
4 Integrating Existing Formalisms 80

4
Integrating Existing Formalisms

The previous chapter introduced a framework for modeling interactive

simulations based on a discrete-event approach. This chapter shows how to

implement some of the common dynamic modeling formalisms on top of this

framework. The formalisms were chosen according to the requirements

enumerated in section 1.3.

Section 4.1 describes how to define a simulation process from a workflow

description. Section 4.2 provides a modular way for modeling processes that act

on cell spaces. Section 4.3 explores how to model multi-agent systems. Finally,

Section 4.4 extracts some knowledge from these three sections about interesting

patterns in which to structure processes in a simulation for greater modularity.

Section 4.5 summarizes the chapter.

4.1
Workflows

As it was mentioned in section 2.4, action plans are usually represented as

workflows in AI planning, which is increasingly being adopted in game AI, not

only for serious games but also for entertainment games (Nareyek 2004).

Therefore, it would be interesting to be able to simulate workflows on the

Process-DEVS formalism thereby allowing the use of automatic planners within

the simulation logic.

Additionally, most of the so-called Business Process Management (BPM)

systems represent business processes as workflows (Weske 2007). In fact,

business process simulation (BPS) provides a more powerful way of analyzing the

performance of business processes than static analysis tools and methods (Tumay

1996; Modarres 2006). Therefore, being able to simulate workflows would allow

serious games based on Process-DEVS to participate in the optimization and

reengineering of business processes.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 81

Since this work is focused on the requirements of serious games which are

not so common in entertainment games, the ability to simulate business processes

will be used as the main motivation.

4.1.1
Motivation: Business Process Modeling

In business administration, almost all kinds of organizations have developed

the need for formally expressing their activities. In fact, standardization of

business processes becomes crucial for organizations to keep control of what is

happening as they become larger and more complex. In order to meet that goal,

the adoption of the so-called Business Process Management (BPM) systems has

grown significantly over the years (Weske 2007).

Testing the quality of business processes and the performance of the teams

responsible for executing them is important to ensure efficiency. Beside other

initiatives, such as field exercises, the use of computational simulation can be a

cost-effective and efficient mechanism to help testing, validating, improving and

reengineering business processes. Simulation can be used for different purposes

such as estimating, in advance, if there will be enough resources and time for

executing a specific action or supporting complex decisions when there are too

many possibilities. One additional benefit of simulation is the possibility of

simulating how the environment and other entities will respond to the execution of

the business process. As an example, it is extremely important to anticipate the

behavior of physical phenomena, such as the dispersion of leaked chemical

products in the environment, considering a business process to handle this kind of

emergency scenario.

In the context of computer serious games focused on training, it is also

important to evaluate whether a given player has taken the proper decisions during

play. Therefore, for this kind of player performance evaluation, it seems natural to

model player activity as workflows. This would help comparing his actions with

predefined business processes or action plans considered as the right way to

handle the situation.

One other direct benefit of integrating workflows with simulation is the

possibility of detecting flaws in established business processes and help

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 82

improving them. In fact, simulation could be integrated in a cyclic way with the

business planning process as illustrated in Figure 4.1.

Figure 4.1 – The role of simulation in the planning process

In the context of this work, integrating workflows with other simulation

formalisms mean to model workflows on top of Process-DEVS, introduced in

chapter 3. Since previous research work has suggested that discrete-event

simulation is the most adequate tool for simulating business processes (Tumay

1996), Process-DEVS should be adequate for the task.

Since there are numerous formalisms for workflow representation (van der

Aalst 2003; Weske 2007), it is necessary to select one first.

4.1.2
A Discussion on Workflow Representation

Since there are many different languages and representations for workflows,

this section starts by describing the workflow representation used here.

A workflow is essentially defined by a set of actions and a control structure.

The actions define what should be done and the control structure defines in which

order the actions should be executed in a given situation (van der Aalst 2003). The

control structure is usually defined in the form of a graph. Although some

representations restrict this form to a tree structure, this is clearly a specific case

of the graph structure. Therefore, for the sake of generality, we shall represent

workflows as graphs. The nodes of the graph represent either an action or a

control flow pattern. The most common types of patterns are splits and joins, in

various flavors (van der Aalst 2003). The edges of the graph are connections that

inform, for any given node, which nodes should be triggered next when its

execution finishes. There are many different workflow representations which

differ from each other in some of the patterns they allow. For the sake of

simplicity, we shall consider only the five basic patterns defined in (van der Aalst

et al. 2003): sequence, parallel split, synchronization, exclusive choice and simple

merge. Figure 4.2 shows a very simplified version of a contingency plan for a

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 83

situation where some oil has leaked into the sea. This example is composed with

these five basic patterns.

Figure 4.2 – Workflow for an oil-leak situation with the five basic patterns

At the start of the plan, there are two parallel split nodes (PS), meaning that

the actions of stopping the leak, installing containment barriers and detecting the

oil type should be started in parallel. After the leak has been stopped, the sequence

pattern states that the action of finding the causes should be started. After the

actions of installing the barrier and detecting the oil type have finished, the

workflow reaches a synchronization point (Syn). That means that both actions

must finish before the workflow execution can continue through that path. After

both actions have finished, the exclusive choice (EC) pattern queries the

environment state to find out whether the barrier actually prevented the oil from

reaching the coast. If the oil has not reached the coast, the recovery (of the oil

from the sea) procedure is started. Otherwise, a cleaning (of the oil from the) coast

procedure should be executed. Either the recovery procedure or the coast cleaning

action will be executed, after which the simple merge (SM) pattern allows the

workflow to continue through its outgoing path. After both the proper procedure

has been executed and the causes of the leak have been found, a final report is

produced. In order to guarantee that these two preconditions are met, there is a

synchronization point right before the final report production action.

Both actions and each of the basic patterns, except for the sequence pattern,

are nodes in the workflow graph. Each node connects some incoming nodes to

some outgoing nodes. When a node finishes its execution, it may trigger some of

its following nodes. Likewise, a node is triggered only when some incoming node

has finished its execution. Table 4.1 lists some of the characteristics of each basic

pattern.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 84

pattern number of

incoming nodes

number of

outgoing nodes

trigger condition following activity

sequence 1 1 completion of

incoming node

trigger outgoing

node

parallel split 1 n completion of

incoming node

trigger all

outgoing nodes

synchronization N 1 completion of all

incoming nodes

trigger outgoing

node

exclusive choice 1 2 (or n) completion of

incoming node

trigger one of the

outgoing nodes

simple merge N 1 completion of any

incoming node

trigger outgoing

node

Table 4.1 – Characteristics of basic workflow patterns

The number of incoming and outgoing nodes indicates the number of

incoming and outgoing connections each pattern may have. The trigger condition

indicates the condition upon which the pattern is triggered. Finally, the following

activity describes which of the outgoing nodes should be triggered after the

pattern is triggered.

Optionally, the parameters or inputs of the individual actions are also

represented. Likewise, an action may also produce some data as output. That data

could be consumed either by another action executed after it or by some

conditional split operator in the control flow. Therefore, in order to represent

action input and output, a data flow may also be represented. Note that the data

flow does not follow the same paths as the control flow. However, it should

obviously obey the ordering restrictions imposed by the control flow, since an

action cannot consume output data from another action that has not yet been

executed.

The simplest way to model the data flow is to define an environment state

which is accessible from the workflow process and its actions. Each time an

action or a control operator needs some input data, it can get it from this

environment state. Likewise, when an action produces some data, it should store it

in the environment state so that later actions can read it. Hence, any information

stored in the environment state can be used by the exclusive choice operators to

evaluate their conditions when they are triggered. Environment states are most

commonly defined as a set of variables. Figure 4.3 depicts a workflow with an

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 85

environment state of this kind. It shows actions writing and reading from variables

and one exclusive choice operator reading from them.

Figure 4.3 – Workflow with an environment state defined by the variables v1, v2 and v3

Most workflow representations do not define the time at which the actions

should be executed, and how long they will take to finish. In fact, many

representations assume that actions are atomic.

Workflows do not necessarily define how actions affect the environment.

One approach is to define actions through their pre- and post-conditions,

following the tradition of AI planning systems (Fikes and Nilsson 1971). But note

that this representation still assumes actions to be atomic. However, the

assumption that actions are atomic may be too restrictive. For example, consider

the action of walking. It may not be realistic to change the position of the

character from the origin to its destination in one single instantaneous step.

Instead, it is more realistic to simulate the trajectory of the character to the

destination point through multiple state changes, so that his trajectory may be

observed. If the environment model requires that actions have duration and make

changes to the environment during their executions, it is necessary to model

actions as processes in time. For this purpose, the definition of a process in section

3.3 welcomes in hand. In fact, process-oriented simulation, on which Process-

DEVS is based, provides an excellent basis for simulating workflows. Some

previous work based on object-oriented simulation had to extend the basic

formalism to accommodate workflows (Wagner et al. 2009).

Modeling workflow actions as processes makes the workflow itself a form

of process composition. Going one step further, the whole workflow may also

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 86

itself be represented as a process. Since the Process-DEVS framework allows

processes to fork children processes during their execution, the workflow process

can be modeled as a process which orchestrates the execution of its children

processes, namely the action processes. Figure 4.4 depicts this process structure.

Figure 4.4 – Workflow and action processes

The workflow process needs to be informed when an action process is

finished executing its action, so that it can continue with the workflow execution.

In order to implement that, all action processes must output an action_finished

event, informing the workflow process when they are finished.

By taking advantage that Process-DEVS also provides the notion of

environment, it will be naturally used to represent the notion of environment state

of the workflow processes. A specific environment view is provided by the

environment to serve as the environment state, as the workflow process can

perceive it. The action processes may, but are not limited to, perceive the

environment through the same view. As any other kind of process, the action

processes change act on the environment by sending events to it.

This way of representing workflows has two main advantages:

• By separating the workflow control logic from the execution of

actions, a higher level of modularity is achieved.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 87

• Representing both workflows and actions as processes allows

hierarchical workflow composition. A workflow action may be a

sub-workflow.

4.1.3
A Formal Workflow Model

This section introduces a formal workflow model in three stages. First, it

introduces the simpler notion of workflow. Then, it defines the notion of

execution states. When a workflow is executed, it produces a sequence of

execution states as its nodes are triggered. Finally, it defines the notion of

workflow process as a process in the sense of section 3.3.1.

Workflow Definition

A workflow is defined as a tuple WF = 〈A, ES, N, E, entry, exit, type〉, where

(1) A is the set of action processes that WF can execute

(2) ES is the set of environment states that WF can perceive

(3) N is the set of nodes of the workflow graph of WF

(4) E ⊆ N × N is the set of edges of the workflow graph of WF

(5) entry ∈ N is the entry point of WF

(6) exit ∈ N is the exit point of WF

(7) type: N→T is a function that assigns to each node n in N a node type in T

The set A define the actions WF can execute. These actions are actually

action processes that are forked by the workflow process when an action is

executed.

The situation in which the workflow process is embedded is the simulation

environment, as defined in section 3.3.1. The set ES defines the states in which the

workflow process can perceive the environment. The environment state is queried,

for example, in the exclusive choice pattern (van der Aalst 2003), to determine

which actions are executed next.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 88

The workflow control structure is defined by a graph, whose vertices are

nodes that belong to the set N and whose edges belong to the set E. The entry

point of the workflow is the node in which the execution starts. Likewise, the exit

point is the node where it finishes.

Two operators are defined to access the incoming and outgoing nodes of

any given node in the workflow graph:

(8) outgoing_nodes(n) = { m∈N | (n, m) ∈ E }

(9) incoming_nodes(n) = { m∈N | (m, n) ∈ E }

Given a node n ∈ N, type(n) assumes one of the following values:

(10) action(ap), where ap ∈ A, associates action process ap with node n. In this

case, n is called an action node of WF. There must not be two different

action nodes with the same action process:

(∀n1,n2 ∈ N) (type(n1) = type(n2) = action(ap) ⇒ n1 = n2)

(11) parallel_split, which indicates that n is a parallel split node of WF.

(12) syncronization, which indicates that n is a synchronization join node of WF.

(13) exclusive_choice(ϕ), which indicates that n is a parallel split node of WF,

with choice function ϕ: ES → outgoing_nodes(n).

(14) simple_merge, which indicates that n is a simple merge join node of WF.

As defined above, the workflow graph may have an arbitrary structure,

which poses considerable difficulties when it comes to defining the notion of

workflow process and its operational semantics. We therefore introduce the

concept of well-formed workflows and, at the same time, a convenient notation to

express them.

Let A be a set of action processes. The set of well-formed workflow

programs over A and the set of well-formed workflows over A are inductively

defined as follows:

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 89

(15) An action process a in A is a well-formed workflow program over A that

defines the well-formed workflow

WF = 〈{act}, ES, {act}, ∅, act, act, t〉

 where t(act) = action(act)

In the next definitions, let wf1 and wf2 be two well-formed workflow

programs and let WF1 = 〈A1, ES1, N1, E1, entry1, exit1, type1〉 and

WF2 = 〈A2, ES2, N2, E2, entry2, exit2, type2〉 be the well-formed workflows

they define. Assume that ES1=ES2, that is, WF1 and WF2 have the same set

of environment states. Define ES=ES1=ES2. Then:

(16) wf1 → wf2 is a well-formed workflow program that defines the well-formed

workflow

WF = 〈A1 ∪ A2, ES, N1 ∪ N2, E1 ∪ E2 ∪ {(exit1, entry2)}, entry1, exit2, t〉

where t(n) = type1(n) if n ∈ N1

 = type2(n) if n ∈ N2

(17) wf1 // wf2 is a well-formed workflow program that defines the well-formed

workflow

WF = 〈A1 ∪ A2, ES, N1 ∪ N2 ∪ {sp, syn}, E1 ∪ E2 ∪ {(sp, entry1), (sp,

entry2), (exit1, syn), (exit2, syn)}, sp, syn, t〉

 where

 t(sp) = parallel_split

 t(syn) = synchronization

 t(n) = type1(n) if n ∈ N1

 = type2(n) if n ∈ N2

(18) Let Φ: ES → {true, false} be a choice function on ES. Then, Φ ? wf1 : wf2 is

a well-formed workflow program that defines the well-formed workflow

WF = 〈A1 ∪ A2, ES, N1 ∪ N2 ∪ {ec, sm}, E1 ∪ E2 ∪ {(ec, entry1), (ec,

entry2), (exit1, sm), (exit2, sm)}, ec, sm, t〉

 where

 t(ec) = exclusive_choice(ϕ), where ϕ: ES → {first1, first2} and

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 90

 ϕ(es) = first1 if Φ(es) = true

 = first2 if Φ(es) = false

 t(sm) = simple_merge

 t(n) = type1(n) if n ∈ N1

 = type2(n) if n ∈ N2

The well-formed workflows are informally depicted in Figure 4.5. Their

entry and exit nodes are indicated by entering and leaving arrows respectively.

Figure 4.5 – Workflow definition operators and their graphical representation

As an example, the well-formed workflow illustrated in Figure 4.2 is

defined by the expression:

(("Stop Oil Leak" → "Find Leak Causes") // (("Install Barriers" //

"Detect Oil Type") → ("If Oil is Contained" ? "Recovery Procedure"

: "Clean Coast Procedure"))) → "Evaluate Damage ..."

A well-formed workflow has the property informally stated as follows: no

node in the workflow is reached by more than one execution thread, with the

exception, of course, of synchronization nodes. This is easily verifiable because

the only kind of node that forks execution threads is the parallel split, which is

only produced by the parallel sub-graph composition operator, which always put a

synchronization node where the two threads meet. This is necessary because it is

an assumption of the simple merge pattern that none of its incoming branches is

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 91

ever executed in parallel. Also, most workflow systems do not allow multiple

concurrent execution instances of the same action (van der Aalst 2003).

From now on, we assume that all workflows are well-formed.

Workflow Execution States

Before defining the workflow process in the format of the Process-DEVS

formalism, we shall define first the notion of workflow execution states, which

will serve as basis for the definition of the workflow process.

The execution of a workflow is formally defined as a sequence of execution

states and may yield different results according to the execution environment,

which we shall refer to simply as the environment. During workflow execution,

the environment may be altered by an external process. Therefore, the current

environment state is also part of the workflow execution state.

Let WF = 〈A, ES, N, E, entry, exit, type〉 be a workflow. An execution state

of WF is a triple WS = 〈Aexec, Synstate, ω〉, where

Aexec ⊆ A

is a set that contains all action nodes that are in execution in WS.

Synstate: Syncs → 2
N

is a function that defines the internal states of all synchronization

nodes, where

 Syncs = { s ∈ N | type(s) = synchronization } is such that

 (∀s∈Syncs) (Synstate(s) ⊆ incoming_nodes(s))

ω ∈ ES ∪ {not_started}

is the environment state of WS.

The set Aexec keeps all action nodes whose corresponding processes have

been forked but have not finished yet. Synstate is responsible for informing the

internal state of all synchronization nodes. These nodes need to keep an internal

state because they only trigger their outgoing node when all of their incoming

nodes have finished executing. Therefore, their internal state consists of a subset

of their incoming nodes, informing which ones have already finished executing.

This makes it possible to know precisely at which execution states the outgoing

node of a synchronization node is triggered. Finally, ω is the current environment

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 92

state, which is used to determine the right outgoing path of an exclusive choice

node when it is triggered. The special value not_started is used in the initial

execution state, when the workflow process has not yet started.

The initial execution state of WF is a state of the form WS0 = 〈∅, Syn0,

not_started〉, where Syn0(s) = ∅, for any synchronization node s of WF.

The execution state of a workflow changes when one of its nodes is

triggered. When a node in a workflow is triggered, it may cause other subsequent

nodes to be triggered in cascade. As an example, triggering a parallel split node

causes its outgoing nodes to be triggered. Once the cascade of node triggering has

finished, the workflow reaches a new execution state. The whole cascade of

triggers fired by the initial node trigger is considered atomic and characterizes one

single execution state transition.

In what follows, let WF = 〈A, ES, N, E, entry, exit, type〉 be a workflow and

WS = 〈Aexec, Synstate, ω〉 be an execution state of WF.

The function trigger: WS × N × (N ∪ {nil}) → WS, where WS is the set of

all states of WF, formalizes the effects of triggering a node. The function is

recursive to represent the triggering cascade. Intuitively, if trigger(WS, n, nprev) =

WSnext, then n represents the node that is being triggered, nprev is the incoming

node that caused the trigger and WSnext is the next execution state. Note that nprev

may assume the special value nil. That happens when n is the entry point of the

workflow and therefore has no incoming nodes.

The function trigger is defined according to type of n (note that equations

(21) and (23) assume a specific cardinality of outgoing_nodes(n), which is

guaranteed by the constraints imposed on the workflow graph structure):

(19) If type(n) = action(ap), then

trigger(WS, n, nprev) = 〈Aexec ∪ {ap}, Synstate, ω〉

(20) If type(n) = parallel_split, then

trigger(WS, n, nprev) = trigger(…trigger(trigger(WS, n1, n), n2, n)…, nn, n)

where outgoing_nodes(n)={n1, n2, … , nn}

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 93

(21) If type(n) = synchronization, then

trigger(WS, n, nprev) = WS if n = exit

= chg_sync_state(WS, n, ψ) if n ≠ exit ˄ ψ ≠ incoming_nodes(n)

= trigger(chg_sync_state(WS, n, ∅), nnext, n) otherwise

where

 chg_sync_state(WS, n, s) = 〈Aexec, Synstate ← (n, s), ω〉

 ψ = Synstate(n) ∪ {nprev}

 outgoing_nodes(n) = {nnext}

(22) If type(n) = exclusive_choice(ϕ), then

trigger(WS, n, nprev) = trigger(WS, ϕ(ω), n)

(23) If type(n) = simple_merge, then

trigger(WS, n, nprev) = WS if n = exit

 = trigger(WS, nnext, n) if n ≠ exit

 where outgoing_nodes(n) = {nnext}

Now that the semantics of node triggering is defined, it is possible to specify

how a workflow is executed in the discrete-event simulation environment

described in section 3.3.

Workflow Process

The workflow process keeps track of the workflow’s execution state and

forks action processes in order to simulate the actions described in the workflow.

Therefore, the responsibility of the workflow process is to determine the time each

action should be executed, according to the workflow control logic. The actual

execution of the actions is delegated to the action processes, which, in turn, have

the responsibility of notifying the workflow process of the exact time they finish

their execution by sending an action_finished event to it.

When the workflow process is notified about the completion of an action, it

computes the next execution state of the workflow and forks the corresponding

action processes if some action was started by this execution state transition.

These execution state transitions occur instantaneously with respect to simulation

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 94

time. Therefore, it is assumed that an action starts at the same time instant its

previous action finished. Just before computing a transition, the workflow process

needs to update its internal perception of the environment state, so that it always

considers the right environment state when computing a transition. When a

transition produces an execution state WS with Aexec = ∅, the workflow process is

finished. In this situation, there are no more executing actions and, therefore, no

more actions will be started because the workflow process will not receive any

more action_finished events that could possibly trigger them.

Let WF = 〈A, ES, N, E, entry, exit, type〉 be a workflow. Using the formalism

introduced in section 3.3.1, the workflow process for WF is the tuple

WP = 〈S, X, Y, E, P, δint, δext, λ, ρ, ta〉

where

(24) S = WS × 2
A
, where WS is the set of all possible execution states of WF

The internal state of the workflow process has the form (ws, new_acts),

where ws is the current execution state and new_acts is the set of actions started in

the last execution state transition.

(25) X = {action_finished(ap) | ap ∈ A} is the set of input events

(26) Y = {action_finished(WP)} is the (unitary) set of output events

(27) E = ES

(28) P = A

The definitions of these components are straightforward. The workflow

process can receive events of the form action_finished(ap) from its children

processes when they finish executing their actions. Likewise, considering that this

workflow process can be a child of another workflow process, it should send an

event of the same type when the workflow has finished its execution. The

environment view of the workflow process is defined by the set of environment

states that the workflow can perceive. Finally, the set of possible children

processes is defined by the set of workflow actions.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 95

The internal transition function δint is defined as follows:

(29) For each state WS = 〈Aexec, Synstate, ω〉 of WF,

δint((WS, out), env) = finished if ω ≠ not_started

 = (WS’, A’exec) if ω = not_started

where WS’ = 〈A’exec, Syn’state, ω’〉 is the execution state of WF such that

WS’ = trigger(〈Aexec, Synstate, env〉, entry, nil)

Recalling the operational semantics defined in section 3.3.2, the internal

transition function δint is called at the time a process is started. This function

defines the first execution state transition of WP. It triggers the entry node of the

workflow. When δint is called for the second time, which is characterized by

ω ≠ not_started, it finishes the process. During all workflow execution, only the

external transition function δext is used.

The external transition function δext is defined as follows:

(30) For each state WS = 〈Aexec, Synstate, ω〉 of WF,

δext(((WS, out), e), env, action_finished(ap)) = (WS’, A’exec – Aexec)

where

WS’ = (〈Aexec – {ap}, Synstate, env〉, ∅) if ap = exit

 = trigger(〈Aexec – {ap}, Synstate, env〉, nnext, ap) if ap ≠ exit

where {nnext} = outgoing_nodes(ap)

This function is called when WP receives an action_finished(ap) event.

When that happens, the action that has just finished is removed from the set of

executing actions in WS and the environment state is updated to the current value

env. If ap is not the exit point of the workflow, its outgoing node is triggered.

Besides changing the execution state of the workflow, this node triggering may

also cause one or more actions to start execution. The set of started actions is

found by subtracting the sets of executing actions of the next execution state

WSnext from WS.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 96

(31) For each state WS = 〈Aexec, Synstate, ω〉 of WF,

λ((WS, new_acts)) = {action_finished(WP)} if Aexec = ∅

 = ∅ if Aexec ≠ ∅

This function makes the workflow process send the action_finished(WP)

event when the set of currently executing actions becomes empty, which is the

condition for finishing the workflow process.

(32) For each state WS = 〈Aexec, Synstate, ω〉 of WF,

ρ((WS, new_acts)) = (new_acts, ∅)

The action processes corresponding to the actions started in the last

execution state transition are forked.

(33) For each state WS = 〈Aexec, Synstate, ω〉 of WF,

ta((WS, new_acts)) = ∞ if Aexec ≠ ∅

 = 0 if Aexec = ∅

This function states that the internal transition function δint should be called

for the second time (the first time is at the start of WP) only when the workflow

has reached its finish condition Aexec = ∅.

This process models all the workflow control logic. When the workflow

process is started, the δint function (definition (29)) is invoked. Then, as the

workflow executes, the δext function (definition (30)) is invoked multiple times

until the workflow has finished its execution. Each of those calls produces a new

execution state. The ρ function (definition (32)) informs which action processes

are forked after each execution state transition. When the workflow has finished

its execution, the δint function is invoked again to finish the process and the λ

function (definition (31)) outputs the event action_finished(WP). The time-

advance function (definition (33)) assures that the δint function is only invoked for

the second time when the workflow execution has finished (i.e. when Aexec = ∅).

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 97

4.1.4
Workflow Composition

As defined in the last section, a workflow is a form of process composition,

where the definitions of multiple processes are combined into the definition of one

larger process, namely the workflow process.

As a consequence of the way workflows were modeled, it is trivial to

compose a workflow with sub-workflows. Since a workflow process is a process,

it can be used as an action process of another workflow, just like any other kind of

process. Hence, it is possible to compose workflows hierarchically. Note that, in

order to allow this form of composition, it is essential that the workflow process

outputs an action_finished event when the workflow execution has finished. In

fact, its output function (definition (31)) does precisely that.

4.2
Cell Space Processes

It was mentioned in section 2.2.2 that cellular automata (CA) have been

extensively used to model the dynamics of anthropic and natural phenomena. A

large variety of those models can be found in the GIS literature. The ability to

execute such models in a serious game framework goes in the line of integrating

different formalisms and giving these games well founded simulational realism.

Cell space models are a more general class of dynamic models that

comprises cellular automata, where the definition of local neighborhood and

transition rules are relaxed (Batty 2005). A cell space is a space representation

where the space is partitioned in a discrete set of cells. A cell is an atomic unit of

space which has a unique state at any given time. The idea of cell spaces is to

provide a discrete space representation for modeling dynamic spatial phenomena.

4.2.1
The Modularity Problem of Cellular Automata

Recalling the definition presented in section 2.2.2, a CA is defined by a

tuple 〈C, S, N, T〉, where C is the cell set, S is the state set, N is the neighborhood

function and T is the state transition function. This monolithic structure contains

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 98

both the representation of space and the representation of a dynamic phenomenon

that happens in that space.

Despite its simplicity, this way of representing dynamic processes on cell

spaces presents some limitations. Particularly, it does not allow external processes

to interfere with it. For example, imagine a CA that models the dispersion of oil

leaked into the sea. If a containment barrier is installed, it must interfere with the

dispersion process. In order to model this phenomenon with the strict CA

formalism, one has to combine both the logic of dispersion and the logic of

containment in the transition function of the CA. This makes the whole process

monolithic and therefore hurts the modularity and reusability of the model. The

notion of cell space models (Batty 2005), although more flexible than strict CA,

still is not capable of addressing that problem.

In order to accomplish that kind of modularity, it is necessary to break the

logic of state transitions of cells. For this purpose, the principles of process-

oriented simulation discussed in section 3.2.4 come in handy. The next section

describes how it can help solving the modularity problem in the context of the

Process-DEVS formalism.

4.2.2
Separating Behavior from Cell Space

In order to model cell space phenomena in Process-DEVS, it is necessary to

break the monolithic representation of cellular automata into two parts: the cell

space (CS) and the cell space process (CSP). The CS represents the physical

aspect of the CA and is, therefore, modeled as part of the simulation environment.

The CSP represents the behavioral aspect of the CA and is modeled as a process in

the sense of section 3.3.1. The idea is that the CSP periodically perceives the state

of the CS through an environment view and generates one or more events

manifesting its intentions of changing the CS state. When these events reach the

environment, they cause a state transition in the CS. This procedure is depicted in

Figure 4.6.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 99

Figure 4.6 – Breaking a CA into physical state (environment) and behavior (process)

The cell space is formally defined as

CS = 〈C, S, I, eff〉

where

C is the set of cells

S is the set of cell states

I is the intention set

eff: Φ × 2
(C × I)

 → Φ is the effect function, where Φ = { φ: C → S }

The set C contains all cells from the CS. At each point in time, every cell

must have a definite state from the set S. The cell space state is the state of the

entire CS, and it is defined by a function φ: C → S. For each cell c ∈ C, its state is

given by φ(c). The set Φ, containing all possible cell space states, defines the

environment view of the CSP, which is the way the CSP perceives the CS.

The I and eff properties define the way the CSP acts on the CS. The set I

defines the possible intentions the CSP can manifest for any given cell. Each time

the CSP intends to change the CS state, it manifests its intentions by sending an

event its ∈ 2
(C × I)

. That event consists of a set of pairs (c, i) in C × I. Each pair

indicates an intention i for a cell c. Once the its event reaches the environment, it

causes a state transition on the CS. The effect function defines the next cell space

state as eff(φcurr, its), where φcurr is the current cell space state.

Let CS = 〈C, S, I, eff〉 be a cell space. Let N, B, ∆t be cell space process

parameters, where

N: C → C
|N|

, where |N| is the neighborhood size and (∀c∈C)(c ∉ N(c)) is the

neighborhood function

B: S × S
|N|

 → 2
I
 is the behavior function

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 100

∆t is the time period

The cell space process for CS with parameters N, B, ∆t is defined as

CSP[N, B, ∆t] = 〈S, X, Y, E, P, δint, δext, λ, ρ, ta〉

where

S = 2
C × I

X = ∅

Y = 2
C × I

E = Φ

P = ∅

δint(s, φ) =U
Cc∈

{(c,i) | i ∈ B(St(c), (St(n1), St(n2), …)) and N(c)={n1, n2, …)}

δext((s, e), evt, φ) = s

λ(s) = {s}

ρ(s) = (∅, ∅)

ta(s) = ∆t

The neighborhood function N is defined exactly as in the basic CA,

described in section 2.2.2. The behavior function B defines the CSP’s intentions

for a cell, given the state of that cell and its neighbors. For notation simplicity, the

term |N| is used to denote the neighborhood size, which is assumed constant for

all cells, as in the basic CA definition. Finally, ∆t defines the periodicity the CSP

sends its intentions to the CS.

Considering the CSP dynamics in the Process-DEVS formalism, the CSP

periodically manifests its intentions by taking as input a CS state φ. The time

advance function ta is a constant function that always outputs ∆t. This will cause

the internal transition function δint to be invoked every ∆t time units. This function

takes as input the CS state and generates a set of intentions. These intentions are

stored in the internal state of the CSP. The output function λ makes every set of

intentions produced by δint be sent as an event to the environment. Note that the

output function λ returns the internal state itself, which is possible in this case

because S = Y.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 101

The CS and the CSP interact in a cyclic way. In each cycle, the CSP reads

the CS state to compute its intentions, which are sent to the environment as an

event. When the environment receives this event, a new state is computed for the

CS. This cyclic procedure produces a series of cell space states φ0, φ1, φ2, … ,

which is given by the recurrence relation φt+1 = eff(φt, δint(s, φt)).

Besides increasing modularity, separating a cellular dynamic model into a

CS and CSP does not cause a loss expressivity power when compared to

traditional CA. The following theorem proves that.

Theorem 1: For any CA = 〈C, S, N, T〉, one can define an equivalent CS-

CSP pair that produces the same sequence of cell space states.

Proof: Let us define a cell space CSca = 〈C, S, S, eff〉, where

eff(φt, itts) = φt+1 | φt+1(c) = s, if ∃!(c, s) ∈ itts

 = φt(c), otherwise.

Additionally, let us define a cell space process CSPca[N, bhv, 1], where

bhv(φt(c), (φt(n1), φt(n2), …)) = { T(φt(c), (φt(n1), φt(n2), …)) }.

Lemma: The CSca-CSPca pair produces the same sequence of cell space

states as CA.

Proof:

Let CSca=〈C, S, I, eff〉 and CSPca[N, bhv, 1]=〈S, X, Y, E, P, δint, δext, λ, ρ, ta〉

Given that CSca is at state φt, the next state φt+1 is given by

φt+1 = eff(φt, δint(s, φt))

Since the CSPca behavior function bhv always returns a unitary set, it

follows from the definition of δint for CSP’s that δint(s, φt) always contains exactly

one pair (c, s) for each cell c ∈ C, therefore, it follows from the definition of the

eff function:

φt+1(c) = s | (c, s) ∈ δint(s, φt)

From the definition of δint and bhv:

φt+1(c) = T(φt(c), (φt(n1), φt(n2), …)), where N(c)= { n1, n2, … }

This is exactly the same recurrent relation that defines the state sequence of

CA, as defined in section 2.2.2.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 102

The dissociation between physical state and behavior increases the

modularity of a cell-based simulation. This modularity brings reuse benefits, since

the same CSP can be used with different CS and vice-versa. Another

modularization benefit of this approach is the clear separation between the

behavior implementation and the internal data structures of the CS. This

separation is somehow imposed by Process-DEVS and is in accordance to the

principles of process oriented simulation, discussed in section 3.2.4.

The separation between behavior and physical representation is also an

important step towards integrating CS-based dynamic models with other modeling

formalisms. This is achieved by having multiple processes interacting with the

same CS, as in some agent oriented simulations. The next section discusses the

possibility of using multiple CSP’s with the same CS. A full example of how a

CSP can be integrated with other kinds of processes in a modular way is given in

chapter 5.

4.2.3
Composition of Cell Space Processes

In order to meet the requirement of realistic simulation models, cell space

processes (CSP) tend to become more complex. However, it is not desirable that

complex phenomena be modeled by monolithic complex CSP’s. Instead, it would

be much better if they were defined by a composition of simpler CSP’s. This kind

of modularity has three main benefits: (1) it facilitates model reuse; (2) it makes

models more intelligible; (3) it makes models easier to change and maintain. All

these features are important in the context of serious games design.

In order to exemplify the problem, let us consider the case of an emergency

situation where some amount of oil has leaked into the sea. In this specific

example, the oil position is modeled as a CS, where each cell has a real number

property, indicating the amount of oil in it. There are several factors that may alter

the oil configuration in the CS, such as the leak itself, dispersion on water,

evaporation, containment by barriers, recovery by pumps at sea, coast hitting,

coast cleaning procedures, and so on. All these factors could be modeled as a

single monolithic CSP. However, it is more desirable that each of them is

modeled as an individual CSP and then composed to produce the overall behavior.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 103

As an illustrative example, consider the case of integrating two CSP’s that

represent two of the above factors: CSPdisp, which models the oil dispersion, and

CSPcont, which models the oil containment caused by containment barriers. For

compatibility issues, we shall assume that both CSP’s use the same time step ∆t

and both are started at the same time instant. Therefore, they always produce

events at the same time instants.

CSPdisp models the oil dispersion by producing intentions of the form

(c, move(a, d)), where c is the cell where the oil is moving from, a is a positive

real indicating the amount of oil and d ∈ {N, NE, E, SE, S, SW, W, NW} is the

direction that indicates which of the eight cells in the Moore neighborhood will

receive the oil. The function dest: C × {N, NE, E, SE, S, SW, W, NW} → C

computes the destination cell from the origin cell and a direction. Each intention

causes the amount of oil at cell c to be decreased by a, and the amount of oil in

cell dest(c, d) to be increased by the same amount.

CSPcont models the oil containment. It produces intentions of the form

(c, block), where c is a cell which is blocked by a containment barrier and,

therefore, should not receive any amount of oil.

The problem in this example is how to compose these two processes in a

way they produce the correct oil behavior while keeping them independent and, if

possible, unaware of each other.

Parallel Composition

The simplest way to compose these two processes is to arrange them in a

parallel pattern, as illustrated in Figure 4.7. This way, each CSP updates the CS

independently, one after the other. Since both CSP’s send events to the

environment at the same time instants, the tie breaking function of the simulation

will determine which one gets executed first. The resulting series of CS states is

determined as in Figure 4.7. The first CSP reads the CS state φt and applies a

transition to the cell space, leaving it in an intermediate state φint. The second CSP

reads this intermediate state and generates another transition that will finally

produce the next state φt+1.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 104

Figure 4.7 – Parallel composition of CSP’s

This simple form of CSP composition has three limitations:

• There is no guarantee that a third process will not interfere with the

intermediate CS state φint.

• If the events of the two CSP’s interfere with each other, it may not

be possible for the second CSP to undo the effects of the first CSP

because the initial CS state φt was lost in the transition to the

intermediate CS state φint.

• This form of composition is not closed. Given two CSP’s composed

in parallel, it may not be possible to define one single CSP that will

produce the same effects.

Considering this simple parallel composition of CSPdisp and CSPcont, and

assuming that CSPdisp alters the environment before CSPcont in each cycle, the

weakness of this composition pattern is felt immediately. For instance, consider

that, in a given cycle, CSPdisp generates an intention (c, move(a, d)) and, on the

same cycle, CSPcont generates an intention (dest(c, d), block). These intentions are

conflicting, since CSPdisp wants to move oil into a cell that is blocked by CSPcont.

In this case, since CSPdisp has a higher priority, the oil would move to cell

dest(c, d), causing an inconsistent intermediate state. That may generate a

considerable problem because a third process might access this intermediate state.

Another problem is that this inconsistency must be resolved when CSPcont

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 105

generates the event (dest(c, d), block). The best solution would be to move the oil

back to its original cell, but that is not possible because the initial state is no

longer known, and it is impossible to determine the origin cell.

This brief example illustrates two of the problems identified for this parallel

form of CSP composition. The third problem is that it is not closed. This is easily

proved by the following counter-example:

Consider a CS = 〈C, S, I, eff〉 where:

C = {c} is the set of cells, where c is the only cell in this cell space

S = ℜ is the state set. The cell c has a real number defining its internal state

I = {increase} is the intention set with only one possible intention

eff(φ, ∅) = φ

eff(φ, (c, increase)) = (φ ← (c, φ(c)+1))

This CS has a single cell c, which has a real number as its state, and accepts

a single intention increase. When received, this intention increases the cell state

by one.

Consider also a CSP[N, B, ∆t], where N(c) = [], B(s, ns) = {increase} and

∆t = 1, where [] represents a tuple of size zero. This CSP always outputs the

intention increase, regardless of the previous CS state.

Now construct a simulation with the just defined CS as part of the

environment and two exact copies of this CSP, composed in parallel, as in Figure

4.7. It is easy to check that, at each time step, the state of c will be increased by

two. However, it is impossible to write a single CSP that will cause the state of c

to be increased by two because the CS definition only allows one possible

intention increase, which increases the value of c by only one.

Composition with a Conflict Resolver

In order to overcome the problems with pure parallel composition of CSP’s,

we propose the use of a conflict resolver (CR), as depicted in Figure 4.8. In order

to formally define CR, we use the same notation for lists introduced in section

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 106

3.3.1 (for the definition of I/O processes). The CR is a process, defined as CR[n,

rf] = 〈S, X, Y, E, P, δint, δext, λ, ρ, ta〉, where the parameters are

n is the number of CSP’s in the composition

rf: ITT
n
 → ITT is the conflict resolver function, where ITT = 2

C × I

and the Process-DEVS process properties are

S = ITT* × {0, 1, … , n}, where ITT* is a list of elements of ITT

X = Y = ITT

E = Φ

P = ∅

δint((itts, i), φ) = ([], 0)

δext(((itts, i), e), φ, ittsnew) = ([ittsnew | itts], i+1)

λ(([itt1, itt2, … , itti], i)) = rf(itt1, itt2, … , itti) if i = n

 ∅ if i ≠ n

 ρ(s) = (∅, ∅)

 ta((itts, i)) = 0 if i = n

 ∞ if i ≠ n

This process stores the intentions issued by different CSP’s. When it has

received the intentions from all n CSP’s, it applies the conflict resolver function to

determine the final intentions of this set of CSP’s. Since the CR processes needs

to receive n intention events before computing the final result, it is important that

all CSP’s work at the same frequency (i.e. all of them must have the same ∆t).

Hence, it is guaranteed that, in a sequence of n received events, there will be one

from each CSP.

In this form of composition, the CSP’s are totally unaware of the CR. This

helps keeping a high level of modularity. All of them take as input the same CS

state to produce their intentions. No intermediate CS states are produced.

Therefore, they act as a single CSP from the point of view of the CS, which

receives a set of intentions every ∆t time units.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 107

Figure 4.8 – Composition of CSP’s with a Conflict Resolver

The use of a CR provides a way of solving the previously mentioned oil

dispersion and containment problem, while keeping the logic of both CSP’s

separate. This CR is defined as CR[2, oil_cr], where

oil_cr(ittsdisp, ittscont) =

{(cfrom, move(a, d)) ∈ ittsdisp | (∀(cto, block) ∈ ittscont)(cto ≠ dest(cfrom, d))}

where ittsdisp and ittscont are the intentions generated by the oil dispersion and oil

containment processes respectively. This CR will act as an intention filter and will

let pass only the oil move intentions that do not attempt to put oil on blocked

cells. We have therefore created the abstraction of a CSP that handles both

dispersion and containment of oil and that is defined by composition of two

individual CSP’s, which are totally unaware of each other.

In addition to allowing a higher degree of modularity, the composition of

CSP’s via CR is also closed. This means that, for any composition of n CSP’s, it is

possible to write one single CSP with an equivalent behavior. This is easily

verifiable:

Theorem 2: For any set of CSP’s {CSP1[N1, B1, ∆t], CSP2[N2, B2, ∆t], … ,

CSPn[Nn, Bn, ∆t]} composed with a conflict resolver CR[n, crf], it is possible to

write a single CSPcomp[Ncomp, Bcomp, ∆t] with equivalent behavior.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 108

Proof:

Let us define

Ncomp(c) = (nc11, nc12, ... , nc21, nc22, … , ncn1, ncn2, ...)

 where Ni(c) = (nci1, nci2, ...)

Bcomp(sc, (s11, s12, ... , s21, s22, … , sn1, sn2, ...)) =

 crf(B1(sc, (s11, s12, ...)), B2(sc, (s21, s22, ...)), … , Bn(sc, (sn1, sn2, ...)))

where all states needed as inputs to all n behavior functions are also inputs to

Bcomp. This is easily verified because, by definition, Ncomp contains all cells of any

of the n neighborhood functions.

For any CS state S, CSPcomp outputs the same intentions as the composition

of the individual CSP’s using CR as conflict resolver. This is so because the

behavior function of CSPcomp receives as input precisely the intentions of each

individual CSP, and outputs those intentions with conflicts resolved by the crf

function, which is precisely the definition of how the conflict resolver works.

Closure under composition is indeed an interesting property of any

simulation formalism that strives for modularity and reuse (Zeigler et al. 2000).

Besides the reuse of sub-models, it also allows cascading composition in several

levels of abstraction. In fact, the composition of CSP’s with a CR has solved all

three problems identified with pure parallel composition. Therefore, it should be

seen as a more reliable way of CSP composition.

4.3
Multi-Agent Systems

The discussion of section 3.2.2 concluded that agents should be modeled as

specialized simulation elements. Agents are commonly modeled as cognitive

entities which sense their surrounding environment through sensors and act on it

through their actuators. In the middle of this process is the reasoning phase,

which can be further divided into smaller pieces, such as in the Jason toolkit

described in section 2.3.1. Most multi-agent simulation toolkits provide some

degree of modularization. Therefore, when implementing agents on top of

Process-DEVS, it is highly desirable to keep this modularity.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 109

However, there is no consensus on what should be the internal elements of

the agent reasoning process. Therefore, the next sections will describe simply a

framework for modeling the basic notions of sensing, acting and reasoning. More

detailed structures can be implemented on top of that.

Multi-agent simulations are often modeled in discrete time formalisms

(Theodoropoulos et al. 2009). However, this is often pointed as a limitation

(Michel et al. 2009). Therefore, the proposed framework will keep the more

flexible discrete event paradigm of Process-DEVS.

4.3.1
Modular Agent Architecture

Agents interact with their environment. The interaction cycle is often

composed of three main steps: sensing, reasoning and acting. Usually, multi-agent

simulation frameworks decompose the reasoning stage into more detailed parts.

However, there is no consensus on which is the right way of doing so. The main

reason for this is the different kinds of behaviors intended for agents. Sometimes

agents have a very simple reactive behavior and sometimes they are required to

reason logically, remember facts, formulate beliefs and try to achieve goals.

Therefore, since agent reasoning is not the focus of this work, we shall consider it

a black box that receives information from sensors and sends its intentions to

actuators.

Reasoning, sensing and acting are modeled by processes, which are named

respectively, reasoning processes, sensor processes and actuator processes, as

depicted in Figure 4.9. Sensor processes read the state of its environment and

produces events representing sensations. Reasoning processes take these

sensations as input and produce intentions. The intentions are sent to actuator

processes, which will perform the actions and alter the environment.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 110

Figure 4.9 – An agent with its behavior decomposed in sensor, reasoning and actuator processes

The sensor process is defined as

Psen[E, Y, σ] = 〈S, X, Y, E, P, δint, δext, λ, ρ, ta〉

where

E is the set of states in which the sensor can perceive the environment

Y is the set of sensations, which is the same as the output set

σ: E → 2
Y
 is the function that, given an environment state, returns a set of

corresponding sensations

S = 2
Y

X = {trigger}

P = ∅

δint(s, env) = ∅

δext((s, e), env, trigger) = σ(env)

λ(s) = ∅ if s = ∅

 s if s ≠ ∅

ρ(s) = (∅, ∅)

ta(s) = ∞ if s = ∅

 0 if s ≠ ∅

In its internal state, the sensor process stores the last perceived environment

state. Whenever it is triggered, it invokes the σ function to produce a set of

sensations, which are output in the same time instant as it was triggered. The

sensor process is triggered when it receives the trigger event. Any process can

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 111

send a trigger event to the sensor process. For example, consider a proximity

sensor which periodically checks the distance of a given object to the agent.

Whenever this distance is less than a threshold radius, it produces a sensation of

nearby object presence. In this case, there might be a clock process, which only

behavior is to periodically send a trigger event to the sensor process.

This triggering mechanism allows one to build a simulation where

sensations are only computed when they are really needed. For instance, an agent

may be in such a situation where the sensations of a particular sensor do not affect

its decisions. In that case, the simulation may be modeled in such a way that a

specific sensor is not triggered in such situations, thereby avoiding unnecessary

processing.

The sensations produced by sensor processes are used as input by the

reasoning process, which shall not be defined formally because there are many

different ways to model the internal reasoning of agents. The important fact here

is that the reasoning process produces intentions, which are sent to the actuator

processes. The role of an actuator process is to take intentions and produce the

actual actions that are performed in the environment. The actuator process is

defined as

Pact[Y, E, A] = 〈S, X, Y, E, P, δint, δext, λ, ρ, ta〉

where

Y is the set of events that this actuator may generate to the environment

E is the set of states in which the actuator can perceive the environment

A = {it1, … , itn} where iti: E → 2
Y
 is the set of intentions

S = 2
Y

X = A

P = ∅

δint(s, env) = ∅

δext((s, e), env, it) = s ∪ it(env)

λ(s) = ∅ if s = ∅

 s if s ≠ ∅

ρ(s) = (∅, ∅)

ta(s) = ∞ if s = ∅

 0 if s ≠ ∅

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 112

The behavior of actuator process is very similar to the behavior of the sensor

process, only with the flow of events in the opposite direction. It is triggered when

it receives an intention event. When that happens, it computes the proper events to

send to the environment and sends them at the same time instant. As the sensor

process, it uses a transient internal state to implement that behavior.

Each intention defines a function that takes as input the environment state.

This is necessary so that the actuator may check the preconditions that need to

hold before a particular intention can be materialized into a concrete environment

state change. For example, an agent cannot move to a location which is occupied

by another agent, even if it intends to do so. Another reason for checking the

environment is that the effects of an intention may depend on external factors. As

an example, consider an agent whose movement is affected by the wind. Each

time it issues a move intention on a given direction, the actual displacement of its

position will depend on the wind direction and intensity.

The use of actuators, as well as sensors, helps isolating the core logic of

agent reasoning. This way of modularizing the behavior of an agent allows one to

express the agent reasoning only in terms of sensations and intentions, without

worrying about the interaction with the environment. That does not mean that the

agent reasoning cannot be further modularized. It has been presented here as a

unique black box process, but it could very well be decomposed into a set of more

specialized processes.

This modular architecture, besides allowing reuse of agent parts, can also

help improving simulation performance by sensor and actuator sharing among

agents. For example, if there are lots of agents that need to sense the same

environment data with the same frequency, they can share a single sensor process.

This is accomplished simply by changing the process coupling structure in the

simulation, without touching the definition of the sensor process behavior. This is

also true for the actuators.

4.3.2
Simulation of Multi-Agent Systems

A multi-agent system is a system in which multiple agents interact with

each other. They interact either through the environment or directly, via message

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 113

exchanging. Considering the interaction through the environment, there is no

difficulty in composing a set of agents in a multi-agent system. It is only

necessary to put them in the same simulation, sensing and acting on the same

environment. On the other hand, in order to allow message exchanging, it is

necessary to provide some means of taking a message from an agent to another.

There are many ways to accomplish this. Figure 4.10 depicts the simplest case,

where the agents exchange messages directly, by sending events to each other.

Figure 4.10 – A multi-agent system simulation

Another possible way of message exchanging is to provide each agent a

mailbox as part of the environment state. This has the advantage of keeping agents

uncoupled, i.e. not sending events directly to one another, which makes it easier to

implement systems where agents are created and destroyed frequently. However,

this way of designing a multi-agent system can be counter-intuitive, as messages

are usually not thought of as part of the physical environment.

A more structured message exchanging mechanism can be implemented by

designing a specialized process or set of processes to handle message routing

between agents. However, since there is no consensus on how messages should be

exchanged in multi-agent systems, it is difficult, and maybe impossible, to point a

generic solution that will fit all cases. More likely, the best design will depend on

the objectives of the target system.

4.4
An Informal Discussion on Process Patterns

In general, modularity solutions lead to structure issues. Indeed,

modularization is the process of dividing objects into smaller pieces, which should

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 114

then be structured somehow to produce the desired result. This chapter has

presented ways to implement some popular dynamic modeling formalisms on top

of Process-DEVS, with emphasis on process modularity and composition. Based

on those cases, this section describes some generic solutions for process

composition that may also apply to a number of other different cases.

The solutions are presented in the form of process patterns, by analogy with

object-oriented design patterns (Gamma et al. 1995). These patterns will describe

a number of ways in which to structure processes in a simulation to solve a

particular problem while keeping a high degree of modularity and flexibility.

These patterns are designed for Process-DEVS, but some of the ideas are generic

enough so that they can be applied to other simulation frameworks as well.

The patterns in this section are not formalized as in the previous sections.

Indeed, since these patterns are expected to be applicable to simulations in

general, it would be necessary to have a broader experience with Process-DEVS

on various simulation fields. At this point, it is not clear to which extent the

patterns should restrict the nature of the processes.

Chapter 5 describes examples and discusses the benefits of the presented

patterns in the field of emergency simulation.

4.4.1
Parallel Pattern

The parallel pattern is the most straightforward pattern. It consists of

isolated processes making changes to the environment without any direct

interaction between them, as depicted in Figure 4.11. This pattern has been

extensively used for multi-agent systems simulation, where agents interact only

through the environment, such as insect colonies (Bonabeau et al. 1999) and

pedestrian behavior (Bandini et al. 2009).

Figure 4.11 – Parallel pattern

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 115

The main benefit of this pattern is that the processes do not directly depend

on each other. There is no direct communication between them. Therefore it is

easier to reuse any of them in another simulation with a different structure.

This pattern can be used only if the logic of the modeled phenomenon can

be broken into simple and independent processes. Note that the processes do not

necessarily represent the behavior of physically separate entities. They may also

represent different aspects of the behavior of a single physical entity. For

example, consider an oil slick on the surface of the sea. This oil moves according

to the weather conditions and it also gets recovered by pumps placed on recovery

boats. These two aspects, namely the dispersion and recovery, can be modeled as

completely independent processes.

4.4.2
Interference Pattern

Special care should be taken when using the parallel pattern. Some

conceptual problems may arise if some behavior logic of the processes is put into

the environment only to eliminate direct communication between them.

Consider for example the case of two characters moving through the

environment. One of them is stronger than the other. When both want to move to

the same place, the stronger prevails and the weaker is pushed to some adjacent

place. One could model this situation with the parallel pattern where each

character sends events to the environment when they wish to move. In this case,

the environment should treat the case of collision and apply the rule of the

stronger. This design is not so good because some of the logic that controls the

position of the characters was modeled inside the environment.

However, it is still possible to keep these two interfering processes separate

and unaware of each other with the interference pattern. This pattern attempts to

increase the modularity of processes that directly alter the environment by sending

events to it. The idea is to treat the output of the interfering processes as intentions

instead of effects on the environment. If the intentions of two or more processes

conflict with each other, a resolver process will define which effects should be

applied. This is accomplished by redirecting the outputs to this resolver process as

depicted in Figure 4.12. Hence, the events are intercepted by the resolver, which

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 116

treats them as mere intentions. It then applies the interference logic, produces the

resulting effects and sends them as events to the environment.

Figure 4.12 – Interference pattern

In the example of the two moving characters, both processes would send

their movement intentions as events to the resolver. Whenever the resolver detects

that both want to move to the same place, it treats the conflict and sends the

correct movement effects to the environment. Thus, the environment is kept

unaware of any logic specific to the movement of the characters.

The benefit of this pattern is that, although the processes interfere with each

other, they are still kept totally unaware of each other. The only element that is

aware of all interfering processes and the interference logic is the resolver process.

For the other processes, no dependencies between them are introduced and they

can be reused at will. Therefore, this pattern is useful when two or more processes

with complex behavior interfere with each other in the way they alter the

environment.

The interference pattern was already used in section 4.2.3 to model the

composition of cell space processes. Here the pattern is made generic to any kind

of process. In fact, a cell space process can be composed with different kinds of

processes using the interference pattern.

The trick of this pattern is to transform an acting behavior into an

intentional behavior. The events output by the processes represent not actions that

alter the environment state, but intentions that are sent to the resolver process.

Once the conflicts are treated, the resolver process outputs the actions to the

environment. This concept is also used in multi-agent system simulation

frameworks, where the acting behavior of an agent is separated from its

intentional behavior by actuators, as shown in section 4.3.1.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 117

4.4.3
Composite Pattern

If a reasonably complex process cannot be broken into fully independent

parts, the composite pattern may be used to break it into less complex

interdependent parts. The idea is to model complex behavior in hierarchical form

and distribute its tasks among a hierarchy of processes. One root process

represents, at the highest level of abstraction, a whole set of processes to the

external world. However, it does not implement all the complex behavior, but

rather delegates lower level tasks to its children. Figure 4.13 illustrates the pattern.

One simple and common example is a process that controls a moving object in the

environment. Among other behavioral aspects, the controller process is

responsible for implementing the object’s motion. Once it decides that the object

should move to a given location through a specific trajectory, it forks a move

process that will actually change its position from time to time until the destiny is

reached. Hence, the parent process can focus on higher level primitives and the

lower level details of displacement are handled by its child, the move process.

Note that the structure of the hierarchy of processes is not rigid. It may

change with time. In the just mentioned example, when the object has reached its

destination, the move process can be finished.

The workflow process defined in section 4.1.3 is a good example of this

pattern. In that case, the parent process represents the workflow itself and it

delegates the execution of the actions to children processes. The workflow process

simply defines which processes to fork and when, by following the workflow

logic.

Figure 4.13 – Composite pattern

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 118

The benefit of this pattern is modularization and reuse. Although we cannot

say that the processes in the hierarchy are totally independent, they certainly help

in breaking a complex dynamic model in smaller and simpler sub models. The

reuse of those simpler sub models is achieved when composing another complex

behavior. For example, in the case mentioned above, the move process can be

reused by another controller process that also implements the motion of some

other kind of object.

This way of composing a complex behavior is somewhat different from that

of the coupled DEVS model described in section 2.2.1. In that case, composition

is achieved through aggregation, while here it is achieved through process forking.

It is not clear which one is better, if any. This comparison could be the object of

future work. However, child forking is certainly more flexible because its

structure is mutable and defined only at the time the simulation is actually

running.

4.5
Summary

This chapter formalized a number of ways to implement some common

dynamic modeling formalisms on top of Process-DEVS. Section 4.1 presented a

way in which workflows can be mapped to Process-DEVS. In fact, in the way

workflow processes were defined, they represent a form of process composition

where the workflow logic defines which processes are created and when. Section

4.2 discussed the issue of modularity in the domain of cell space processes and

presented a formalism for dealing with it on top of Process-DEVS. It also showed

how to compose cell space processes out of smaller pieces. Section 4.3 presented

a formal framework in which it is possible to model multi-agent systems on top of

Process-DEVS, with support for sensors and actuators.

The solutions presented in the first three sections of this chapter suggested

some patterns in which to structure processes with interesting modularity

properties. Section 4.4 informally discussed these patterns, leading to interesting

conclusions that still need further experiments to be fully validated.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

4 Integrating Existing Formalisms 119

This chapter illustrated the capability of POS and Process-DEVS of serving

as basis for modeling the dynamics of serious games in a modular way and

integrating different existing formalisms.

DBD
PUC-Rio - Certificação Digital Nº 0821408/CA

