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2  
Fundamentals 

This section briefly describes a number of techniques and tools developed 

across different fields that are potentially interesting to serious games, by looking 

at the concepts of each major requirement. 

Apart from those developed for the computer games field, all techniques and 

tools are somehow related to representing, analyzing, generating and simulating 

dynamic processes. 

 

2.1  
Computer Games 

Existing computer games techniques is the first obvious place to look at. 

Unfortunately, since the gaming industry is so big and competitive, most 

companies usually keep their top technologies secret and only allow them to be 

published after becoming relatively obsolete and therefore losing most of their 

market value.  

Over the last decades, one of the problems that received most attention in 

gaming is undoubtedly real-time rendering. With huge investments, modern 

graphic cards have been developed specifically for this purpose. Along with that 

hardware, software representations for virtual worlds also received considerable 

attention from Computer Science researchers, which led to the development of 

highly specialized data structures such as scene graphs (Strauss and Carey 1992).  

Although interesting and challenging, real-time rendering is out of the scope 

of this thesis for its complexity. However, the following observations are 

important in the context of this thesis: 

 

• In order to make full use of 3D gaming visual resources, it is 

necessary to store the visible 3D objects in highly specialized data 

structures. 
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• Those specialized data structures, such as scene graphs, are oriented 

towards rendering, not modeling (Sowizral 2000). Therefore, if 

traditional simulation techniques are to be integrated in a serious 

game architecture with modern game rendering techniques, it is 

necessary to find a way in which the simulation models act on those 

specialized data structures. 

 

Since this thesis focuses on modeling and simulation, a special attention will 

be given on how games usually implement their dynamics. A closer look on the 

different kinds of game loops may help in that task. 

 

2.1.1  
Game Loops 

Most computer games are inherently real time interactive applications. Their 

execution must be synchronized with the real time flow. Sometimes there is a 

need for accelerating the pace of a game. For example, in a training game that 

simulates an emergency situation that may last for days, the simulation should 

obviously not take the same amount of time. Periods requiring no decision making 

should be fast-forwarded. However, in these cases, the game also requires 

synchronization with the real time flow, only at a different rate in each game 

stage. 

Real time applications consist, from the functional point of view, of three 

tasks being executed concurrently. First, they must continuously check for player 

input and process their commands accordingly. Second, the state of the world 

needs to be continuously updated. Finally, they must present the resulting world 

state to the player(s). These three tasks shall be referred to as read input, update 

and render respectively. The different ways these tasks can be interleaved in 

running time will define the game loop models. 

As a first attempt, this concurrent execution could be achieved by running 

each task on a separate thread. However this approach may encounter difficulties 

because some hardware platforms fail to provide adequate thread support when 

precise timing is required (Dalmau 2003). Instead, most professional games 

simulate this concurrent behavior with regular single-threaded loops and timers. 
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Game loops can be classified into coupled and decoupled according to the 

implemented order of execution of its main tasks (Valente et al. 2005). In coupled 

loops, the three tasks are executed sequentially and at the same frequency. 

Coupled loops are only useful when the hardware on which the game will run is 

fixed and known in advance such as videogame consoles. It is not adequate for 

games that need to run on different machines such as computer games. To address 

this need, professional computer games usually implement an uncoupled game 

loop. This kind of loop has the advantage of allowing the execution of tasks at 

different frequencies. This is useful for example to increase the rendering 

frequency on powerful machines without changing the frequency of game logic 

processing. However, it is not so useful to increase rendering performance without 

increasing the frequency of world updates because the same scene would be 

rendered multiple times. What most professional games do is to separate their 

update task into two subtasks. Usually the game logic and artificial intelligence 

algorithms run at a fixed frequency while tasks that determine the positioning of 

visible objects into the game scene but do not affect the game logic run at the 

highest achievable frequency (Dalmau 2003). Animation interpolation is one 

example of such tasks. These types of game loops are exemplified in Figure 2.1. 

 

 

Figure 2.1 – Examples of Coupled and Uncoupled Game Loops. Source: (Valente et al. 2005). 

 

The coupled loop on the left executes all tasks sequentially and at the same 

frequency. The loop model on the right actually has two loops, one that executes 

at a fixed frequency and one that executes as frequently as possible. The 

executions of the two loops are interleaved according to the speed achieved at 

runtime. The important conclusion here is that professional computer games 
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usually require that their world update frequency be defined at runtime for the 

variable frequency update subtasks. 

 

2.2  
Modeling and Simulation 

According to the realism requirement, serious games often need to simulate 

the dynamics of some situations in such a way that the outcome is similar to that 

of the real world. Therefore, it seems very logical to look at the techniques 

developed to simulate real-world systems (von Neumann 1966; van Deursen 

1995; Zeigler et al. 2000). The main purpose of this area is precisely to develop 

computational models to simulate reality. 

 

2.2.1  
The DEVS Formalism 

The Discrete Event System Specification (DEVS) formalism introduced by 

Zeigler (1972) provides a way to model dynamic systems. As a discrete 

formalism, it models state changes as discrete instantaneous events. For any 

period of time where there is no event, the state remains unchanged. 

Systems are modeled in DEVS as having input and output interfaces. These 

interfaces represent the way the system interacts with other systems. Input is the 

interface from which the system receives external stimuli while output provides a 

way of observing and receiving stimuli from the system. Therefore, systems are 

modular since their inputs and outputs are the only way of interacting with them. 

Figure 2.2 illustrates this formalism. 

 

 

Figure 2.2 – Basic Discrete Event System Specification 
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A basic DEVS (also called atomic DEVS) is a structure 

 

M = 〈X, S, Y, δint, δext, λ, ta〉 

where 

X is the set of input values 

S is the set of states 

Y is the set of output values 

δint: S → S is the internal transition function 

δext: Q × X → S is the external transition function, where 

Q = {(s,e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set 

e is the time elapsed since last transition 

λ: S → Y is the output function 

ta: S → [0, ∞] is the time advance function 

 

In order to describe the interpretation of these elements, we shall assume the 

system has just entered some state s. If no input is received, the system will 

remain in s for time ta(s). Once this time expires, the system outputs the value 

λ(s) and switches to state δint(s). Note that, besides positive reals, ta(s) can also 

assume the values 0 and ∞. If ta(s) = 0, the system will immediately go to the next 

state without allowing any possible input to intervene. In this case, s is said to be a 

transitory state. If ta(s) = ∞, the system will remain in s indefinitely until some 

input causes another state transition. In this case, s is said to be a passive state. If 

an input x ∈ X is received before the expiration time, the system switches to state 

δext(s,e,x), where (s,e) with e ≤ ta(s) is the total state at the time the input was 

received. 

In short, the internal transition function defines the next state when no 

inputs are received, the external transition function defines the next state in case 

of an external input and the output function defines the system’s output whenever 

the internal transition function is invoked. 

The following example helps illustrate how DEVS works. Consider a 

controller system for a safe door that will only open it if it receives the correct 

password, which is 12345. If the user does not type anything for more than treset, 
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the system is reset, the user is signaled of that and he will have to start over. If the 

user types the wrong password, he should wait for a system reset to start over. 

The model for this system is defined as 

 

M = 〈X, Y, S, δint, δext, λ, ta〉 

where 

X = {0,1,2,3,4,5,6,7,8,9} 

Y = {“reset”,”open”} 

S = {Wrong,Open,Reset,S1,S2,S3,S4,S5} 

δint(Sn) = Reset 

δint(Wrong) = Reset 

δint(Open) = Reset 

δint(Reset) = S1 

δext(S5,e,5) = Open 

δext(Sn,e,n), n≠5 = Sn+1 

δext(Sn,e,x), x≠n = Wrong 

δext(Wrong,e,x) = Wrong 

λ(Open) = “open” 

λ(Reset) = “reset” 

ta(S1) = ∞ 

ta(Sn), n≠1 = treset 

ta(Wrong) = treset 

ta(Open) = 0 

ta(Reset) = 0 

 

X says that the system accepts any digit as inputs. If the user does not type 

anything for a long enough period, the system will eventually reach the state S1. 

Each password digit typed correctly will take the system from Sn to Sn+1, until S5, 

from which it will finally reach the state “Open”. Any digit typed incorrectly will 

take the system to state “Wrong” and will only change to “Reset” when it stops 

receiving digits for time treset. 

It may not feel intuitive for a process to have single inputs and outputs. In 

the case of the safe, the “reset” output is directed to the user as feedback while the 
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“open” output may be directed to a door controller. In order to make modeling 

more intuitive, the DEVS with ports formalism was created as a simple extension 

to basic DEVS. It is illustrated in Figure 2.3. 

 

 

Figure 2.3 – DEVS with ports 

 

The DEVS with ports is defined by the same structure 

 

M = 〈X, Y, S, δint, δext, λ, ta〉 

where 

X = {(p,v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values 

Y = {(p,v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values 

all other attributes are defined just as in basic DEVS 

 

The DEVS with ports formalism allows the composition of models into 

higher level models as illustrated in Figure 2.4. This composition is achieved most 

simply by the coupling of input and output ports of different models. The DEVS 

coupled model formalizes the composition of different models. This abstraction 

capability makes it easier to build complex models part by part. 

 

 

Figure 2.4 – DEVS coupled models 
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A DEVS coupled model is defined by the structure 

 

N = 〈X, Y, D, {Md | d ∈ D}, EIC, EOC, IC, Select〉 

where 

X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values 

Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values 

D is the set of components names 

Md = 〈Xd, Yd, S, δint, δext, λ, ta〉 is a DEVS with 

Xd = {(p,v) | p ∈ IPortsd, v ∈ Xp} 

Yd = {(p,v) | p ∈ OPortsd, v ∈ Yp} 

EIC ⊆ {((N, ipN), (d, ipd)) | ipN ∈ IPorts, d ∈ D, ipd ∈ IPortsd} 

EOC ⊆ {((d, opd), (N, opN)) | opN ∈ OPorts, d ∈ D, opd ∈ OPortsd} 

IC ⊆ {((a, opa), (b, ipb)) | a,b ∈ D with a ≠ b,  

opa ∈ OPortsa, ipb ∈ IPortsb} 

Select: 2
D
 - {} → D is the tie-breaking function 

 

Each component Md is a DEVS model itself. A component may be another 

coupled model, allowing the construction of hierarchical models. EIC defines the 

external input coupling, connecting external inputs to components inputs. 

Similarly, EOC defines the external output coupling, connecting components 

outputs to external outputs. The internal coupling IC connects component outputs 

to component inputs. Note that no output of a component may be connected to an 

input of the same component, i.e. no direct feedback loops are allowed in DEVS. 

Finally, the tie-breaking function defines the order in which to carry out 

computations when multiple components receive inputs at the same time. 

 

2.2.2  
Cellular Automata 

Considering all different formalisms to model spatial dynamic systems, 

cellular automata (CA) (von Neumann 1996) are among the most popular. 

Despite their simplicity, they are capable of reproducing complex behavior of 

systems in several fields, such as land use cover change (Carneiro 2006), urban 

growth (Batty 2005) and many other human-driven and natural phenomena. 
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A cellular automaton works in a world representation where both time and 

space are discretized. Time is represented by the sequence of time values t0, t1, … 

while space is partitioned into cells. Usually, time values represent a sequence of 

equally spaced instants in time and cells are subdivisions of space defined by a 

regular grid. Each cell has a well-defined state for each time value. The set of cells 

that influence state changes of a particular cell is called the neighborhood of that 

cell. A CA is defined as 

 

CA = 〈C, S, N, T〉 

where 

C  is the set of cells 

S is the set of possible cell states  

N: C → C
|N|

, where |N| is the neighborhood size and c ∉ N(c), for each c∈C, 

is the neighborhood function that defines the neighborhood of each cell 

T: S × S
|N|

 → S is the transition function that, given the state of a cell c and 

the states of all its neighbors, defines the next state for c  

 

Figure 2.5 illustrates a simple CA for a two-dimensional grid cell space. The 

neighborhood of each cell is the well known Moore neighborhood, which is 

composed by the eight closest cells. Cells may assume only one of two states, 0 or 

1. At each time step, the transition function states that each cell must assume, at 

the next time step, the state of the majority of its neighbors and that it should keep 

its current state in the case of a tie. 

 

 

Figure 2.5 – A simple CA 
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The simplest procedure for simulating a CA is to scan the entire cell space at 

each time step applying the transition function for each cell. For this algorithm to 

yield the correct result, it must keep a second copy of the data structure that stores 

cell states. For each cell, the algorithm should read the necessary cell states from 

the first structure and store its next state in the second structure. This is necessary 

so that the cells that have not been scanned yet are not affected. Once the scan is 

complete, the second structure will hold the next global state. 

This simple algorithm has two main drawbacks. First, it cannot handle 

infinite cell spaces. Second, it may be inefficient because it keeps scanning and 

making calculations for cells that are in the same situation as in the previous time 

step. 

Another method for CA computation is described by Zeigler et al. (2000) as 

the discrete event approach to CA simulation. The idea of this method is to 

concentrate on events. In the context of a CA, an event occurs when a cell changes 

its state. The algorithm then works as follows: at each time step it keeps track of 

the set of cells that actually changed state. Then, it collects the set of all neighbors 

of those cells. Finally, the union of these two sets defines the cells that are going 

to be scanned at the next time step. All other cells will be left unchanged. This 

procedure assures that, if neither a cell nor any of its neighbors have changed state 

at a given time step, that cell will not be scanned at the next time step. 

 

Cell Space Models 
 

Cell space models are a more general class of dynamic models that 

comprises cellular automata, where the definition of local neighborhood and 

transition rules are relaxed (Batty 2005). The main difference from strict CA 

models is that cell space models allow action at a distance, which is characterized 

by causality relationships between cells at distance. Usually, physical phenomena 

are more easily mapped to the strict CA form, while anthropic phenomena often 

require some sort of action at a distance. 

Cell space models are not formalized in this section because of the lack of 

consensus on exactly how and to what extent the CA properties should be relaxed. 

Section 4.2 proposes a formalism for this class of models. 
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2.3  
Multi-Agent Systems 

Multi-Agent Systems (MAS) are not targeted at any specific kind of 

application. Instead, the term stands for any system which is based on the agent 

modeling paradigm. In fact, this may be the reason why there is a lack of 

consensus among researchers about what are the basic concepts for modeling 

agents. Usually, toolkits for building MAS are targeted at one of the following 

types of application (Theodoropoulos et al. 2009): (1) MAS for studying complex 

systems, such as social models, insect colonies, artificial life and logistics; (2) 

MAS for distributed intelligence; (3) development of software MAS, i.e., software 

systems that distribute their functionalities among a set of agents, such as 

semantic Web agents, cognitive agents in expert systems and agents for network 

meta-management (e.g., load balancing or service discovery). 

These different kinds of applications have different requirements and, 

therefore, impact the functionality offered by the toolkits for building MAS. Since 

this thesis is focused on the simulation of realistic situations, the first type of 

application is more adequate because it provides an environment which is most 

recognizable as a simulation engine. 

Even after filtering the available MAS toolkits by the type of application, 

they are still too many to allow a complete study. Instead, two of them were 

chosen based on their fitness for the requirements enumerated in section 1.3 and 

also on their popularity among researchers. They are described in the following 

sections. 

 

2.3.1  
Jason 

Jason (Bordini and Hübner 2009) is a platform for multi-agent simulation. It 

is a good representative of the approaches based on the BDI agent architecture 

(Rao and Georgeff 1992), which is one of the most popular architectures for 

modeling the cognitive behavior of agents. BDI stands for “Belief-Desire-

Intention”. Beliefs are facts that an agent thinks are true, and together they 

constitute its world view. The belief set is dynamically updated as the agent 

interacts with its environment and other agents. Desires are the goals of the agent. 
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Both beliefs and desires constitute the input of the reasoning process. Intentions 

are the result of that reasoning process and they determine the next actions of the 

agent. 

There are two aspects of Jason that makes it an interesting case for this 

work. First, it allows an agent to keep a library of plans, which are possible 

courses of action to achieve a particular goal. Second, it works with the notion of 

events, which are triggered at every change in a belief or a goal. Plans are always 

started by events. 

Agent reasoning is done in reasoning cycles as depicted in Figure 2.6. Each 

cycle starts by the agent updating its belief base by sensing the environment. That 

sensing may trigger one or more events which, in turn, may trigger one or more 

plans, producing intentions. Then, the set of intentions compete in the choice of 

intention of the agent to be further executed in the reasoning cycle. The details of 

how an agent chooses which intentions will become actions are beyond the scope 

of this work. It suffices to mention that there is a specific procedure for that.  

 

 

Figure 2.6 – Working Model of Jason Agents. Source: (Bordini and Hübner 2009), p. 457. 

 

The reasoning process is defined in a prolog-like declarative language which 

is an extension of the AgentSpeak language (Rao 1996). 

In Jason, as in most MAS, there is the notion of an environment, through 

which agents can interact. The environment is responsible for: (1) keeping its 

current state; (2) simulating how the actions of the agents alter that state; (3) 
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providing the agents with a symbolic representation of that state when they sense 

it. Differently from agent reasoning, environments are specified by a Java code 

using the Jason API for the environment. This API is flexible enough to allow the 

implementation of different types of environments. For example, the 

synchronization of the execution of the actions of an agent is totally flexible. 

While some simulations allow an agent to execute multiple actions in parallel, 

others may require the notion of a simulation step, in which one action is executed 

at each step. 

Jason also provides some flexibility in its execution mode, which can be 

either asynchronous or synchronous. In the asynchronous mode, each agent 

executes its next reasoning cycle as soon as the previous cycle has finished. In the 

synchronous mode, each agent performs exactly one reasoning cycle at every 

global simulation step. 

Comparing the basic aspects of the Jason formalism with DEVS, a few 

remarks can be drawn: 

 

• In Jason, there are two distinct kinds of elements: environment and 

agents. In DEVS, there is only the notion of systems. 

• In Jason, time is not explicitly modeled. For example, one cannot 

specify how long an action takes to be executed. 

• Jason provides more specific constructs for implementing complex 

cognitive agents. DEVS provides a lower level language. 

• Jason provides multiple ways to execute a simulation model. In 

DEVS, the result of a simulation derives entirely from the simulation 

model. 

 

2.3.2  
SeSam 

SeSam (Shell for Simulated Agent Systems) (Klügl and Puppe 1998) is a 

generic purpose multi-agent simulation platform. One of its main focuses is to 

provide a modeling and simulation tool that is easy to use, not requiring deep 

programming knowledge. 
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Simulation modeling is done with three types of objects: world, agents and 

resources, as illustrated in Figure 2.7. All objects have an internal state defined by 

a set of variables. In each simulation there may be only one world. The notion of 

world is similar to the notion of environment in most MAS. Agents are active 

entities which interact with the world by sensing it and acting on it. Finally, 

resources are static and passive objects that are accessed and manipulated by the 

agents. Note that the world inherits the behavior from the agent type. This means 

that the world is active and can change with time, even if there is no agent acting 

on it. 

 

 

Figure 2.7 – Object Types in SeSam. Source: (Klügl 2009), p. 485. 

 

Behaviors are defined by a set of graphs in which nodes represent activities 

and edges represent transition rules, as depicted in Figure 2.8. It is interesting that 

the behavior of an agent can be composed of multiple activity graphs. This 

provides a means of composing behaviors of agents from smaller behavior 

definitions. These activity graphs are called reasoning engines in SeSam 

nomenclature. 

All reasoning engines of a simulation object are executed in parallel. Each 

reasoning engine may have only one activity being executed at a time. The 

transition rules define the conditions on which the reasoning engine terminates an 

activity and starts the next one. Each transition rule defines a Boolean expression 

that is evaluated at every simulation step. When a transition rule connecting an 

executing activity to another one becomes true, the executing activity is 

terminated and the other is started. Note that, when executing an activity, multiple 

transition rules may be evaluated as true concurrently. In this case, some sort of 

tiebreak rule must be applied. 
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Figure 2.8 – Behaviors in SeSam 

 

Since activity graphs can become quite large, SeSam provides means for 

hierarchical behavior composition, where it is possible to define composite 

activity nodes, which contain themselves another activity graph. 

An activity encapsulates three sequences of actions: start actions that are 

performed when the activity is selected anew, standard actions that are performed 

once every time step as long as the agent is executing that activity, and 

termination actions that are executed for cleaning up when the activity is finished. 

An action is basically a nested set of primitive calls. The transition rules are also 

defined by Boolean expressions built of primitive calls. 

Primitive calls are the basic building blocks of the dynamic models of 

SeSam. They connect the model to the underlying programming language, which 

is Java in this case. Each primitive is implemented as a Java class with a method 

named execute. They also define the input and output argument types. The 

primitive categories are: (1) action primitives, which are used to manipulate the 

agent’s internal state or environment; (2) sensor primitives, which collect 

information from the agent’s environment; (3) computational primitives, which 
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provides computations of higher or lower complexity; (4) user primitives, which 

consist of macros that combine calls to other primitives. 

Although seemingly complex, this behavior structure allows the separation 

of dynamic models in two levels: the lower level, which requires Java 

programming skills, and the higher level, in which the lower level primitives are 

used as building blocks and no programming skills are necessary. This is an 

attempt by SeSam to make simulation more accessible to a broader class of 

researchers and businesses. 

SeSam provides a third and higher modeling level in which the user defines 

a full simulation experiment. Once all the definitions for agents, world and 

resources are complete, the user defines a situation. A situation is basically a set 

of instance descriptions defining all instances of agents, resources and the world 

that are going to compose the simulation. Additionally, the user may define other 

properties of his experiment, such as the values that are going to be observed 

during the simulation execution. Although interesting, the details of this level of 

modeling are out of the scope of this work and will not be detailed further. 

Comparing the basic aspects of SeSam with the DEVS formalism, a few 

remarks can be drawn: 

 

• In SeSam, like DEVS, all simulation elements are specializations of 

the same abstract type object. 

• In SeSam, time is not explicitly modeled. Every action is scheduled 

by a global time step mechanism. For example, one cannot specify 

directly how long an action takes to be executed. It is necessary to 

implement a loop that counts the time steps. 

• SeSam does not restrict the behavior of agents to any particular 

format. 

• SeSam provides means for composing object states and behaviors. 

• Behaviors are defined intuitively in the form of graphs, which are 

similar to workflows, but without parallel activity execution. 
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2.4  
Workflows and Planning 

Workflows are activities involving the coordinated execution of multiple 

tasks, where each task defines some work to be done by a person or a software 

system (Casati et al. 1995). Workflows can be very interesting to serious games 

because business processes are usually modeled as workflows. In fact, integrating 

serious games with the so-called business process management (BPM) systems is 

likely to bring many benefits for personnel training and business planning. 

Workflows are usually represented by flow charts. A flow chart is basically 

a graph notation for representing procedures. It uses boxes to represent events that 

change some data and diamonds to represent decisions, which may change the 

direction of the process (Sowa 2000), as depicted in Figure 2.9. A workflow is a 

specific case of a flow chart in which the events are actions executed by some 

participant. Therefore, workflows are basically structured sets of actions (van der 

Aalst et al 2003). 

 

 

Figure 2.9 – A Flow Chart 

 

Artificial Intelligence (AI) planning, or simply planning, is also an area of 

high interest to serious games. It is also an old Computer Science area. Plans 

traditionally refer to plans of action, which can be often represented in the form of 

workflows. The ability to dynamically generate workflows to pursuit specific 

objectives is widely used in gaming to model the behavior of intelligent 

automated characters. 

Most of the pioneer work in the planning area, such as STRIPS (Fikes, 

Nilsson 1971) and NOAH (Sacerdoti 1977), was devoted to automatic planning in 

deterministic domains. These planners take as input the current state of the world, 

a set of possible actions with their corresponding pre- and post-conditions and a 
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goal proposition. Their objective was to output a course of actions that would take 

the world from its initial state to another state where the goal proposition is true.  

These early planners assumed that the initial world state was entirely 

known, that the world state would not be altered by any other factor during the 

execution of the plan and that the effects of actions were always deterministic. 

Those are rather restrictive assumptions. Later work tried to relax some of them 

and to plan under uncertainty (Blythe 1999). Later work also allowed the design 

of workflows for situations with those uncertainty factors, where a planner 

mechanism incrementaly synthesizes new pieces of workflow during the 

workflow execution (Fernandes et al. 2007). 

Even though most of the work in planning is devoted to automatic planning 

algorithms, there is much more to planning than that. Serious games could also 

benefit from much of the work that has been done in plan evaluation, plan 

recognition (Kautz 1991), hierarchical planning (Erol 1995; Giunchiglia et al 

1997), searchable plan repositories and many other interesting planning problems. 

 

2.5  
Summary 

This chapter briefly overviewed a few techniques and systems, selected 

from the areas of gaming, modeling and simulation, multi-agent systems and 

planning. The techniques and systems include game loops, DEVS, cellular 

automata, Jason, SeSam and workflows, all of which will be referred to 

throughout the rest of the thesis. The DEVS simulation formalism serves as the 

basis for the Process-DEVS formalism, described in chapter 3. In the same 

chapter, the properties of Jason and SeSam platforms are also referred to in the 

discussion preceding the formal definition of Process-DEVS. Chapter 4 defines 

how workflows, cellular automata and multi-agent systems can be modeled on top 

of Process-DEVS. Finally, game loops are used in the InfoPAE implementation 

case described in chapter 5. Also in that chapter, it is shown how traditional 

simulation models can be integrated with the specialized data structures of 3D 

renderers used in modern games. 
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