course of actions that would take

the world from its initial state to another state where the goal proposition is true.

These early planners assumed that the initial world state was entirely

known, that the world state would not be altered by any other factor during the

execution of the plan and that the effects of actions were always deterministic.

Those are rather restrictive assumptions. Later work tried to relax some of them

and to plan under uncertainty (Blythe 1999). Later work also allowed the design

of workflows for situations with those uncertainty factors, where a planner

mechanism incrementaly synthesizes new pieces of workflow during the

workflow execution (Fernandes et al. 2007).

Even though most of the work in planning is devoted to automatic planning

algorithms, there is much more to planning than that. Serious games could also

benefit from much of the work that has been done in plan evaluation, plan

recognition (Kautz 1991), hierarchical planning (Erol 1995; Giunchiglia et al

1997), searchable plan repositories and many other interesting planning problems.

2.5
Summary

This chapter briefly overviewed a few techniques and systems, selected

from the areas of gaming, modeling and simulation, multi-agent systems and

planning. The techniques and systems include game loops, DEVS, cellular

automata, Jason, SeSam and workflows, all of which will be referred to

throughout the rest of the thesis. The DEVS simulation formalism serves as the

basis for the Process-DEVS formalism, described in chapter 3. In the same

chapter, the properties of Jason and SeSam platforms are also referred to in the

discussion preceding the formal definition of Process-DEVS. Chapter 4 defines

how workflows, cellular automata and multi-agent systems can be modeled on top

of Process-DEVS. Finally, game loops are used in the InfoPAE implementation

case described in chapter 5. Also in that chapter, it is shown how traditional

simulation models can be integrated with the specialized data structures of 3D

renderers used in modern games.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

